• Nie Znaleziono Wyników

Wpływ stosowania ciężkich maszyn w sadach jabłoniowych na zbitość gleby

N/A
N/A
Protected

Academic year: 2021

Share "Wpływ stosowania ciężkich maszyn w sadach jabłoniowych na zbitość gleby"

Copied!
14
0
0

Pełen tekst

(1)

K A ZIM IER Z SŁOW IK

TH E IN FLU EN C E O F HEAVY EQ U IPM EN T USED IN A P P L E ORCHARDS ON CO M PACTIO N O F SO IL

In sty tu te of P om ology, S k ie r n ie w ic e

In th e sp ring tim e in m an y o rchard s, an d p a rtic u la rly th ose located on h e a v ie r te x tu re d soils w ith in su ffic ien t d rain ag e and in clean c u lti­ v ation th e re ex ist e x tre m e d iffic u lty to m ake passing of tra c to r w ith sp ray er. The n u m b ers of trip s over th e soil in o rch ard s becom es stead ily increasin g, an d m od ern m achines are now u su a lly bigger an d h eav ier th e n th e y w ere before.

F or th e sa tisfa c to ry co n tro l of diseases an d insects P o lish fru it g row ers use som etim es sp ra y e rs s ix te e n th to e ig h te en th tim es p e r y ear. T his v e ry h igh stre a m of tra ffic w ith h e av y m achines over th e w e t soil — as it is w ell k now n in th e w orld — leads to com paction of soil, and th is changes th e p ro p ertie s of soil an d its p ro d u ctiv ity .

The m ain purpo se of th is in v estig atio n on com paction problem in o rch ard s w as to fin d to w hich e x te n t p h y sical p ro p erties are changed u n d e r h ea v y eq u ipm en ts on d iffe re n t soils.

L IT ER A TU R E REVIEW

T h ere are d iffe re n t sources of com paction of th e soil. Som e soils becom e com pact n a tu ra lly as a re s u lt of th e ir te x tu r a l com position an d m oisture changes, p a rtic u la rly d ry in g [4]. In n a tu re processes in some soils lead to th e develo p m en t of genetic h a rd pans, clay pans, silt pans etc. T hese lay e rs are developed u su a lly in d eep er p a rts of th e profile. F ield ex cav atio n in o rch ard s m ade b y G r u z d i e v , [3], S ł o w i k a nd W i l l i t s [9], V a l k o w a nd N i e g o w i e l o w [14] an d o th ers has show n evidence of lack of p e n e tra tio n by fru it tre e roots w h ere h ig h er den sities occur n a tu ra lly .

(2)

34

Sources of com paction of the soil surface are rain, irrig a tio n , p a stu re of anim als, and m ach in ary tra ffic — pro b ab ly th e m ost im p o rta n t [1, 2, 7, 13]. The com paction becom es rea l pro blem in in ten siv e orchards, w h ere fru it tre e s are p lan te d m ore den sely th an in tra d itio n a l ones.

One of th e m ost im p o rta n t facto rs on w hich the degree of com paction depends d u rin g use of m ac h in ary is th e m oisture of soil at th e tim e of tra c to r op eration [1, 13]. U su ally less com paction occurs w hen tra c to r op eration s are perfo rm ed on d ry soil th an on soil at or about field capacity.

The d ep th to w hich soil can be com pacted by th e use of tra c to rs depends on soil, its m oisture, and d ata v aries according to d iffe re n t in v estig ato rs [2, 13]. D oneen an d H end erso n [2] show ed th a t soils com pac­ tion m ay occur to a d ep th of 50 cm w hen th e tra c to r passes w ere done soon a fte r irrig atio n .

U sually slow p e n e tratio n of w a te r in to th e soil is the first sy m pto m

w hich show s th a t soil is com pacted. This is p a rtic u la rly v e ry often

observed in orchards. D o n e e n a nd H e n d e r s o n [2] have

show n th a t in filtra tio n ra te on th e non passage area w as alm ost 1.4 in.p.h., an d a fte r tw o passages of tra c to r soon a fte r irrig a tio n w as only 0.6 in.p.h.

It is g en erally accepted th a t com paction increases b u lk d en sity , low ­ ers porosity, gets th e diffusion of soil air slow er, decreases n o n -ca p illa ry porosity, an d ra te of p erm eab ility , an d re s tric ts p la n t grow th. R eview of lite ra tu re on th a t m a tte r is p rese n ted by R a n e y et all [5], R o s e n ­ b e r g [8], V e i h m e y e r a nd H e n d r i c k s o n [12].

In creased com paction m akes root exten sion m ore d ifficult. R estrictio n of roots to shallow d ep th red uces th e soil rese rv o ir of n u trie n ts and m oisture w hich w ould n o rm ally be availab le to th e p lants. V o l z [13], has observed th a t p a rtic u la rly roots of M IX rootstock could not p e n e tra te into dense soil w hile some o th er rootstocks could. Wa 1 к o w and N i e - g o w i e 1 o w [14] concluded th a t for fru it tre e s the b u lk den sity should not exceed 1.6 g/ccm. The resu lts of sev eral in v estig atio n s [12, 14] in dicate th a t root g ro w th ten d s to be re s tric te d in fine te x tu re d soils w hen b ulk d en sity gets m uch above 1.4 g/ccm . In coarser te x tu re d soils root g ro w th m ay not be noticeable re stric te d at b ulk densities less th a n 1.6 g/ccm .

