• Nie Znaleziono Wyników

Some Kan extensions of non-additive functors

N/A
N/A
Protected

Academic year: 2021

Share "Some Kan extensions of non-additive functors"

Copied!
8
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMAT Y CZNE X X (1978)

STANisbAw B alcerzyk (Torun)

Some Kan extensions of non-additive functors

1. Let В , В' denote rings and let J t, resp. J i', be the category of all left B-, resp. E'-modules. We define an additive category ê = ${Jt) as follows. Objects of S’ are pairs < Л , n}, where M is an object of J t and n is a non-negative integer, while H o r n n}, <JV, fc» = Ext^"fe( J f , N) and compositions are given by th e Yoneda product (we pu t E x tm = 0 for m < 0). We have a full and faithful functor K : J t ^ S , K ( M) = < M , 0>, К (a) = a for M, a in J t. I t is known (see [2], p. 239) th a t we can identify a connected sequence of left derived functors L+T of an additive right exact functor T: J t- ^ J t' with a right additive Kan extension E( T) of T along К in the following way: E ( T ) ( ( M, n}) = L nT( M) for all M in Jt, n = 0 ,1 , . . . and E( T) maps an element of H o r n ny, <Ж', n — 1 »

= E x t^ ( Л " , M') corresponding to an exact sequence 0-^M' ->0 onto a connecting map L nT ( M ' ' ) ^ L n_xT(M' ) induced by this sequence.

In this note we study right K an extensions E( T) of not necessarily additive functors T: J t- ^ J t' along K : Jt-+S. We prove a reduction theorem and compute E(T)((_M, n}) in terms of a projective resolution of M. We present some explicit computations in case when В is the ring of rational integers or a ring of polynomials and T is of the form )G, Am(-)®#. Results of parts 3 and 4 remain valid when categories of modules are replaced by appropriate abelian categories. For . homo- logical notions used in the paper see [3].

2. Let J t, resp. J t ', denote the category of all left B-, resp. E'-modules and let T : Jt-> Jt' be a (covariant) functor such th a t T(0) = 0. In [1]

cross-effect functors T x = T, T 2, T3, ... of T are defined. We remind the

г1 *2

definition of T 2. Let M x, M 2 be objects of J t and let M x M x® M 2^ M 2

P l P2

be a representation of a direct sum ( = product) M x ® M 2. The map 1 t ( m m 2) - ( T ( 4 P i )+T(4P2)) may be represented as Ц М Х, M 2) q {Mx, M 2), where q ( Mx, M 2) is epimorphic and Д( Mx, M 2) is monomorphic. Since T ( i xp x), T ( i 2p 2) are orthogonal idempotents, then

Ц М Х, М 2)

T { M X@M2) ъ T ( M X) @T ( M2)@T2( MX, M 2) *~" , T 2( MX, M 2)

e (M v M 2)

(2)

where T 2( Ml , M 2) = 1ш(Л(Ж1? 3I2)o(3f 1, М 2)). I t is easy to see th a t maps f x: M x->M'l f f 2: M 2-^M'2 induce such a natural map T 2( f x, f 2) : T t ( Mu ж 2 )->т 2 (ж ;, M 2) th a t T ( f 1@f2)X{M1, M 2) = Ц31[, M 2) T 2(f x, f 2) and thus T 2 is a functor of two variables.

We prove th a t for any maps f, g: M->M' we have (1) 24 f + g ) = T ( } ) + T ( g ) + r { M' ) T, ( f , g) o{ M) , where

o{M): T ( M ) — I t ( M @ 3 1 ) - ^ ^ I t 2( M , M ) ,

t (M'): T 2{31', Ж ' ) - ^ ^ Р ( Ж ' © Ж ' ) - ^ Р ( Ж ' )

and A, V' denote diagonal and codiagonal maps. In fact, we have fA-g

= r ' ( f ® g ) d , tben T ( f + g ) = T( V' ) T( f ®g ) T( A) , T( f ) = T( V ) T { } ®

