• Nie Znaleziono Wyników

Mainstream traffic flow control at sags (poster)

N/A
N/A
Protected

Academic year: 2021

Share "Mainstream traffic flow control at sags (poster)"

Copied!
1
0
0

Pełen tekst

(1)

Mainstream traffic flow control at sags

We present a new control strategy that aims to reduce total delay at sags. The strategy is based on the concept of mainstream traffic flow control. The traffic density at the bottleneck area is regulated in order to keep it slightly below the critical density, hence preventing traffic from breaking down while maximizing outflow. Density is regulated by means of a variable speed limit section that regulates the inflow to the bottleneck. Speed limits are set based on a proportional feedback control law. We evaluate the effec-tiveness of the control strategy by means of a case study using microscopic traffic simulation. The results show a significant increase in bottleneck outflow, particularly during periods of high demand, which considerably reduces delay.

Abstract

Bernat

Goñi Ros

, Victor L.

Knoop

, Bart

van Arem

, Serge P.

Hoogendoorn

Sags are bottlenecks in freeway networks

cffree csfree Density (veh/km) Flow (veh/h) cfcong cscong Flat section Sag bottleneck Increase in gradient (sag) Increase in resistance force Insufficient throttle operation

Vehicle acceleration limitation

Local changes in car-following behavior: - Lower free flow speeds

- Longer headways at a given speed

Reduction in traffic flow capacity (10-20%)

Insufficient propulsion force

Control strategy

d s Bottleneck VSL section Controller Speed limit (vlim) Density measurements (

ρ

) qc

Regulate the inflow to the bottleneck ( cscong < qc < csfree ), so that the bottleneck does not activate:

• Exit flow (s) = VSL section outflow (qc) > discharge capacity (cscong)

• VSL section outflow (qc) < demand (d)

Transportation Research Board

93rd Annual Meeting

January 12-16, 2014

Paper 14-2726

Bernat Goñi Ros

Delft University of Technology

TRAIL Research School

b.goniros@tudelft.nl

Conclusions

Case study setup

Results

Target speed Proportional feedback:

v

lim

(k) = v

*lim

+ K

p

· [

ρ

*

ρ

(k

r)

]

Gain Target density Delay

v

lim

(k) = [v

lim_min

, v

lim_max

]

Speed limit constraints

v

lim

(k)

is a multiple of 10

|

v

lim

(k

+

1)

v

lim

(k)

| ≤

v

lim

• The controller reacts adequately to changes in demand

• 7% increase in exit flow (s) in periods of high demand

• 30% reduction in total delay / Significant reduction also

with different car-following model parameter values

Traffic composition: 100% passenger cars, 1 driver class

Car-following model:

Acceleration = f ( speed, relative speed, spacing, gradient)

100% compliance with speed limits

Scenarios: a) Reference scenario (no influence of gradient)

b) No-control scenario c) Control scenario

Network performance measure:

Total delay (TD) = Total travel time (TTT)

TTTReference

Simulation time: 10000 s

Network: 30 km, 1 lane, 1 sag

• The proposed control strategy has the potential to reduce

total delay at sags

• Further research:

- Evaluation: multi-lane network, heterogeneous traffic

- Controller design: mitigation of oscillatory behavior,

combination with other control measures

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 500 1000 1500 2000 Demand flow

Exit flow (Reference scenario) Exit flow (No−control scenario) Exit flow (Control scenario)

0 2000 4000 6000 0 500 1000 1500 F lo w ( v e h /h ) Simulation time (s) 8000 10000 2000 x = 0.3 km x = 29.9 km 0 20 40 60 80 100 120

Traffic speed on the VSL section

Speed limit displayed on the VSL section

0 2000 4000 6000 20 0 40 60 80 100 120 S p e e d ( k m /h ) Simulation time (s) 8000 10000 x = 27.0 km 25000 26000 27000 28000 29000 30000 0 20 40 60 80 100 120 25.0 26.0 27.0 28.0 29.0 30.0 20 0 40 60 80 100 120 A lt it u d e ( m ) Location x (km) Constant slope –0.5% Constant slope +2.5% VSL section Detector at the bottleneck 60 60 60

With high demand (d > csfree), the bottleneck activates:

• Exit flow (s) = discharge capacity (cscong) < demand (d)

d s Bottleneck 500-1000 m d s Bottleneck

With low demand (d < csfree), the bottleneck does not activate:

• Exit flow (s) = demand (d)

Control law

0 50 100 150 200 250 300 No−control scenario Control scenario c = 1·10-4 s-1 γ = 1.15 0 100 200 300 T o ta l d e la y ( v e h ·h ) Case study c = 5·10-5 s-1 γ = 1.15 c = 15·10-5 s-1 γ = 1.15 c = 1·10-4 s-1 γ = 1.12 c = 1·10-4 s-1 γ = 1.18 Sensitivity analysis -30% -36% -23% -31% -29%

Cytaty

Powiązane dokumenty

Epizod ten świadczy o a u to ­ rytecie, jakim cieszył się Jan M arszand wśród rzemieślników (był on zresztą starszym czeladnikiem), a także o zrozum ieniu

We have determined the photogeneration charge carrier quantum yield and mobility in atomically thin colloidal InSe nanosheets (inorganic layer thickness 0.8 – 1.7

As shown in Fig. 1, to prevent the detection of an object by a probing electromagnetic plane wave from a far-away radar system, we generate an APSF using a binary optical element and

Z pierwotnej grupy 45 chorych (100%) we wczesnym etapie zaawansowania miażdżycy tętnic wieńcowych – obejmującej pacjentów, u których w koronarografii uwidoczniono

Przetwarzanie preparatów płytkowych za pomocą systemu MIRASOL PRT nie spowodowało w nich istotnej różnicy – w porównaniu ze składnika- mi krwi niepoddanymi redukcji patogenów

[r]

W 1 Kor 9, 19 Apostoł wy- znał: „Tak więc nie zależąc od nikogo, stałem się sługą wszystkich, aby pozyskać jak najliczniejszych”, a w 2 Kor 4, 5: „nie głosimy bowiem

Proceedings of the International Workshop on the Synthesis and Measurement of Ultrafine Particles, held in Delft on May 28-29 1993.. Editors