G r u z d i e w [3] stu d ied a w ide ran ge of o rch ard soils in R ussia and em phasised th e im p o rtan ce of th e m echan ical im pedance of d iffe re n t horizons in th e soils. He found th a t th e resistan ce to p e n e tra tio n of th e probe (G olubievs p en etro m eter) is a good in d ex of p e n e tra b ility of soil for the roots, if th e d e te rm in a tio n s w ere m ade n e a r field capacity. A pple tre e roots p e n e tra te d rea d ily into th e soil w h ich re sista n t values did not

(3)

exceed 30 kG p er sq u are c en tim eter. A t 30-60kG/sq«cm few roots w ere found. Above 60 k G /sq -c m roots p e n e tra te d only along th e holes m ade by ea rth w o rm s an d by th e roots of some o th er p lan ts like alfalfa.

M A TE R IA L A N D M ETH ODS

The stu d y of th e in flu en ce of heav y eq u ip m en ts used in apple o rchard s on p h y sical p ro p erties of soil an d p a rtic u la rly th e ir com paction s ta rte d in a u tu m n of 1964 in Field E x p e rim en t S tatio n at D ąbrow ice. N ext y e a r tw o o th er S tatio n s n a m e ly Sinołęka, and Now a W ieś w ere u n d e r in v estig atio n too. The m echanical com position of soil in in v estig a ted o rchards are p rese n ted in Tab. 1.

T a b l e 1

Mechanical composition of surface s o i l s under in v e stig a tio n

Diameter in mm F ield Experiment Station 1-0.5 0 .5 -0.25 0 .2 5 -0.1 Q.I-О.05 0.020 .0 5 - 0.02-о.ооб о.ооб-Ü. 002 o75ö2 Percentage Dąbrowice 8 21 26 15 9 6 9 6 Sinołęka 3 6 21 13 7 14 14 22 Nowa Wieś 2 7 20 18 33 13 2 5

The o rch ard s ran g ed in age from 17 to 30 years. T ra cto r w ith sp ra y e r w as used in stu d ied o rchards at least 20 to 30 tim es y early . The o rchard s re p re se n te d tw o system s of c u ltu re — p e rm a n e n t sod and clean c u lti­ vation k e p t for a long tim e. Two sam pling positions w ere selected in p e rm a n e n t sod; one tra c k area betw een row s and th e second aro u n d edge of crone canopy of apple trees, an d one in clean cu ltiv atio n in tra c k area.

In 1964 u n d istu rb e d soil sam ples w ere tak e n only at D ąbrow ice and at d ep th of 0-10 cm, from both system s of cu ltiv ation . In 1965 soil cores w ere tak e n at D ąbrow ice, Sinołęka, and Now a W ieś fro m th e d e p th 0-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm to find to w hich d e p th soil is com pacted. To fin d out h ig hest com paction soil sam ples w ere alw ays tak e n in late au tu m n .

(4)

36 К . S ło w ik

F rom each position an d d e p th w ere tak e n 6-10 cores of 100 ccm for d e te rm in a tio n of b u lk d ensity , to ta l porosity, non c a p illa ry porosity etc., and 6-10 cores of 200 ccm for h y d rau lic con d u ctiv ity m easurem ent. Non cap illary poro sity w as m easu red b y d ete rm in in g th e w a te r loss of th e soils b etw een com plete s a tu ra tio n an d 60 cm w a te r suction according to R i c h a r d s [6]. B ulk d e n sity w as calcu lated from th e volum e of th e cy lin d e r and oven d ry w eigh t of th e soil. H y d ra u lic co n du ctiv ity w as m ea su red using h y d rau lic g rad ie n t of 2.5 cm in th e m ethod described by U ’h l a n d [11].

In ad d itio n in field condition d e te rm in a tio n of re s is ta n t to p e n e tratio n of p n eu m atic ty pe of p e n e tro m e te r d escribed b y R z ą s a [9] w as used. U sing th is p e n e tro m e te r we d e te rm in e d soil resistan ce in v e rtic a l d ire c ­ tion to th e d ep th of 40 cm, an d ho rizo n tal d irectio n to th e distance of 20 cm at in te rv a ls of 1 cm. The h o riz o n tal p e n e tra tio n w as m easu red in th e w a ll of th e soil p ro file in th e d e p th of 10, 20, 30 and 40 cm. I t w as 10 tim es rep lica ted in each dep th . The d e te rm in a tio n w as done in S ep tem b er in soil m o istu re condition n e a r field capacity. In th a t tim e soil m o istu re w as also determ in ed .

The d ifferen ces am ong o b tain ed d a ta b etw een tra ffic an d non tr a f ­ fic area w ere so large in m ost analy sed p ro p erties th a t it w as not need to m ake sta tistic a l analysis, an d re su lts p rese n ted are average fro m 6-10 replications.

