• Nie Znaleziono Wyników

Transient fluid motion due to the forced horizontal oscillations of a vertical cylinder

N/A
N/A
Protected

Academic year: 2021

Share "Transient fluid motion due to the forced horizontal oscillations of a vertical cylinder"

Copied!
5
0
0

Pełen tekst

(1)

E L S E V I E R 0 1 4 1 - 1 1 8 7 ( 9 4 ) 0 0 0 2 5 - 5

Printed in Great Britain. 0141-1187(94)$07.00

Transient fluid motion due to the forced horizontal

oscillations of a vertical cylinder

p. Mclver

Department of Mathematical Sciences, Loiigltborough University, Loiigliboroiigh, Leics, UK, LEll 3TU (Received 20 June 1994)

The problem o f the forced horizontal oscillations of a vertical cylinder extending throughout the fluid depth is considered on the basis o f the linearised theory of water waves. A new integral f o r m is given for the frequency-domain solution and the procedure is then used to obtain an explicit time-domain solution.

1 I N T R O D U C T I O N

W i t h i n the c o n t e x t o f the linearised t h e o r y o f water waves, there is a small n u m b e r o f geometries f o r w h i c h explicit a n a l y t i c a l solutions are possible. One such geometry is a v e r t i c a l cyhnder extending t h r o u g h o u t the d e p t h o f the fluid a n d this paper is concerned w i t h the wave field r e s u l t i n g f r o m the f o r c e d h o r i z o n t a l m o t i o n o f this type o f c y l i n d e r . T h e s o l u t i o n i n the f r e q u e n c y d o m a i n is usually expressed i n terms o f an i n f i n i t e series ( D e a n & D a l r y m p l e , ' Section 6.4) a n d solutions i n the t i m e d o m a i n m a y then be o b t a i n e d w i t h the a i d o f the F o u r i e r t r a n s f o r m . H o w e v e r , this series f o r m o f the f r e q u e n c y - d o m a i n s o l u t i o n contains the f r e q u e n c y o n l y i m p l i c i t l y t h r o u g h the solutions o f the dispersion r e l a t i o n a n d so the F o u r i e r t r a n s f o r m m u s t be carried o u t n u m e r i c a l l y . T h e m a i n result o f the present w o r k is an i n t e g r a l f o r m f o r the t i m e - d o m a i n s o l u t i o n c o r r e s p o n d i n g t o an i m p u l s i v e m o t i o n o f the cyhnder. T h i s m a y be used t o construct t i m e - d o m a i n s o l u t i o n s f o r m o r e general m o t i o n s o f the cyhnder w i t h o u t the need f o r n u m e r i c a l t r a n s f o r m s between the f r e q u e n c y a n d t i m e d o m a i n s .

T o illustrate the s o l u t i o n procedure, i n w h a t is perhaps a m o r e f a m i h a r context, a new i n t e g r a l f o r m f o r the f r e q u e n c y - d o m a i n s o l u t i o n is first o b t a i n e d . I n the c o n v e n t i o n a l f r e q u e n c y - d o m a i n s o l u t i o n procedure, e i g e n f u n c t i o n s are constructed t h a t satisfy the h o m o -geneous free-surface c o n d i t i o n a n d then these are c o m b i n e d t o satisfy the n o n - h o m o g e n e o u s b o d y b o u n d a r y c o n d i t i o n . H e r e , the i n f i n i t e - f r e q u e n c y l i m i t o f the s o l u t i o n is first subtracted o u t w h i c h leads t o a n e w b o u n d a r y - v a l u e p r o b l e m w i t h a n o n - h o m o g e n e o u s free-surface c o n d i t i o n a n d a homogeneous b o d y

© C r o w n copyright (1995).