© 0)T(A) and from F'% = 1, p 2zI = 1, T 2IJ, 0) = 0 it follows T ( f + g ) - T ( f ) = T ( P " ) ( T ( f ® g ) - T ( f ® 0 ) ) T ( A )

= T( V' )\T(f ®g) - T ( f ® 0)) {T( h )T(Pi) + T( h )1’(p2) + + X(M, M) g ( M, M))T(A)

= T ( V ’)( X{ i [ ) T( f ) ~T( i [) T( f ) ) T( p1) T( A) +

+X(P' )X(i ' )X(g)X(p2)X(A) + +X ( P ' ) { X ( f ®g ) - X ( f ®0 ) ) X ( M, M) g ( M, M) T( A)

= T( g) +T( V' ) MM' , M ’)(X2( f , g ) - .

- T 2( / , 0 )] q ( M , M ) T ( A )

= Х(д) + т(М')Хг(/, g)a(M) and ( 1 ) is proved.

3. I t is known (see [2] p. 233) th a t right K an extension E( T) of a functor T : Л -> Л ' along К : Л -> ё is given on objects by a formula.

E{ T ) { ( M, n y ) = lim To

<M,tA j. к

where (31, n ) \ K denotes a comma category with objects (X , a: (31, n ) -+K(X)), X in Л , a in ê, while a m ap£: X ^ X ! in Л maps {X, a) in ( X \ a) if K{!-)a — a and

i <M,n>: ( №

, is such a functor th a t

T heorem 1. Let T : Л -> Л ' be such a functor that T (0) = 0 , n > 1 and let

0 ->P-->Pn_2->... ->Р0->Ж ->Ю

be an exact sequence in Л with projectiveP 0, ..., P w_2 ; then there exist natural isomorphisms

E{ T) { ( M, n}) * E { T ) { ( L , 1 » , Щ Т ) « М , 0 » » T(M).

(3)

P ro o f. Since К is full and faithful, then the second formula follows by [2] p. 235. We have a natural equivalence /*: E x t” ( i f , *)->ЕхР(1/, •) which induces a functor /t: < i f , n y \K -+ (L , i y \ K defined as follows:

Ц ( Х , а : <M, п >- *ЩХ) ) = ( X , ц(Х)(а): < i , 1 > ^ ( X ) ) , fï(() = £ for f: X - + X ’.

ji is an isomorphism of categories and

i <M,ny

then it induces an isomorphism

E { T ) ( ( M, n } ) = lim T ог<М)П> = lim T o i<Ltl>oji ъ lim T o i<Ltl>

<•M , n y \ K i M , n y \ K <l,i> |x

~ E ( T ) « L , 1 » and the theorem follows.

Let us remark th a t objects < i f , n}, <P, 1> are not isomorphic if n > 1 and i f Ф 0 because Hom^(<L, 1>, < i f , n » = E x t 1 - n (P, if ) = 0 and Hom)f(< if, w>, < if, n'y) — HomM( i f , if ) Ф 0.

4. We prove

T heorem 2. Let T : jii-^ J l' be such a functor that T (0) = 0 , let

o ^ l X p -+ m ^ o

be an exact sequence in J i with projecitve P; then

P ( P ) « i f , l » = Ker T (j) nK er (T2( l , j ) a (L)j.

P ro o f. Let A be an object in Ji' and let for any object (X, a:

( M, 1} - >K( X) ) of < i f , 1 >\K a map \ x>a): A - ^ T o i <M>1>(X, a) = T( X) in M' be given, and suppose th a t for any map (X, a)->(X', a) we have T(£)h{Xa) = \ х >^. Since a e E x t 1( M , X ) , then a corresponds to an exact sequence a: 0 - > X Y-> if-» 0 .