R E SU L T S

D ata from D ąbrow ice p rese n ted in Tab. 2 illu s tra te d th a t in tra ffic area b u lk d en sity m ark e d ly increased in com parison w ith non tra ffic area. This in crease of soil com paction in tra ffic a re a is p a rtic u la rly observed in clean cu ltiv atio n w h ere av erage b u lk d en sity in su rface lay e r w as 1.74 g/ccm . H igher b u lk d en sity caused by tra c to rs an d sp ra y e rs low ers

to ta l porosity, non cap illary po rosity and p a rtic u la rly h y d rau lic

co n d u ctiv ity Tab. 2. H y d rau lic co n d u ctiv ity at D ąbrow ice in p e rm a n e n t sod in non tra ffic area is about 2 tim es g re a te r th a n in tra ffic area. Also in tra ffic area in p e rm a n e n t sod th e h y d rau lic con­ d u c tiv ity is m ore th a n 4 tim es g re a te r th a n in clean cultivation. In 1965 sim ilar stu dies w ere m ade also at Sinołęka an d Nowa Wieś. H ighest values for bu lk d en sity in tra ffic a rea w ere ob tained at Sinołęka in clean cu ltiv ation , alth o u g h p e rm a n e n t sod does not p ro tect again st com paction by tra c to rs as it w as observed at D ąbrow ice in 1964 (Tab. 2).

(5)

T a b l e 2

I n f l u e n c e o f heavy equipment used in orchard on some p h y s i c a l p r o p e r t i e s o f s o i l in 0- 1 0 cm depth F i e l d Experiment S t a t i o n S o i l management Samples taken p la c e Bulk d e n s i t y g/ccm T ot al p o r o s i t y % Non • c a p i l l a r y p o r o s i t y % Hy draulic c o n d u c t i v i t y cm/hr i 1 Dąbrowice Permanent T r a f f i c area 1 . 5 6 4 1 . 4 1 5 .5 2 .8 7 6 1964 sod Non t r a f f i c area 1 . 4 8 4 4 . 2 16 .3 5 .3 6 5

Clean c u l t i v a t i o n T r a f f i c area 1 . 7 4 3 4 . 3 1 0 . 5 0 . 6 7 1 Si n o łę k a Permanent sod T r a f f i c area 1 . 7 5 3 3 . 4 8 .0 1.2 45 1965 Hon t r a f f i c area 1 .4 3 4 5 . 8 1 7 . 2 4 . 2 7 8 Clean c u l t i v a t i o n T r a f f i c area 1 . 7 8 3 2 . 6 7 . 2 0 . 6 2 9 Nowa Wieś Permanfint

sod T r a f f i c area 1 . 6 6 3 6 . 2 3 . 4 0 . 2 3 2 1965 Non t r a f f i c area 1 . 3 0 5 0 . 9 1 0 . 7 3 . 6 8 4 Clean c u l t i v a t i o n T r a f f i c area 1 . 7 2 3 5 . 1 3 . 1 0 . 1 0 2 * - Under 60 cm o f water t e n s i o n T a b l e 3

I n f lu e n c e o f heavy equipment used in orchards in permanent sod on changes o f bulk d e n s i t y

F i e l d Experiment S t a t i o n Samples taken p l a c e Depth in cm 0 -1 0 10 -20 20 -30 3 0 -4 0 4 0 -5 0 5 0 -6 0 Bulk d e n s i t y in g/ccm Sin o łę ka T r a f f i c area 1 .7 5 1 . 8 3 1. 7 0 1 . 7 1 1 . 7 1 1 . 7 6 Non T r a f f i c area 1 .4 3 1 . 5 6 1 .5 7 1 . 5 5 1 . 6 1 1 . 6 6 Nowa Wieś T r a f f i c area 1 . 6 6 1 . 6 4 1 . 6 8 1 . 7 2 1 . 7 1 1 . 6 6 Non T r a f f i c area 1 . 3 0 1 . 4 3 1 .4 3 1 . 5 3 1 . 5 5 1 . 5 2

The d e p th to w hich soil is com pacted by h eavy eq u ip m en t at S inołęka an d N ow a W ieś is p rese n ted in Tab. 3. T he h ig h est com paction w as reach ed a t S inołęka in th e d e p th of 10-20 cm and at Now a W ieś in the d e p th of 30-40 cm. These d a ta in d icated also th a t h e a v y eq u ipm ent used in b o th o rch ard s in creases com paction, in com parison w ith non tra ffic a rea to a d e p th of 50-60 cm.

R esults concerning soil resista n c e to p e n e tra tio n of p n eu m atic p e n e t­ ro m e ter done in 1965 in tra ffic and non tra ffic a re a at S inołęka a n d

(6)

со со

T a b l e 4 In fl u en ce of heavy equipment used in orchards on s o i l r e s i s t a n c e to p e n e t r a t io n in v e r t i c a l d i r e c t i o n