c o n d i t i o n , the reverse s i t u a t i o n t o the c o n v e n t i o n a l a p p r o a c h . E i g e n f u n c t i o n s t h a t satisfy the b o d y c o n -d i t i o n are c o m b i n e -d t o satisfy the free-surface c o n -d i t i o n . T h i s a p p r o a c h t o the f r e q u e n c y - d o m a i n analysis was suggested b y the standard a p p r o a c h to t i m e - d o m a i n p r o b l e m s w h i c h employs w h a t is essentially the same c o n s t r u c t i o n . T h e result o f this f r e q u e n c y - d o m a i n analysis is a f o r m o f the s o l u t i o n i n w h i c h the f r e q u e n c y appears e x p l i c i t l y a l l o w i n g solutions i n the t i m e d o m a i n t o be o b t a i n e d a n a l y t i c a l l y b y the F o u r i e r t r a n s f o r m . F o r completeness, the same procedure is t h e n used i n the t i m e d o m a i n t o o b t a i n solutions d i r e c t l y w i t h o u t reference t o the F o u r i e r t r a n s f o r m o f the f r e q u e n c y d o m a i n s o l u t i o n . F i n a l l y , f o r the purposes o f i l l u s t r a -t i o n , a s o l u -t i o n is g i v e n f o r -the p a r -t i c u l a r case o f a cylinder m o v i n g under a sinusoidal f o r c e a f t e r the fluid is i n i t i a l l y at rest.

T h e v e r t i c a l c i r c u l a r c y l i n d e r is o f radius a a n d extends t h r o u g h o u t w a t e r o f constant d e p t h /; . C y l i n d r i -cal p o l a r coordinates (/•, 9, z) are chosen w i t h the o r i g i n o f z i n the m e a n free surface, and z directed v e r t i c a l l y u p w a r d s , a n d the o r i g i n o f (r, 9) being the c y l i n d e r axis. T h e c y l i n d e r is f o r c e d t o p e r f o r m h o r i z o n t a l o s c ü l a -t i o n s , w i -t h a prescribed -time-dependen-t v e l o c i -t y , i n the d i r e c t i o n 0 = 0. U n d e r the usual assumptions o f the linearised t h e o r y o f w a t e r waves the m o t i o n m a y be described b y a v e l o c i t y p o t e n t i a l s a t i s f y i n g Laplace's e q u a t i o n t h r o u g h o u t the fluid d o m a i n .

2 F R E Q U E N C Y D O M A I N

F o r the case o f steady t i m e - h a r m o n i c oscillations o f angular f r e q u e n c y w a n d v e l o c i t y a m p l i t u d e U persisting f o r a l l t i m e , the v e l o c i t y p o t e n t i a l m a y be w r i t t e n

(2)

T h e time-dependent p o t e n t i a l (f) m u s t satisfy the free-surface b o u n d a r y c o n d i t i o n

dz K(}) o n

z =

0 (2)

w h e r e the f r e q u e n c y p a r a m e t e r K = u? jg a n d g is the acceleration due t o g r a v i t y , the bed c o n d i t i o n

dz 0 o n the b o d y c o n d i t i o n

d4>

dr cos Q o n r = a a n d the r a d i a t i o n c o n d i t i o n ^ 0 as

oo

(3) (4) (5)

H e r e k is the r o o t o f the dispersion r e l a t i o n

K = ktanhkh (6) I n w h a t f o l l o w s , the l i m i t i n g p o t e n t i a l as the

f r e q u e n c y tends t o i n f i n i t y is r e q u i r e d . T h i s ' i n f i n i t e -f r e q u e n c y ' p o t e n t i a l w i U be denoted b y Q.{r, 6, z) a n d w i l l satisfy the above c o n d i t i o n s i n the l i m i t i<r ^ oo so t h a t the free-surface c o n d i t i o n (2) is replaced b y

= 0 o n

z =

0 a n d the r a d i a t i o n c o n d i t i o n (5) by

oo

(7) 0 as ;• (8) S e p a r a t i o n o f variables a n d s a t i s f a c t i o n o f aU b o u n d a r y c o n d i t i o n s except t h a t o n the b o d y gives

f2 = cos ö ^ A„Ki {p„r) c o s p „ { z + /;) n = \ where p„ = [In - l)7r/2/7 (9) (10) a n d Ki denotes the m o d i f i e d Bessel f u n c t i o n o f the second k i n d a n d order one. T h e b o d y b o u n d a r y c o n d i t i o n n o w requires

