• Nie Znaleziono Wyników

Gazing at clouds to understand turbulence on wind turbine airfoils

N/A
N/A
Protected

Academic year: 2021

Share "Gazing at clouds to understand turbulence on wind turbine airfoils"

Copied!
2
0
0

Pełen tekst

(1)

Delft University of Technology

Gazing at clouds to understand turbulence on wind turbine airfoils

De Oliveira Andrade, Gael; Balbino dos Santos Pereira, Ricardo; Timmer, Nando; Ragni, Daniele; Lau, F.; van Bussel, Gerard

Publication date 2016

Document Version Final published version

Citation (APA)

de Oliveira Andrade, G., Balbino Dos Santos Pereira, R., Timmer, N., Ragni, D., Lau, F., & van Bussel, G. (2016). Gazing at clouds to understand turbulence on wind turbine airfoils. Poster session presented at 8th ESA EO Summer School , Rome, Italy.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Exaggerated boundary layer thickness estimation at Re

Mach < 0.3

Reynolds >10e6

play essential role in performance of large

wind turbines

Wind turbine airfoil flows are incompressible and have very high Reynolds number. Mach stays

constant while Reynolds grows as turbines increase in size

to reduce costs

Airfoils

needed to replicate airfoil field

conditions mean experimental costs escalate as Reynolds

number grows

Large

Wind Tunnels

codes used with scarce validation and

large uncertainties

CFD

simulation

come from semi-empirical turbulence models with incomplete physics callibrated

with insufficient data [2, 3]

Errors in

Load Prediction

Gather

measurements of very High Reynolds FlowS

Flat plate, Aerofoil

Backward Facing Step Wind Turbine Wake

Power Production Loads

Water Pipe Experiments Taylor and Couette Flow High Altitude Winds,

Clouds, Oceanic Currents Law of the wall, e^N

theory, Isotropic Turb.

Semi Analytical Solutions Wind Tunnel Cannonical Flows Industrial Wind Cases Earth Observation

Turbulent

Flow Database

Should we rely on the pioneer database hosted by Durasaimy at Michigan University [4,5],

Turbgate (http://turbgate.engin.umich.edu/) ? Or should we develop a European

alternative with broader flow data ?

(EO)

N.A., Direct Numerical Simulation (to provide asymptotic behaviour) Ultrasonic Anemometry,

Wind LIDAR, SCADA and Turbine Controller Data Pressure Tap, Wake Rake,

Load Balance, Particle Image Velocimetry (PIV)

ADM Aeolus Instrument, Lagrangian Tracers on Optical/IR Measurements Hot wire, PIV, Pressure Tap and Stanton Tube

Instrument Instrument Instrument Instrument [6,7] Instrument Flow Flow Flow Flow Flow

Early experiments show that size of calibration dataset is critical for successful data driven turbulence modelling,

motivating multidisciplinary

bridges to fill data gaps.

1

EO flow measurements

hold unique information on high Reynolds turbulent phenomena, essential to identify asymptotic tendencies.

Gazing at

Clouds

to understand

turbulence

on Wind TURBINE

Airfoils

S

o

l

u

t

i

o

n

We propose to rethink the procedure for calibrating turbulence models used in popular Computational Fluid Dynamics (CFD) codes. Like Duravaisamy [4,5] , we recognize that current turbulence models were calibrated

with a single handful of reference cases, and therefore attempt to create a large unified calibration dataset. The large calibration dataset will be used to learn optimal conditional calibration rules for popular turbulence

models: Integral Boundary Layer (IBL) closures, RANS models like Spalart-Almaras (SA) and

LES subgrid scale (SGS) closure models

Adopt data rich approach

to tune flow turbulence models

LEARN

Gather

PREDICT

Start with data assimilation and grow into (Deep)Learning

calibration for turbulence models

measurements of very high Reynolds turbulent flows, quantify data quality and reduce redundant points

«

Every flow is an observation of

the phenomenon of turbulence.

»

2CCTAE , IDMEC

Inst. Superior Técnico Universidade de Lisboa

Av. Rovisco Pais 1 1049-001 Lisbon Portugal

1AWEP Department

Aerospace Faculty, Delft University of Technology

Kluyverweg 1 2629HS Delft The Netherlands

«

Perhaps the single, most critical area in CFD simulation capability that will remain

a pacing item by 2030 (...) is the ability to adequately predict viscous turbulent flows

»

CFD Vision 2030 Study, NASA CR 2014-218178

2014

2015

2016

Gather partners to share data and write proposals. Summer schools: JMBC Turb., LxMLS16 and 8th ESA EO.

Process CFD Fields to learn neural VI closure relations. Tune the G-Beta constants

of a viscous-inviscid (VI) solver (RFOIL) with genetic algorithms (NSGA2).

«

Turbulence remains the last unsolved

problem of classical mechanics.

