• Nie Znaleziono Wyników

Birefringence and stress in polymer melts under shear and extension

N/A
N/A
Protected

Academic year: 2021

Share "Birefringence and stress in polymer melts under shear and extension"

Copied!
92
0
0

Pełen tekst

(1)

BIREFRINGENCE AND STRESS

IN POLYMER MELTS

UNDER SHEAR AND EXTENSION

J.A. van Aken

(2)
(3)

BIREFRINGENCE AND STRESS

IN POLYMER MELTS

UNDER SHEAR AND EXTENSION

B i b l i o t h e e k TU D e l f t

(4)
(5)

BIREFRINGENCE AND STRESS

IN POLYMER MELTS

UNDER SHEAR AND EXTENSION

PROEFSCHRIFT ter verkrijging van

de graad van doctor in de

technische wetenschappen

aan de Technische Hogeschool Delft,

op gezag van de rector magnificus,

prof. ir. B.P.Th. Veltman

voor een commissie aangewezen

door het college van dekanen

te verdedigen op

donderdag 10 september 1981

te 16.00 uur door

J A C O B U S A R I E V A N AKEN

natuurkundig ingenieur

geboren te Kloetinge

(6)

Dit proefschrift is goedgekeurd door de promotor

PROF. DR. H.R.K.N. JANESCHITZ-KRIEGL

(7)
(8)

H i e r b i j w i l i k g r a a g a l l e n d i e hebben b i j g e d r a g e n aan h e t t o t s t a n d komen v a n d i t p r o e f s c h r i f t h a r t e l i j k bedanken.

Met name w i l i k bedanken

- De medewerkers v a n de C o n s t r u c t i e Tekenkamer en de I n s t r u m e n t m a k e r i j v a n de a f d e l i n g S c h e i k u n d e v o o r hun d e s k u n d i g e s t e u n .

- De h e r e n W.J. de Haas, H.C. N i e u w p o o r t , J . V e r b e e k en G. de Vos v o o r h e t ontwerp en de bouw van h e t r e k s t r o m i n g s a p p a r a a t .

- D r . i r . F.H. Gortemaker en Dr. H.M. L a u n v o o r hun b i j d r a g e aan h o o f d s t u k 2 en h e t b e s c h i k b a a r s t e l l e n van gegevens en g r a f i e k e n .

- De medewerkers v a n de R e p r o g r a f i s c h e D i e n s t v a n de a f d e l i n g S c h e i k u n d e v o o r h e t v e r z o r g e n v a n h e t f o t o w e r k v o o r de p u b l i c a t i e s en v o o r h e t p r o e f s c h r i f t .

Mevr. E. W a r f f e m i u s w i l i k b i j z o n d e r h a r t e l i j k danken v o o r h e t z o r g v u l d i g t y p e n van h e t p r o e f s c h r i f t .

B i j z o n d e r v e e l dank ben i k v e r s c h u l d i g d aan i n g , R. v a n D o n s e l a a r v o o r z i j n h u l p b i j h e t r e a l i s e r e n v a n de v e r s c h i l l e n d e meetsystemen en v o o r de w i j z e waarop h i j m i j b i j h e t o n d e r z o e k met r a a d en daad t e r z i j d e h e e f t g e s t a a n .

De i n d i t p r o e f s c h r i f t b e s c h r e v e n o n d e r z o e k e n z i j n u i t g e v o e r d met s t e u n v a n de N e d e r l a n d s e O r g a n i s a t i e v o o r Z u i v e r W e t e n s c h a p p e l i j k Onderzoek (Z.W.O.).

(9)

CONTENTS page 1 GENERAL OUTLINE 7 1.1 I n t r o d u c t i o n 7 1.2 T e n s i l e S t r a i n 9 1.3 S i m p l e Shear S t r a i n 9 1.4 The S t r e s s T e n s o r 10 1.5 R h e o l o g i c a l C o n s t i t u t i v e E q u a t i o n s 12 1.6 The F l o w B i r e f r i n g e n c e T e c h n i q u e 18 1.6.1 E x t i n c t i o n A n g l e and B i r e f r i n g e n c e 18 1.6.2 The E h r i n g h a u s Compensator 19 R e f e r e n c e s 20

2 QUASI-LINEAR RHEOLOGICAL BEHAVIOUR OF POLYMER MELTS. COMPARISON

BETWEEN MECHANICAL AND IMPROVED FLOW BIREFRINGENCE MEASUREMENTS 21

2.1 I n t r o d u c t i o n 21 2.2 D e s c r i p t i o n o f t h e R e v i s e d R o t o r U n i t 22 2.3 New Measurements 24 2.4 D i s c u s s i o n 29 2.5 A p p e n d i x 34 R e f e r e n c e s 36