^ A„p„K'\ {.PnO) cosp„{z + h) = \ (11)

a n d the expansion coefficients f o l l o w f r o m the o r t h o -g o n a l i t y o f the set {cosp„{z + h); n= 1 , 2 , . . . } over the d e p t h so t h a t A., = 2 ( - l ) plhK\{Pnay 1 , 2 , . . . (12) T o o b t a i n the s o l u t i o n f o r a r b i t r a r y f r e q u e n c y consider the h a r m o n i c f u n c t i o n : i 3 ) s a t i s f y i n g the b o u n d a r y c o n d i t i o n s 9 0 az dz &tp

Ih

dxp dr a n d = 0 o n

z =

—A = 0 o n /• = a as r —> DO (14) (15) (16) (17) T h e s o l u t i o n f o r Ü given b y (9) a n d (12) m a y be s u b s t i t u t e d i n t o the free-surface b o u n d a r y c o n d i t i o n (14) t o o b t a i n dtj^ dz ' where Kip = R{r) cos ö o n

z =

0 (18) R{r) =

-2Y:

Ki{p„r) '^.p„hK\{p„a) (19) 11=1 I n c o n t r a s t t o 0 , w h i c h m u s t satisfy a homogeneous free-surface c o n d i t i o n a n d a n o n - h o m o g e n e o u s b o d y b o u n d a r y c o n d i t i o n , the new p o t e n t i a l ip is r e q u i r e d to satisfy a n o n - h o m o g e n e o u s free-surface c o n d i t i o n a n d a h o m o g e n e o u s b o d y b o u n d a r y c o n d i t i o n .

T h e s o l u t i o n proceeds by separation o f variables, first n o t i n g t h a t the b o d y b o u n d a r y c o n d i t i o n is satisfied i d e n t i c a l l y b y

C„{qr) = Uqr)Y!Ma) - Y„{qr)J!,{qa) (20) where / „ a n d ¥„ denote Bessel f u n c t i o n s a n d a p r i m e denotes d i f f e r e n t i a t i o n w i t h respect t o the f u n c t i o n a r g u m e n t . T h u s

d/ C„ {qr) = 0 o n r (21)

A s o l u t i o n f o r ip s a t i s f y i n g a l l except the free-surface a n d r a d i a t i o n c o n d i t i o n s is

Ip = cosd A{q)Ci (qr) cosh q{z + h)dq (22) T h e u n k n o w n f u n c t i o n A{q) is f o u n d b y a p p l y i n g a m o d i f i e d v e r s i o n o f Weber's i n t e g r a l t h e o r e m ( H u n t & B a d d o u r , ^ eqn (54)) w h i c h states t h a t C„{qr) ƒ ( ' • ) \H[iqa)\ •gdq C„{qr'yfir')dr' (23)

where Hi denotes a H a n k e l f u n c t i o n o f the first k i n d , p r o v i d e d r^^'^f{r) is i n t e g r a b l e over [a, oo). S u b s t i t u t i o n o f (22) i n t o the free-surface c o n d i t i o n (18) a n d a p p l i c a t i o n o f (23) gives

A{q){K cosh qh — qsinh qh)

\H[{qa)

(3)

where e has been i n t r o d u c e d t o a l l o w the interchange o f the i n t e g r a t i o n and s u m m a t i o n w h e n (19) is substi-t u substi-t e d i n substi-t o (24). N o w f r o m A b r a m o w i substi-t z & Ssubsti-tegun,^ eqn (11.3.29),

lp

l i m C,{qr)Ki{pr)rAr-Trq{p^ + q^) K[{pa) (25) so t h a t A{q){Kcosh qh — qsmhqh) 4 ^ 1 Itanhqh 'nh\H[{qatt'xPl+l' (26) •\Vi"l\ n = \ f n i y 'i^q\H[{qa)\

where the series has been summed using eqn (1.421(2)) o f G r a d s h t e y n & Ryzhik.'* The s o l u t i o n f o r ij) is therefore