October I 965 F i e ld Experi­ ment S t a ti o n S o i l manage­ ment Samples taken p la c e Depth in cm 2-4 4 - 6 6-8 8 -1 0 10-12 12-14 14-16 16-18 18- 20 20-22 22-24 24-26 26-28 28-30 30-32 32-34 34-36 36-38 38-40 Avera­ge 2 S o i l r e e i s t a n c e to p e n e t r a t i o n in kG/cm Sinołęka 1 Perma­ nent eod T r a f f i c area 6 6 ,0 11 5 .0 157.6 1 6 2 .6 162.3 162 .9 I 6 0 .6 164.3 1 6 7 .1 17 0. 0 175.0 185.0 172.0 170.0 162.0 158.6 156.0 159.2 I 6 0.0 157.2 Son t r a f f i c area 2 6. 5 35 .3 4 2. 2 4 6 . 2 5 0 . 8 5 5 . 2 5 7 . 0 6О.6 67 . 7 78 .5 97 .5 10 0.5 I I 5 .6 11 1.0 1 16 . 0 12 1. 0 12 8. 6 126.3 1 2 8 . 2 8 2 . 4 Clean c u l t i ­ v a ti o n T r a f f i c area 135. 0 1 3 0 .0 above 2 0 0 . 0 Nowa Ъ Ш . perma­ nent sod T r a f f i c area 5 4 . 2 79.$) 104.2 126 .5 14 0. 2 158.5 1 66 . 0 176. 0 1 88. 0 1 85 .0 186.0 189.0 180.5 175.0 179.0 172.0 169.0 175.0 176.0 156.8 Non t r a f f i c area 10. 2 18.3 22.8 2 7 . 4 3 0 .3 3 0 . 8 3 5 . 0 3 9. 4 4 6 . 6 4 5 . 5 5 1 . 6 58. 3 7 0. 5 7 5 . 8 8 0 . 6 8 4 . 0 84 . 0 9 0 . 8 10 1 .0 5 2 . 8 Clean c u l t i ­ v a ti o n T r a f f i c area 1 3 2 .5 5 1 . 5 63.0 8 4 . 2 115.5 138.0 I 6O.O 162.0 171.0 I 6 0 .0 158.4 16 6. 2 175.0 182.5 above 200.0 !. S ło w ik

(7)

Now a W ieś illu s tra te Tab. 4. A t Sinołęka in clean cu ltiv a tio n and in tra ffic area soil resistance below 6 cm d e p th w as h ig h er th a n 200 kG /sq*cm and it w as im possible to m easu re it. T he sam e value w as reached at Now a W ieś below 30 cm depth.

In both o rch ard s g re a te r differen ces existed b etw een tra ffic and non tra ffic area in soil re sista n t to p e n e tratio n of probe in surface layers th a n in deepper ones. In su rface lay ers soil resistan ce is g re a te r som

e-In flu e n c e of h ea v y eq u ip m en t used in orchard on soil r e sista n ce to p en etra tio n in v e r tic a l direction: a) at S in o łę ­

ka, Ъ) at N ow a W ieś. O ctober 1965

1 — p e r m a n e n t s o d t r a f f i c a r e a , 2 — p e r m a n e n t s o d n o n t r a f f i c a r e a , 3 — c l e a n c u l t i v a t i o n t r a f f i c a r e a

tim es th re e to four tim es in tra ffic th an non tra ffic area. In Now a W ieś soil resistan ce in surface layers in p e rm a n en t sod and tra ffic are a w as h ig h er th a n in clean cu ltiv atio n b u t it w as opposite bellow 30 cm dep th. It is in te re stin g to note th a t soil m o istu re in tim e of s tu d y in each o rch ard is v e ry sim ilar in both soil m an ag em en ts (Tab. 5).

(8)

40 К . S ło w ik T a b l e 5 S o i l mo is tu re in time o f measurement o f s o i l r e s i s t a n c e to p e n e t r a t i o n F i e l d Experiment S t a t i o n S o i l management Samples taken p l a c e Depth in cm 0 -1 0 10 -20 20-30 30-40 1 Weight per ce nt ag e Sin o łę ka Permanent sod T r a f f i c area 1 0 . 0 1 1 . 1 12 .8 11 .4

Non t r a f f i c area !! ô ‘ 6 1 0 . 8 12 .6 12 .5 Clean c u l t i v a t i o n T r a f f i c area i S. 6 1 0 .2 12 .0 1 2 . 6 Nowa Wieś Permanent sod T r a f f i c area 1 3 .1 1 4. 7 14 .6 1 2 . b Non t r a f f i c area 1 5 .1 1 4 . 9 14 .1 1 4 . 0 Clean c u l t i v a t i o n T r a f f i c area 1 4 . 6 1 3 . 2 12.4 1 2 . 2

T a b l e 6

I n fl u e n c e o f heavy equipment used in orchard kept in permanent sod a t Si n o łę k a on s o i l r e s i s t a n c e to p e n e t r a t i o n in h o r i z o n t a l d i r e c t i o n October I 965 Samples taken p la c e D is ta n c e from the w a l l of s o i l p r o f i l e in cm Depth cm 2-4 4 - 6 6-8 8 -1 0 10-12 12-14 14-16 16-18 18-20 average 2-2 0 S o i l r e s i s t a n c e to p e n e t r a t i o n in kG/cm2 T r a f f i c area 10 135 .0 152, 5 149 .0 1 5 9 . 0 I 6O.O 161 .0 1 62 .0 169 .5 162. 5 1 5 6 .7 40 130 .0 1 4 5 . 2 15 0. 0 1 4 9 . 0 1 52 .0 I 6O.4 159 .7 16 5 . 2 167 .8 153 .3 Non t r a f f i c 10 5 2 . 0 6 0 .5 5 0 . 2 4 5 . 5 5 1 . 2 6O.5 5 5 . 0 4 9 .O 4 6 . 2 5 2 . 2 area 40 8 9 . 0 9 2. 5 1 01 .2 1 0 9 . 0 11 2. 8 10 9 .7 105 .2 IO6 .5 109 .3 10 3 .9