We denote by m the exact sequence O^X -^>P->if^O . By projectivity of P it follows th a t there exists a map (g0, f 0, 1M): n ^ a . I t is easy to see th a t any other map ( g, f , 1 дД: тг->й is of a form (go + s j , f 0 + i s , 1 M), where s: P->X is an arbitrary map. Consequently a pair of maps g0:

L->X, s : P-+X determines a map g0 + sj: (L, 1)->(X, a) in < i f , 1)4_йГ and any map of (L, n) in (X , a) is of this form for a certain s: P->X.

Silice T (g q A sj) \ L>„) = h{x>a) for a lls , then T(g0 + sj)h(L>n} = Т(д9) \ ь>я).

By (1) it follows

(2) 8 (T(sj) + t ( X ) T z(g0, sj)e {L )}\Ltn) = 0.

For any map g0: L->X there exists such a e E x t 1 ( i f , X ) th a t (# 0 , / 0 ,1 M):

n-+a for some / 0, then ( 2 ) holds for all s and all g0. If we p u t X = P ,

s = 1P , g0 = 0 , then we get T ( j ) \ Ltn) = 0. If we put X = P ® P , g0 — i x:

(4)

L*— —>L ^^P, s = î > 2 * 0 Pj then

0 = t{L@P) T z{ix1i 2j)a{L)h{Ltn) = t { L ® P ) T z(ix1i 2) Tz( l , j ) a { L ) \ Ltn) and

r ( L ® P ) T 2(il1 i 2) = T ( V ) À ( L ® P , L @ P ) T 2(iXJ i 2)

= T ( V ) T ( b ® i z) l ( L , P ) = X ( L , P ) . because VLeP(ix @г2) = 1 L@P. Since X(L, P) is monomorphic, then we get a t last

(3) T ( j ) \ L,n) 3)а{^)\ь,п) — О

thus all \x,a) factorize through a map h: А -*-KerT (j )nK er (T2( 1 , j ) a (Z)j.

I t is easy to see th a t (3) implies ( 2 ) and the correspondence {à(Xta)}i-^h is one-to-one, thus lim T o

\ m,

1

>

^ K e rT (j)n K er(T a(l,j)<x(L)).

<M,V>\k

Let us rem ark ‘th a t if T is additive, then T 2 = 0 and E ( T ) ( ( M , 1 >)

= K erT (j) is a usual formula for the first left satellite of T.

5. In this p art we present some computations of E(T) in case T( X)

= X 0 B ... <S> r X <8>r G = X®m 0 д(г, where В is a commutative ring, X and G are JS-modules. We have

т е х 1 e x 2) t ( x 1) @ t { x 2) ® © 6 x 8^ 0 ... 0 X e(m) 0 (?,

where e runs over all non-constant functions e: { 1 , ..., 2 }, then we identify T 2{ Xl, X 2) with ©eX £(1) 0 ... 0 X e(m) 0 (x.

Let 0-> хЛ Р -> Ж -> 0 be an exact sequence of .R-modules with pro­

jective P. For x Xl ..., xm e l , g s G we get

o{L)(xx® ... 0 #m<8>g) — Xeco x0 ... ®xm®g.

We p u t j° = 1L, j 1 = j, L° = L, L 1 — P ; then T 2 ( l, j) a{L){xx® ...

... < 8 >жт 0 0 ) - ^ J 8 ( 1 )W 0 ... ®js{m)(xm) ®g and the term (xx) 0 ...

... 0 gr is in L'W 0 ... 0 Le(m) ®G<=->T2{L \ L l) = T 2(L, P). Thus K er(IT 2 ( l , j)or(L)) is equal to the intersection of kernels of all maps

m

j e(1) 0 ... 0 j e(m) 0 l G and this intersection coincides with П Ker j k, where

k = l

Зк = 1 ь ® . . . 0 j 0 . . . 0 l£ 0 l( ? (j on fc-th place). Since T(j) = j 0 ...