2 c o s é '

t a n h qh C j [qr) cosh cj{z + h) \H[{qa)\^q[K cosh qh - qsmhqh

where the p a t h o f i n t e g r a t i o n has been chosen t o r u n beneath the p o l e at the real r o o t of K = q tanh qh i n o r d e r t o satisfy the r a d i a t i o n c o n d i t i o n . T h i s can be c o n f i r m e d b y a s t a n d a r d residue calculus technique as described, f o r example, by M e i , ^ p . 379. I n d e e d this s o l u t i o n m a y be w r i t t e n i n series f o r m as

lp = COS0< ^ sin k„ h Ki {k„r) cos k„ (z + li) K{ik„a)klhNf,

+

+

2{-l)"Ki{p„r) cosp„iz + h) K[{p,.a)plh s i n h kh Hi (kr) cosh /c(z + h) (28) K N = i H[{ka)k^hNl j where {/c„; n= 1 , 2 , . . . } are the real, p o s i t i v e r o o t s o f

- / c „ t a n / c „ / ; (29)

' - ^ ) ™

a n d /CQ = i / c . W h e n c o m b i n e d w i t h the i n f i n i t e

-f r e q u e n c y s o l u t i o n Ü this gives the ' w e l l - k n o w n ' -f o r m o f the f r e q u e n c y - d o m a i n s o l u t i o n f o r r a d i a t i o n b y a c y l i n d e r as presented i n Section 6.4 o f D e a n & D a l r y m p l e . '

F o r the p u r p o s e o f o b t a i n i n g s o l u t i o n s i n the t i m e d o m a i n b y F o u r i e r t r a n s f o r m , the advantage o f (27) is t h a t the f r e q u e n c y appears e x p h c i t l y t h r o u g h K = w'^/g. I n the f o r m (28), the f r e q u e n c y appears o n l y i m p l i c i t l y t h r o u g h the solutions o f (29).

3 I M P U L S I V E M O T I O N

A t t e n t i o n is n o w t u r n e d t o the transient m o t i o n

generated by a c y l i n d e r started f r o m rest; the f o r m u l a -t i o n f o l l o w s -the d e s c r i p -t i o n o f -the s -t a n d a r d -t i m e - d o m a i n t h e o r y as given, f o r example, i n Section 7.11 o f M e i . ^ T h e fluid response t o a n i m p u l s i v e v e l o c i t y F ( T ) 5 ( / - r ) i m p o s e d at t i m e t = T \s described by the p o t e n t i a l

^r,e,z,t)^V{T)[n{r,e,z)8{t-T)

T{r,9,z,t^T)H{t-T) (31)

T h e first t e r m o n the r i g h t - h a n d side o f (31) describes the i n i t i a l pressure i m p u l s e t r a n s m i t t e d t h r o u g h o u t the fiuid a n d the second t e r m describes the subsequent fiuid m o t i o n . H e r e S{t) is the delta f u n c t i o n , H{t) is the Heaviside step f u n c t i o n a n d T{r,6,z,t) is a h a r m o n i c f u n c t i o n s a t i s f y i n g the i n i t i a l a n d b o u n d a r y c o n d i t i o n s dq (27) ^

r =

0 o n z =

9r_ _ Ö0

dt~

^ dz

d^T

dr_

W ^ ^ T z '

dr

dz

a n d 0 at ; = 0 o n z = 0 at / = 0 0 o n z = 0 f o r 0 < ? < oo = 0 o n z g;: = O o n r (32) (33) (34) (35) (36) T h e s o l u t i o n proceeds i n a s i m i l a r w a y t o the f r e q u e n c y -d o m a i n s o l u t i o n given i n the previous section. T h e b o -d y a n d bed c o n d i t i o n s ( 3 5 ) - ( 3 6 ) are satisfied b y t a k i n g

cos( A{q, t)Ci {qr) cosh q{z + h) dq (37)

where C j is d e f i n e d i n eqn (20). T h e free-surface c o n d i t i o n (34) is satisfied p r o v i d e d