Soil resista n c e to p e n e tra tio n of probe in h o rizo n tal d irectio n for S inołęka in p e rm a n e n t sod in tra ffic an d non tra ffic a re a in d iffe re n t d e p th is p re se n te d in Tab. 6. In tra ffic a re a h ig h est soil resistan ce w as m easu red in th e d e p th of 30 cm b u t th e g re a te st d ifferences ex ist in th e d e p th of 10 cm (Tab. 6).

D IS C U S S IO N

In m o d ern f ru it tre e c u ltu re it is im possible in p ractice to elim in ate using of tra c to rs an d o th er h eav y equip m ent. W hen w e a th e r is w et it is n ecessary to use m ore sp ra y e rs in apple o rch ard s th a n in dr:v w eath er.

(9)

This v e ry high stre a m of tra ffic of h ea v y m achines over th e w et soil in o rch ard s leads to its com paction. It w as show n a t D ąbrow ice, Sinołęka, Now a W ieś th a t u n d e r h e av y e q u ip m en t sev eral soil physical p ro p erties, p a rtic u la rly b u lk d en sity , porosity, h y d ra u lic co n d u ctiv ity , soil re s is t­ ance to p e n e tra tio n of probe in flu en ces ad verse in g rea t e x te n t. (Tab. 2, 3, 4). O btain ed d ata agree w ith d a ta of d iffe re n t in v estig a to rs [1, 2, 7, 13].

Soil com paction in th e larg e e x te n t in some soil ty p es m ay effects m an y problem s in fru it tre e grow ing. P a rtic u la rly w hen clean c u ltiv atio n is k ep t in o rch a rd th ere are m an y d ifficu lties w ith passing th e tra c to r w ith sp ray er. Also w a te r p e rm e ab ility in clean cu ltiv atio n seem s to be slow e th a n in p e rm a n e n t sod. In dense soil lay e r like it w as concluded by W a 1 к o w an d N i e g o w i e l o w [14] an d G r u z d i e w [3] root system s of apple tre e s can no t e n try in because of m echan ical im pedance. In crease of soil d e n sity a t S inołęka an d N ow a W ieś to th e d ep th of 50-60 cm m ay ad v erse root p e n e tra tio n in a re a passed by tra c to r w heels. T his can in crease difficu lties for grow ing roots in tra ffic area p a rtic u la rly in in te n siv e o rch ard s p la n te d in sm all d istan ce w hen ro ots can have sm all volum e of soil for feeding. This can be p a rtic u la rly im p o rta n t w ith ro otstocks w hich are sen sitiv e to dense soil for in stan ce M IX like it w as found by V o l z [13].

A t Sinołęka in tim e w hen soil com paction w as stu d ie d th e re w ere m ade tra n c h e s for tu b e d rain ag e in th is o rch ard an d it w as observed th a t in tra ffic a rea an d p a rtic u la rly in shallow lay ers only few roots of A ntono vka seedlings p e n e tre a te d dense layers.

U sing p o p u lar P olish sp ra y e rs it is n ecessary to pass tw o tim es in each row to sp ra y th e b oth side of th e trees. It m eans th a t in p a rtic u la r y e a r w hen it is need to sp ra y 12 tim es th e tra c to r an d sp ra y e rs m u st tra v e l th ro u g h given row 24 tim es. In such condition com paction w ill in creased fro m y e a r to y ear.

No sim ple rela tio n sh ip could be fou n d b etw een th e force re q u ire d to d rive a probe in to th e soil an d th e soil conditions, an d f ru it tre e gro w th an d roots. It is obvious th a t in tra ffic a re a in b o th soil m an ag em ents is a v e ry high soil resistan ce to p e n e tra tio n of th e probe. As th e m ea su re ­ m en ts w ere m ade in sim ilar m o istu re condition in p e rm a n e n t sod and clean cu ltiv atio n large d ifferen ces in resistan ce depend m ain ly on h ig h er degree of com paction. T hus h igh soil resistan ce found in tra ffic a rea m uch m ore exceed values w hich G r u z d i e v [3] has found as a lim ited for th e apple tre e roots. F u rth e r studies are n ecessary to explain some rela tio n b etw een com pacted and non com pacted soil in rela tio n to th e root gro w th of fru it trees.

(10)

42 К . S ło w ik

R EFEREN CES

[1] D o n e e n L. D., H e n d e r s o n D. W.: C om paction of irrigated so ils by tractors. A gric. Eng., 34, 1953, 94— 95.

[2] D о n e e n L. D., H e n d e r s o n D. W. , F e r r y G. V.: S oil com p action by tractors. C aliforn ia A gric., 6, 1952, 7— 8.

[3] G r u z d i e w G. I.: V ybor m iesto p o ło żen ija i p oczw y pod sad. S ielh ozgiz, M o­ sk va 1956.