... 0 J 0 1 , then by Theorem 2 we get

m

(4) E { T ) { ( M , 1 » = П K erjfc.

fc=i

If J f is a flat JB-module, then B](T)((M, n » = 0 for w > 1. In fact,

if n > 1 then, in notation of Theorem 1, К is flat, then by Theorem 1

(5)

we reduce to the case n — 1. In this case we have Kerj k ъ K e r(£ ® i® (w- 1 )®G£i4- 1 P(8)i:®(w- 1 )0 ^ )

^ Torf (M, L®(m~v'®G) = 0 and the formula is proved.

Now we assume R = Z = the ring of rational integers. Let M be a ^-module; then Ж = (J Ma, where {Ma}aeA is the family of all finitely

aeA

generated submodules of M, partially ordered by inclusion. We show th a t (5) Щ Т Ж М , 1 » = И тР(Т )(< Ж а, 1 » ,

where T = -®m ®G, thus computations of Р(Т)(<Ж , 1 » are reduced to the case of finitely generated ^-modules. To prove ( 6 ) let us denote by F, resp. F a, a free ^-module on the set of elements of M, resp. M a, a e A . Then we have natural epimorphisms F~>M, F a->Ma and commutative diagrams

0 — >F i* * ■*“ a - > M a- — >0

( 6 ) 0 —>L -— г A n F J, n —> M n —>0

F a<^~>F is a splitting monomorphism then L acz-*L is also a splitting mono­

morphism because Co ker (La <=_>!,) is contained in a free ^-module Coker(Pac:-^_P). I t is clear th a t (J L a — L. ( 6 ) induces a commutative diagram for к = 1 , ..., m a

T ( L a) = L®m <g>G^>L®{k~V ® P a ® L f w- fc) ® 0 T(L) = L ® m®G£- ^ > L 0 (* -I)® P ® L 0 (w- A:)® 61

and vertical maps are monomorphisms. Since T(L) = lim T (L a) and

m m *"

Kerj k = liin Ker j aA., then pj K erjfc = lim f] K erja fc and formula (5) follows

“*■ ’ fc=l bfc=l

from (4).

From (4) we get immediately th a t F ( T ) ( ( Z j n Z , 1 » = {g e G\ ng = 0}

then by ( 6 ) it follows th a t E(T){<fQjZ, 1 » is the torsion subgroup of G (Q denotes the group of rationals). From (5) we see also th a t Р(Т)(<Ж , 1 » depends only on torsion subgroup of M, nevertheless it is not equivalent to T o rf(M, G).

Let us assume now th a t R = 1c[Xx, ..., X n] is a ring of polynomials over a commutative ring k. We p u t I = R X x + ... + R X n and Ж = R /I then 0 ^ Z - > P ^ P /Z ->0 is exact. I is a free fc-module on monomials in X x, . . . , X n (of positive degrees). Z0m = I ®й ... <g>RI is a factor module of I <s>k ... ®ftZ which is a free fc-module on ц х <g> ... <8>/лт, where p x, ..., pm

2 — Roczniki PTM Prace Mat. XX.2

(6)

are monomials. One can easily show th a t if /q, • • • ? /4 are also monomials, then

/iX 0 Й ... ®Rf*m = 0 • • • 0 / 4 iff

(a) /*i... t*m = /* !• .. / 4 in case deg/q > m, and (b) /q = / 4 /im = /4 in case 2 1 = w -

Consequently 70m is a free 7-module on free generators / (”1) = /q 0 ...

••• 0 /*m? /* == /q ... /*m corresponding to monomials ц of degree > m and pm) _ X v(l) 0 ... 0 ) X^(TO) corresponding to functions rj: { 1 , . . . , m}-* { 1 , ...

..., n}. We denote n(rj) ~ X n(1)... X^(m) and identify all products Z® ...

. . . 0 7 0 1 2 0 7 0 . . . 0 7 with 7®(m~1); then j fc: maps *q 0 ...

... 0 \ onto % щ 0 ... 0 %._! 0 w fc+10 ... 0 and is independent of 7' = 1 , ..., m.