d'A

dt--+ W'A = 0

w h i c h has a general s o l u t i o n A = a{q) cos Wt + f3{q) sin Wt where W' = gq tanh qh T h e i n i t i a l c o n d i t i o n s ( 3 2 ) - ( 3 3 ) r e q u i r e t h a t a n d a{q)Ci{qr) coshqhdq = 0 p{q) W{q)Cl {qr) coshqh dq = -gR{r) (38) (39) (40) (41) (42) where R{r) is d e f i n e d i n eqn (19). I t f o l l o w s f r o m the m o d i f i e d v e r s i o n o f W e b e r ' s i n t e g r a l t h e o r e m , eqn (23), a n d f o l l o w i n g s i m i l a r m a n i p u l a t i o n s as c a r r i e d o u t i n eqns ( 2 4 ) - ( 2 6 ) t h a t

(4)

a n d

2g-tanh (7/7

TrqWcos)iqh\H[{qa)\' T h i s n o w has given

(44)

r

Ig cos ( ' sin Wt t a n h qh Ci (qr) cosh q{z + h) qW cosh qh\H[{qa)f

dq (45) T h i s is related t o the F o u r i e r t r a n s f o r m o f the f r e q u e n c y - d o m a i n s o l u t i o n t h r o u g h ' i / i e -''"'dw (46) w h e r e tp is given by (27) a n d m a y be w r i t t e n i n the f o r m 2gcos9 t a n h qh {qr) cosh q{z + h) , 0 ^ ( w 2 _ W') coshqh\H[{qa)Y (47) T o recover (45) f r o m (46), UJ is replaced b y w + ie i n (47), so t h a t the p o l e o n the real q axis is m o v e d i n t o the u p p e r h a l f o f the c o m p l e x q plane, a n d then the resuh

l i m is used. 27r _ d ^ = - _ s i n f F / (48) 4 R E S P O N S E T O A S I N U S O I D A L F O R C I N G A c c o r d i n g t o M e i , ^ p . 374, the response t o a c o n t i n u o u s v e l o c i t y V{t) imposed o n the c y l i n d e r is given b y

$ = VLV{t) + r r ( / - r ) F ( r ) d r (49) J—00

Consider, f o r example, the s i n u s o i d a l f o r c i n g

V{t)=H{t)Vsmujt (50)

0) O u O

Fig. 1. Non-dimensional force F{t)/{p-Ka^ojV), due to the sinusoidal forcing (50), versus non-dimensional time T = tot for a/h = 0-1, Ka = 0-5: ( • • • • ) time-domain solution; ( )

frequency-domain solution.

w h i c h is t u r n e d o n at Z = 0; here H{t) is the Heaviside step f u n c t i o n . F r o m (49) a n d (50) the p o t e n t i a l f o r the r e s u l t i n g disturbance is

f

$ = ÜV{t) + V V{t - r ) s i n w r d r (51) where f2 is given b y (9) a n d (12) a n d F is given b y (45). T h e result is

^ =V[{Q. + Rt1|})smüJt + ^ , t>0 (52) where K&ip is the p r i n c i p a l value equivalent o f (27) a n d

* = -

2ci;cos( °° sin Wt

0 W

t a n h qh C j {qr) cosh q{z + h) \H[{qa)\'q{K coshqh - q sinh qh

•dq (53)

I t is expected t h a t p u r e l y t i m e - h a r m o n i c m o t i o n w i l l be achieved a f t e r a l o n g t i m e , t h a t is

$ - R e { i F , ^ e - ' " ' }

= V[{Q, + Reip) sin cot - Imi/j cos uit] as ; ^ 00 (54) where (p is d e f i n e d i n eqn (1) a n d Im.ip is the c o n t r i b u t i o n t o (27) f r o m the i n t e g r a t i o n a r o u n d the pole a n d is given by , sinh/c/2Ci(/c/-)cosh/c(z-f/!) \H[{ka)\'k'hNl (55) T h i s l i m i t i n g b e h a v i o u r (54) can be c o n f i r m e d b y w r i t i n g ^ , w h i c h appears i n (52), as w c o s ö ^ f' * = I m F AWt TT J-00 W t a n h qh {qr) cosh q{z + h) \H[{qa)fq{K cosh qh - qsinh qh)