[4] L u t z J. L.: M ech a n ica l im p ed a n ce and p la n t grow th . A gronom y 2, 1952, 43— 71.

[5] R a n e y W. A. , E d m i n i s t e r T. W., A l l a w a y W. H.: C urrent sta tu s of research in soil com paction. S oil Sei. Soc. A m er. Proc., 19, 1955, 423— 428.

[6] R i c h a r d s L. A.: M ethods of m ea su rin g soil m o istu re ten sio n . S o il Sei., G8, 1949, 95— 112.

[7] R o d r i g u e z - O r t i z S. J., C r o s b y E. A.: A su rv ey of the in flu e n c e of eq u ip m en t tra ffic on root co n cen tra tio n s and w a te r in filtr a tio n in ap p le orchards. Proc. A m er. Soc. H ort. Sei., 67, 1956, 22— 25.

[8] R о s e n b e r g' N. J.: R esp o n se of p la n ts to the p h y sica l e ffe c ts of so il co m p ­ action. A d v a n ces in A gron om y 16, 1964, 181— 196.

[9] R z ą s a S.: M etodyka badań przy za sto so w a n iu p n eu m a ty czn eg o oporom ierza g leb o w eg o . P o zn a ń sk ie T ow . P rzyj. N auk, 12, 1962, nr 3, 99— 112.

[10] S ł o w i k K. W. , W i l l i t s N. A.: S tu d y e ffe c t of so il ty p e on tree root d istrib u tion . N e w Jersey A gric., 44, 1962, nr 2, 8— 12.

[11] U ’ h 1 a n d R. E., O’ N e a l A. M.: S o il p erm ea b ility d eterm in a tio n s for u se in soil and w a ter con servation . S.C.S. T echn. P ubl., 101, W ash in gton D.C. 1951. [12] V e i h m e y e r F. J., H e n d r i с к s о n A. H.: S o il d en sity and root p e n e tr a ­

tion. S o il Sei., 65, 1948, 487— 493.

[13] V o l z H.: M ech a n isch e B o d en v erd ich tu n g und ihr E in flu ss au f das W u rzel­ w a ch stu m v ersch ied en er A p felu n terla g en . E rw erb sob st., 2, 1960, nr 6, 107— 110. [14] W a l k o w V. F., N i e g o w i e l o w S. F.: U p ło tn ien n o st poczw i d o łg o le tie

p ło d o w y ch d ieriew iew . Sad i ogorod, И , 1958, 42— 43.

К . S Ł O W I K

L ’IN FLU E N C E D E L ’EM PLO I D ES M A CH IN ES LO U R D ES, D A N S LES V ER G ER S DE PO M M IER S, SU R L A C O M PAC ITÉ D U SOL

I n s t i t u t d ’A r b o r i c u l t u r c à S k i e r n i e w i c e

R é s u m é

La d éterm in a tio n de l ’in flu e n c e de l ’action de p ression des m a ch in es lou rd es (tracteurs et p u lv érisa teu rs) dans le s v erg ers de pom m iers, sur les ch a n g em en ts des p a rticu la rités p h y siq u es des sols.

Ces ob serv a tio n s ont eu lieu en dans les v erg ers de l ’In stitu t d ’A rb oricu ltu re 1964 à D ąb row ice — et en 1965 au ssi à S in o łęk a et N ow a W ieś. Ces o b serv a tio n s ont eu lieu dans des verg’ers de p om m iers de Tage de 17— 30 ans. L es p a rticu la rités

(11)

p h y siq u es des sols fu ren t m arq u ées dans le s cy lin d res dans des é ch a n tillo n s des sols p r e lé v é s des p elo u ses et des sol nu tr a v a illé des b an d es de terre p ressées par le s tracteu rs et des p elo u ses non p ressées par des m a ch in es. En ou tre on a d é te r ­ m in e la con cision du sol au m o y en d’un p én étro m ètre p n eu m a tiq u e co n stru it par R z ą s a [9].

Sous l ’in flu e n c e des p a ssa g es des m a ch in es lou rd es dans le v erg er a lie u une d im in u tion p ron on cée de la p orosité g é n éra le des sols, de la p orosité n o n ca p illa ire et de la p erm éa b ilité (table 2). D ans tou s le s v erg ers e x a m in é s dans les ban d es de p a ssa g e la p erm éa b ilité dans la cou ch e su p érieu re du sol é ta it de 2 à 4 fo is plus gran d e dans le s p elo u ses q u e dans les sol nu tra v a illé. On con stata un a c c r o isse ­ m en t du poids v o lu m e des sols sous l ’in flu e n c e de l ’action de p ressio n des m a ch in es ju sq u ’à u n e profon d eu r de 60 cm (tab le 3). A D ąb row ice on o b serv e une com p ression m o in d re dans le s b an d es de p a ssa g e dans le s p elo u ses qu e dans le s sol nu tra v a illé, ce qui ne fu t pas o b servé ni à S in o łęk a ni à N ow a W ieś (table 2).

L es d ifféren ces de con cision du sol d éterm in ées au p én étrom ètre é ta ie n t parfois très p ron on cées selo n le m ode de cu ltu re et selo n la p rofondeur, la con cision la plus p ron on cée fu t d ém on trée dans le sol en sol nu tr a v a illé dans les ban d es de p a ssa g e (table 4).