»

Deterministic Chaos, Kumar N, U. Press

Lo n g t er m i d ea

open to partners

Learn

turbulence model calibration Curves

2

predict

turbulent flows

3

Even when good calibration is achieved, turbulence models will still rely on many coarse assumptions: most popular RANS and LES closures rely on the Boussinesq hypothesis and rule some (if not all) anisotropy out. Once established, the methodology will be applicable to any type of turbulent closure relation, thereby higlighting the common features of seemingly diverse models:

Navier

Stokes

cl

os

ur

e

Reynolds Averaged Navier Stokes

Large Eddy Filtered Navier Stokes Viscous-Inviscid Asymptotic

RANS

Vi

LES

«

Big whirls have little whirls

that feed on their velocity,

and little whirls have lesser whirls

and so on to viscosity.

»

Turbulence is a complex flow

process dominated by seemingly chaotic eddy motions of multiple scales. Large eddies decompose into smaller eddies of nearly random appearance, but small eddies reorganize into larger coherent structures [1].

For high Reynolds numbers, turbulent processes are too complex to be fully resolved (DNS) in Computational Fluid Dynamics (CFD) simulations. Engineers use approximate equations (VI/RANS/LES) to handle turbulent phenomena with closure models [2, 3].

Weather Prediction by Numerical Process Richardson LF, CUP

the issue with turbulence modelling on

wind turbine Airfoils

[1] A first course in Turbulence, Tennekes & Lumley

MIT Press

[2] Modification of the boundary layer calculation in Rfoil for improved airfoil stall prediction

van Rooij R, TU-Delft Report IW-96087R

[3] An evaluation of RANS turbulence modelling for aerodynamic applications, Catalano P &

Amato M, Aerospace Science and Technology, 7 493-509

[4] Machine Learning Methods for Data-Driven Turbulence Modeling, Zhang ZJ & Duraisamy K,

AIAA 2015-2460

[5] A paradigm for data-driven predictive modeling using field inversion and machine learning,

Parish EJ & Duraisamy K, J. Comp. Phys. 305 758-774

[6] La turbulence par l'image, Heas P Heitz D and Memin E

La Recherche: L’actualité des Sciences 2010-444

[7] Parameterization Of Turbulence Models Using 3DVAR Data Assimilation, Olbert AI, Nash S,

Ragnoli E and Harnett M, 11th International Conference on Hydroinformatics

infer

new closure terms

4

Model calibration curves can hint towards the most problematic simplifications behind current turbulence models [5], and neural networks can even learn improved closure terms [4]. But learning algorithms do not aim to replace researchers: like genetic airfoil optimizers enhance the work of airfoil designers, neural networks can

empower turbulence modellers.

Obtain CD closure for VI Codes Run Neural Network to learn the CD in terms of H and Retheta Learn dissipation coefficient (CD) closure to match a VI code (RFOIL) to RANS model (Spalart Almaras)

Generate velocity fields in OpenFoam and process into CD , H and Retheta

2

nd

s

im

ple ex

per

im

en

t

There are many ways to learn from data. Our first experiment consisted in reproducing the way aerodynamicists work [2] with a genetic optimizer. The data pool was too narrow and asymptotic

tendencies were unreliable. Our 2nd experiment, a

simple version of [4], had a virtually unlimited data pool and used neural networks. Results were better, but computationally expensive. Data assimilation approaches used in EO [ 7] could yield better results..

1

st

simple experiment

Compare VI code results with trustable reference data

Optimize (NSGAII) G-Beta closure constants to match results

Group D8 of the AE-2223 course developped the neural network code: Koopman, Henger, Lebesque, Mekic, Mollinga, Vijverberg, R e u t e l i n g s p e r g e r Gael de Oliveira1 Ricardo Pereira1 Nando Timmer1 Danielle Ragni1 Fernando Lau2

Gerard van Bussel1

Simple Infographic Set by BNIMIT Bebas Font by Ryoichi Tsunekawa Open Sans Font by Steve Matteson

Cytaty

Powiązane dokumenty

As examples of such structures one can take for example, natural, rational or real numbers, the universe of Euclidean geometry and perhaps also the universe of all sets considered

Tak oto już na wstępie zarysował się najważniejszy spór, którego areną stała się X X X Konferencja Teoretycznolite-... Referaty otwierające konferen- cję, zwłaszcza

Впливові жіночі освітні асоціації та спілки поступово досягають поставлених цілей: організовують курси лекцій для жінок спочатку за межами

Amounts of released nitrogen, carbon dioxide, and total hydrocarbons – hard coal, fraction from 0.16 to 1.4 mm

author (a woman), a Ukrainian professor of literature from the University in Ternople, has prepared an extensive monographic study of the prob­ lems from the field

Nie dziw, że słowa Mickiewicza tak poruszyły, a ściślej - ucieszyły poetę. Po­ równywanie wkładu Zaleskiego w doskonalenie języka i literatury słowiańskiej do tego, co

Zdaje się tym samym potwierdzać swoje przywiązanie do programu badawczego socjobiologii klasycznej, efektywnego przy badaniu homogenicznych programów zachowania się

Alle drie zijn vormen van offshoring, of delocalisatie, maar hebben verschillende gevolgen voor een bedrijf dat overweegt zijn processen te verplaatsen.. De meeste winsten