dq (56)

a n d s h i f t i n g the p a t h o f i n t e g r a t i o n i n t o the u p p e r h a l f o f the c o m p l e x q plane b y a l l o w i n g q to have a smaU positive i m a g i n a r y p a r t . T h e l i m i t i n g b e h a v i o u r arises f r o m the poles o n the real axis w h i l e the r e m a i n i n g p a r t o f the i n t e g r a l decays t o zero as —> 00. T h e details are s t r a i g h t f o r w a r d b u t messy a n d so are o m i t t e d here.

T h e s o l u t i o n f o u n d above m a y be used, f o r example, t o calculate the free-surface elevation at a n a r b i t r a r y p o i n t o r the h y d r o d y n a m i c f o r c e o n the c y l i n d e r . T h e latter is used f o r purposes o f i l l u s t r a t i o n . T h e t i m e -dependent f o r c e i n the d i r e c t i o n ö = 0 is

— cos9dS (57) where S denotes the w e t t e d surface o f the c y l i n d e r .

C a r r y i n g o u t the i n t e g r a t i o n s gives F{t)

Ki{p„a) la

h fx{Pna)'K[{p„a) cos Lot •

X

(cos Wt - cos u)t) t a n h qh {qa) dq{58) 10 \H{{qa)\^q^{Kcothqh-q) T h i s expression is r e a d i l y evaluated b y s t a n d a r d

(5)

n u m e r i c a l techniques and a sample c a l c u l a t i o n is given i n F i g . 1 s h o w i n g the r a p i d a p p r o a c h t o the frequency-d o m a i n s o l u t i o n .

R E F E R E N C E S

1. Dean, R. G. & Dalrymple, R. A . , Water Wave Meclianics for Engineers and Scientists. W o r l d Scientific, 1991.

2. Hunt, J. N . & Baddour, R. E., Nonlinear standing waves bounded by cylinders. Quarterly Journal of Meclianics and Applied Mathematics, 33, 357-371.

3. Abramowitz, M . & Stegun, I . A . , Handboolc of Mathe-matical Functions. Nadonal Bureau of Standards, Washington, D C , 1964.

4. Gradshteyn, I . S. & Ryzhik, I . M . , Tables of Integrals. Series and Products. Academic Press, New Y o r k , 1980. 5. M e i , C. C , The Apphed Dynamics of Ocean Surface Waves.

Cytaty

Powiązane dokumenty

Inna recenzja dzieła Koriuna dodaje, że Mesrop zachęcał mnichów, aby „żyłi na wzór jego pobożnego trudu, który wyrażał się nie tyłko przez mowę i nauczanie, łecz

Assessment of the vulnerability of the various resources of the world's coastal zones to an acceleration of sea-level rise (ASLR) and related climate change

The scale in the photo shows a standing person; (b) wave propagation through horizontal and vertical mangrove roots; (c) permeable brushwood groin with horizontal wooden sticks for

D.D.C. De methode richt zich in het bijzonder op het berekenen van buigende momenten veroorzaakt door gelijkmatige partiiile belasting der velden. Orthotrope

rozdział II, zatytułowany Harmonia w człowieku, dotyczy kategorii musica humana, a rozdział III, zatytułowany Dzieła ludzkie jako uczestnictwo w harmonii Bożego.. dzieła

Kazimierz Rudnicki otrzymał „Złoty Wawrzyn” za krasomówstwo sądowe ja ­ ko jedyny prokurator, ale równie dobrze może być potraktowany jako adwokat, bowiem pracę

Ten dwoisty punkt widzenia jest decydujący przedewszyst­ kiem dla końcowej sceny „Legjonu“. Pigoń daje tu nową i bardzo oryginalną interpretację. Legjon nie

O statni rozdział książki poświęcony jest reakcji społeczeństwa w ielkopolskie­ go w obliczu zagrożenia wojennego oraz zachowaniu się w pierwszych dniach wojny,