к. S Ł O W I K

DIE BO D EN D IC H T E IN A P F E L B A U A N L A G E BEI A N W E N D U N G SCHW ERER M A SC H IN E N

I n s t i t u t f ü r O b s t b a u i n S k i e r n i e w i c e

Z u s a m m e n f a s s u n g

Z w eck der d u rch g efü h rten U n tersu ch u n g en w ar d ie B estim m ung' der D ru ck ­ w irk u n g sch w erer M asch in en (w ie T rak toren und S p ritzgeräte) in den A p fe lb a u m ­ an legen .

D ie sb e z ü g lic h e U n tersu ch u n g en w u rd en im Jah re 1964 b ei der V e rsu ch ssta tio n des O b stb a u in stitu tes in D ąb row ice, im 1965 auch in S in o łęk a und N ow a W ieś a n ­ g eleg t. Es w u rd en d ie A p felb a u m g ä rten im A lter v o n 17— 30 Jah ren u n tersu ch t. P h y sik a lis c h e B od en eig’en sch a ften w u rd en au f G rund der in d ie Z y lin d er e n tn o m ­ m en en Proben b estim m t. D ie P roben w u rd en vom g ed ich teten R asen und sch w arzer B rach e w ie auch vom R asen, au f w e lc h e m k ein T raktor g efa h ren w ar, en tn om m en . A u sserd em w u rd e d ie B o d en d ich te m it dem p n eu m a tisch en P en etro m eter von R z ą s a [9] b estim m t.

U n ter dem E in flu ss des in den A n la g en arb eiten d en sch w eren G erätes e r fo lg te w e se n tlic h e E in sch rän k u n g a llg em ein er und k a p illä rer P orosität und der D u rch lä s­ sig k e it des B od en s (Tab. 2). In den F a h rstreifen a ller u n tersu ch ten G ärten w ar die D u rch lä ssig k eit der oberen B o d en sch ich te u nter dem R asen 2— 4 m al grösser als u n ter der sch w a rzen B rache. D as V o lu m en g ew ich t des B od en s v erg rö sserte sich u n ter der D ru ck w irk u n g der M asch in en bis zu 60 cm T ie fe (Tab. 3). In D ąb row ice w u rd e in den F a h rstreifen des R asen s k le in e r e B o d en v erd ich tu n g als unter der S ch w a rzen B rache fe s tg e ste llt. In S in o łęk a und N ow a W ieś hat m an an d ere R esu lta te b eob ach tet (Tab. 2).

(12)

44 К . S ło w ik

D ie m itte ls des P en etro m eters b estim m ten B o d e n v erd ich tu n g sd ifferen zen w a r e n m an ch m al, je n ach der B ea rb eitu n g sa rt und T iefe, seh r gross, w o b e i d ie g rö sste B o d en v erd ich tu n g in den F a h restreifen der sch w a rzen B rach e fe s tg e s te llt w u rd e (Tab. 4).

K A Z I M I E R Z S Ł O W I K

W PŁY W ST O SO W A N IA CIĘŻK IC H M A SZ Y N W SA D A C H JA BŁO N IO W Y C H N A ZBITO ŚĆ G LEBY

I n s t y t u t S a d o w n i c t w a , S k i e r n i e w i c e

S t r e s z c z e n i e

C elem p rzep row ad zon ych badań je st o k r e śle n ie w p ły w u u g n ia ta ją ceg o d ziałan ia ciężk ich m aszyn (jak trak tory i op rysk iw acze) w sad ach ja b ło n io w y c h na zm ian y fizy czn y ch w ła śc iw o ś c i gleb y.

B ad an ia przep row ad zon o w 1964 r. w sad ach Z N B In sty tu tu S a d o w n ictw a w D ą ­ b row icach , a w 1965 r. ta k że w S in o łęce i N o w ej W si. B a d an iam i ob jęto sad y ja b ło ­ n io w e w w ie k u 17— 30 lat. F izy czn e w ła śc iw o ś c i g leb oznaczono w cylin d rach w próbkach g leb y p o b iera n y ch z m u ra w y i czarnego ug'oru z p a só w u g n ia ta n y ch trak toram i oraz z m u ra w y z m iejsc n ie u g n ia ta n y ch żad n ym sp rzętem m e c h a n ic z ­ nym . Poza tym zw ięzło ść g le b y oznaczano p en etro m etrem p n eu m a ty czn y m k o n ­ stru k cji R z ą s y [9].

Pod w p ły w e m d ok on an ych p rzeja zd ó w ciężk im sp rzętem w sad zie n a stęp u je zn aczn e z m n ie jsz e n ie się ogóln ej p o ro w a to ści gleb y, p orow atości n iek a p ila rn ej i p rze­ p u szcza ln o ści (tab. 2). W e w sz y stk ic h b ad an ych sa d a ch w p asach przejazd u p rze­ p u szczaln ość w o d n a w w ierzch n ie j w a r stw ie g leb y w m u r a w ie b y ła 2 do 4 razy w ię k sz a n iż w czarnym ugorze. W zrost ciężaru o b jęto ścio w eg o g leb pod w p ły w e m u g n ia ta ją ceg o d zia ła n ia m a szy n stw ierd zo n o do g łęb o k o ści 60 cm (tab. 3).