Moreover, j k(fi?l)) = j k(f[m)) = f% J1} and an element a j™ +

m M

-f-JJ « ,д т) belongs to П Kerj* = K erji iff

4 fc=l

(a) = 0 in case deg /n > m, and

(b) JT 1 av = 0 for each /* of degree m.

M »?)=**

Thus Kerfy is a free 7-module generated by elements

__ 0 ... 0 0 ... 0 -3Tn 0 ... 0 -5ГП 0 • « • 0-3Z»j(m)>

81 «П

where s* is a number of elements in rj~1(k), 7 = 1, ..., n and rj runs over non-monotonic .functions rj: {1 , . . . , . . . , n} . I t is clear th a t Х {Ъ%1) = 0 for all i = 1 ,

Since K e rjx<=-*.7®"* splits then we have a commutative diagram with exact rows and columns

. 0 — > K erj x ®kG — > 7®m ®kG 7®(m~1) 0 * G

(7) 7®w ®BG 7®(w-b ®r G

I I

0 0

where K err is generated by all elements of a form Х {и ®д — и ® Х {д, и e 7®m, g 6 G, i = 1, . . . , n. Using this diagram one can show th a t JS/(T)(<72/7,1 » = K e r(ji 0 Bl) s 7®m0 B6t is generated by elements of a form

П

7 ^ 0 y , Х ц Х) 0 ...

i = 1

where ^ X igi = 0 and £: { 1 ,..., m —!}->-{1,..., n).

(7)

A cyclic Л-module R jl admits a Koszid complex

0 ->L = Rex л ...

a

en — >P = Re[ @ ... @Ren-^- ... ~>R->RIT>i) as a free resolution, where <?'• — ex л ... л et_x л ei+1 л ... л en and j (ех л ...

... л e,rt) = ( — 1 )г_ 1 Х г-е'-. We can identify L®rn 0 G with G, L<g> ... 0 L 0

г=1

0 P 0 i 0 ... 0 i 0 6 with P 0 G ; then respecting this identification we

have /I W

j*<9) =

г = 1 * t = l

. SO

Kerj* = fer Ig - 0 } = 0 :&J and finally E { T ) { ( R j I , n)) = 0 :GI.

6 . In this part we present some computations of E( T) in case T( X)

= Д m(X)<S>G, where X and G are modules over a commutative ring R and m ^ 2. We have

TH—l

T(X ’ © X 2) ~ T ( X 1)©2'(X2)© © A k( X l) ® A m- ' ,( X 2) ® e k =1

m— 1

then we identify T 2{ X \ X 2) with © Д ^ Х 1) 0 0 <?. Let fc=i

0 — >P — >АГ— >0 be an exact sequence of P-modules with projective P . For any x x, ..., x.m g L we get

m— 1

*=i where the term

ji(Æ1A ...A æ m0<?) - £ Sgll (ç>,

у

) ^ 1)

л

. . .

л

^

а

) 0 ^ (

жу

(1))

л

. . .

а

j(®v(TO_fc))0flr (<P,y>)

is in Д*(Р) 0 Д ш_А:(Р) 0 6 r for Л = 0, w —1, (ç>, y) runs over all (Jc, m — ft)-shuffles. Since = f \ m(j) 0 1 and it is clear th a t

m— l

K er(P 2 ( 1 , j)a(L)] = (© K erj*, then by Theorem 2

(

8

)

Р ( Т ) « Ж , 1 » « П K e rj;.

& = o

Now we assume th a t R — Z and we show th a t formula (5) is valid also for the functor T = f\ m( • ) 0 6 r. Diagram ( 6 ) induces for fc = 1, ...

..., m — 1 a commutative diagram

T(i.) = A » ( i . ) ® e - ^ - A * ( i a) ® A —

p / p

Т(Х) = A m(X )® e— —►л*(Х)®Лт “':(-г')®<?

and -we deduce formula (5) from ( 8 ) similarly as in part 5.