W D ą b ro w ica ch w p a sa ch p rzejazd u w y stę p o w a ło m n ie jsz e u g n ie c e n ie g leb y w m u ra w ie niż w czarn ym ugorze, czego n ie ob serw o w a n o w S in o łę c e i N o w ej W si (tab. 2).

R óżn ice w z w ięzło ści g leb y ok reślo n ej p en etro m etrem b y ły n ie k ie d y bardzo d uże w za leżn o ści od sp osob u u p ra w y oraz g łęb o k o ści, przy czym n a jw ię k sz ą z w ię z ­ ło ść w y k a z y w a ła gleb a w czarnym ugorze w p a sa ch p rzejazd u (tab. 4).

к. е л о в и к В Л И Я Н И Е ПРИМ ЕН ЯЕМ О СТИ Г Р У ЗН Ы Х М А Ш И Н В Я Б Л О Н Е В Ы Х С А Д А Х Н А К О М П А К ТН О С ТЬ П О ЧВЫ И н с т и т у т С а д о в о д с т в а , С к е р н е в и ц е Р е з ю м е Ц елью п р ов еден н ы х и ссл едован и й бы ло оп р ед ел ен и е уплотняю щ его д е й ­ ствия при м ен яем ы х в са д а х гр у зн ы х м аш ин (тракторы , оириск иватели) на и зм е ­ н ени е ф и зи ч е с к и х свойств почвы.

(13)

И ссл едов ан и я приводились в 1964 году в са д а х И нститута С адоводства в м. Дом бровице а в 1965 году т а к ж е в м. С иноленка и Н ова В есь. И ссл едов ан и я охваты вали сады 17— 30 л етн его возраста. Ф и зи ч еск и е свойства почв оп р едел я л и в ц и л и н др ах в п оч в ен н ы х о б р а зц а х отобр ан н ы х -с м уравы и с черного пара на п ол осе сж ат и я (уплотнения) колесам и трактора а т а к ж е с муравы , где почва не п одв ергалась сж ати ю м ехан и ч еск и м оборудован ием . К р ом е того оп р едел я л и плотность почвы с помощ ью пневм ати ческого п енетром етра конструкци и Ж о н с ы [9]. П од влиянием м ногократной езды маш ин в са д а х п осл едов ал о зн а ч и т ел ь ­ ное у м ен ь ш ен и е общ ей пористости (скваж ности) почвы, н ек ап и л ля рн ой пористости и прони цаем ости почв (таб. 2). В о в с е х и ссл едов ан н ы х са д а х в п о ­ лосе п ер еездо в (дв и ж ен и я ) маш ин проницаем ость вер хн его горизонта почв бы ла на м ур аве в 2 д о 4 р а з больш ей, чем на черном пару. П овы ш ение о б ъ ем ­ ного веса почв под влиянием упл отн яю щ его дей стви я маш ин о бн ар уж и в ал ось до глуби ны 60 (таб. 3). В м. Дом бровице вы ступало м ен ь ш ее сж а т и е почвы на м ураве, чем на черном пару, что однако н е проявилось в м. С иноленка и Н ова В есь (таб. 2). Р азн и ц ы в плотности почв оп р едел яем ой пенетром етром бы ли иногда очень велики, в зависим ости от способа и глубины обработки, при чем самой вы сокой плотностью отли чался ч ерны й пар в п о л о са х п ер еездо в (таб. 4).

(14)

Cytaty

Powiązane dokumenty

Somnambulizm (sennowłóctwo, lunatyzm, ang. sleepwal- king) należy do parasomnii i polega na występowaniu złożo- nych zachowań podczas snu wolnofalowego (SWS),

W badaniach, jak wspomniano, wzięło udział 49 osób; 51% (25 osób) to stu- denci pedagogiki opiekuńczo-wychowawczej z resocjalizacją i PS, a 49% (24 oso- by) studiuje wychowanie

15,6% młodzieży z miasta i 14,49% ze wsi uzyskało dodatkowe informacje na temat profilaktyki próchnicy w czasie wizyty kontrolnej.. Duży odsetek gimnazjalistów z miasta

according to our achieved results it is diffi- cult to estimate which specific sutures were more susceptible to colonization of microbes because isolated species

Tymczasem obraz społeczny starości jest tak negatywny, a uciążliwości z nią związane tak dotkliwe, że ludzie często nie chcą się pogo- dzić z faktem, że już są

Brak ksiąg metrykalnych gm iny żydow skiej z w ieku XVIII nie pozw ala na do­ kładne określenie pow iązań rodzinnych poszczególnych osób.. Byli to z pew nością

Po dwóch latach rządów w dniu 2 lipca 1935 roku przed ratuszem NSDAP tryum- falnie ogłosiło dotrzymanie wyborczej obietnicy: wieś otrzymała prawo używania nazwy „Stadt

Edward Rymar, pisząc o Nowej Marchii za Luksemburgów 1 , wspomniał nadanie przez Zygmunta Luksemburga zamku i miasteczka Danków z 16 XI 1380 dla „Vorbo- the”