(8)

Since E ( T ) ( ( Z ( n Z , 1 » = 0 then E( T) ( ( QI Z, 1 » = 0. If M is a direct sum of cyclic groups of finite orders rx, ..., rn, then using ( 8 ) we can show by standard computation th a t E ( T ) ( ( M, 1 » = K erj'^.j and it is iso­

morphic to ф {g e ( t ; d{rj)g = 0 }, where r) runs over all strictly monotonie

V

functions rj: { 1 , . . . , w}-> { 1 , . . . , w} and d(r\) denotes the greatest common divisor of r„( 1 ), . . . , r „ (m).

Let us assume now th a t В = &[X1} X n] and preserve the nota­

tion of part 5. We have T 2( I , B ) = / \ m~1(I) (&G, j f0 = T(j) = 0 and, moreover, for i x < ... < im

m

T 2{1, j) a {I) {Xh л • • • A X im<S>g) = - ±)к~1хч х ч л • • •л Х гк л • • • л X in ®д

к — 1

ш

= У ( ... л Х ,т _1 ® ÿ

fc=l

Xv Хг- л (g )<7 for odd m , *

_ гт г1 *кг—1 £ 7

О for even m.

Using the description of as a й-module one can easily show th a t f \ m(I) as a ^-module is a direct sum $ m>1 ® $W)2, where $ m>1 is a free ^-module on ^ Х ^ л . ' . л Х ф ) for all strictly monotonie functions rj: { 1 , ...

.. . , т}-з*{ 1 , .. . , n} and Sm>2 is a direct sum of cyclic ^-modules ks^n) f* к 12k, where s f l) = X :(m+1)... X f(e)X f( 1 )A... л X C(m) for all strictly monotonie functions £: {1, ..., s }-^{1, ..., n} and s > m. From a diagram similar to (7) one can deduce th a t

E ( T ) « R I I , 1 » f \ m(I) ® 0 for even m , for odd m,

where $ (m) denotes a submodule of f \ m{I)®G generated by elements 2 s *w)® 0 (for all strictly monotonie functions r\\ ( 1 , ..., ..., a}

and all g e G) and elements ^ Х г(1) л ... л X C(m_1) л Хг- ® д{ (for all strictly

г = 1

monotonie functions £ : { 1 , ..., m — 1 }-> { 1 , n} and ail relations

П

JT Х ^ г- = 0). I t is clear th a t I anihilates SSm).

i= 1

References

[1] S. E ile n b e r g and S. M a cL a n e, On the groups Н ( л , п ) , II, Ann. of Math.

60 (1954), p. 49-139.

[2] S. M a cL a n e, Categories for the Working Mathematician, Berlin 1971.

[3] —, Homology, Berlin 1963.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

(INSTYTUT MATEMATYCZNY PAN)

Cytaty

Powiązane dokumenty

The pair of adjoint functors -Top .Teta°p preserves the homo- topy relation.. Cubical sets from

On the other hand, it is clear that the category Mod(T ) may be identified with the full subcate- gory of Mod(R) consisting of all right R-modules M such that M = M T , and this

Dla duszpasterzy ważna jest także wiedza, na ile podejmowana przez nich problematyka życia małżeńskiego i rodzinnego w ramach przygotowania jest przy- swajana przez narzeczonych

Sentences containing ‘God’ have a particular status: one cannot simply state that they have a mean- ing (since a complete description and with it a complete representation is

Nie należy jednak pomijać kluczowej roli spółki cywilnej w nowoczesnych systemach prawa jako punktu odniesienia dla rozmaitych form kooperacji, które z uwagi na element dążenia do

The most significant here, however, is the system of movements, the system of possibilities of mutual interactions between values as well as with man, who is ranked

Abstract: Let F (correspondingly P) denote the abelian category of functors (strict polynomial functors in the sense of Friedlander and Suslin) from finite dimensional vector

• po zakonom (ne)propisanoj obveznosti: Zakonom o osobnom imenu 9 (Na- rodne novine br. 118 / 12, dalje NN, 118 / 12) propisana je obveznost imanja osobnoga imena i prezimena; 10