3 NEW APPARATUS FOR THE SIMULTANEOUS MEASUREMENT OF STRESSES AND

FLOW BIREFRINGENCE IN BIAXIAL EXTENSION OF POLYMER MELTS 37

3.1 I n t r o d u c t i o n 37 3.2 K i n e m a t i c s 38 3.3 The F l o w B i r e f r i n g e n c e T e c h n i q u e 39 3.4 The A p p a r a t u s 40 3.4.1 The C y l i n d e r 40 3.4.2 The D r i v e System 41 3.4.3 The F o r c e Measurements 42 3.4.4 The O p t i c a l Measurements 42 3.4.5 Temperature Contrôle 43 3.5 L u b r i c a t i o n 44 3.6 P r e p a r a t i o n o f t h e Sample 44 3.7 The F o r c e Measurement 45 3.8 R e s u l t s and D i s c u s s i o n 47 3.9 C o n c l u s i o n 52 52 R e f e r e n c e s

(10)

4 SIMULTANEOUS MEASUREMENT OF TRANSIENT STRESS AND FLOW BIREFRINGENCE

IN ONE-SIDED COMPRESSION (BIAXIAL EXTENSION) OF A POLYMER MELT 53

4.1 I n t r o d u c t i o n 53 4.2 T h e o r y 54

4.2.1 The R u b b e r l i k e L i q u i d Model 54 4.2.2 Non L i n e a r V i s c o e l a s t i c Model 55 4.3 Some Comments C o n c e r n i n g F u r t h e r Improvement

o f t h e E x p e r i m e n t a l T e c h n i q u e 57 4.3.1 L u b r i c a t i o n 57 4.3.2 C a l c u l a t i o n o f t h e Normal S t r e s s f r o m the F o r c e Measurements 61 4.3.3 The T e m p e r a t u r e Measurement 62 4.4 C h a r a c t e r i z a t i o n o f t h e Sample 62 4.5 P e r f o r m a n c e o f t h e Measurements and R e s u l t s 64 4.6 C o n c l u s i o n s 77 R e f e r e n c e s 78 SUMMARY 79 SAMENVATTING 81 L I S T OF SYMBOLS S3

(11)

CHAPTER 1 GENERAL OUTLINE I n t r o d u c t i o n I n o r d e r t o u n d e r s t a n d t h e f l o w b e h a v i o u r o f m a t e r i a l s p o s s e s s i n g v i s c o u s and e l a s t i c p r o p e r t i e s w h i c h c a n n o t be d e s c r i b e d by t h e c l a s s i c a l t h e o r i e s o f h y d r o d y n a m i c s ( f o r Newtonian f l u i d s ) o r o f e l a s t i c i t y ( f o r p u r e l y e l a s t i c s o l i d s ) , a number o f r h e o l o g i c a l c o n s t i t u t i v e e q u a t i o n s have b e e n d e v e l o p e d . A good s t a r t i n g p o i n t f o r the s t u d y o f the u s e f u l n e s s o f c o n s t i t u t i v e e q u a t i o n s f o r p o l y m e r m e l t s i s the r u b b e r l i k e l i q u i d t h e o r y o f Lodge ( 1 ) . T h i s i n t e g r a l model has been m o d i f i e d by d i f f e r e n t a u t h o r s . These m o d i f i c a t i o n s a r e p a r t l y b a s e d on m o l e c u l a r c o n s i d e r a t i o n s , p a r t l y on e x p e r i m e n t a l o b s e r v a t i o n s ( s e e

s e c t i o n 1.5). Anyhow, t h e o r i g i n a l model o f Lodge c a n s t i l l be v e r y u s e f u l f o r the d e s c r i p t i o n o f e x p e r i m e n t a l r e s u l t s , i f t h e t o t a l s t r a i n a p p l i e d on t h e m a t e r i a l i s l e s s t h e n u n i t y . The p r e d i c t i o n s o f t h e r h e o l o g i c a l e q u a t i o n o f s t a t e s h o u l d be compared w i t h the r e s u l t s o f e x p e r i m e n t s f o r a l l t y p e s o f d e f o r -m a t i o n s . I f one exa-mines t h e r e s p o n s e o f poly-mer -m e l t s on d i f f e r e n t t y p e s o f d e f o r m a t i o n s e p a r a t e l y , one o b t a i n e s r e s u l t s a l s o h e l p f u l f o r t h e u n d e r s t a n d i n g o f what happens d u r i n g i n d u s t r i a l p r o c e s s i n g . F o r t h e s e e x a m i n a t i o n s d i f f e r e n t t y p e s o f r o t a t i o n a l , tube and e x t e n s i o n rheometers have been d e s i g n e d . In a d d i -t i o n , -the f l o w b i r e f r i n g e n c e -t e c h n i q u e has p r o v e n -t o be a h e l p f u l me-thod i n -the s e a r c h f o r a s u i t a b l e c o n s t i t u t i v e e q u a t i o n . The a d v a n t a g e s o f t h i s i n d i r e c t m e a s u r i n g method a r e :

a) t h e a p p a r a t u s c a n be b u i l d as s t i f f as n e c e s s a r y , w h i c h means t h a t t h e f l o w w i l l n o t be d i s t u r b e d n o t i c e a b l y by the f l e x i b i l i t y o f the a p p a r a t u s needed f o r the m e c h a n i c a l f o r c e measurement.

b) f o r the d e t e c t i o n o f s m a l l s t r e s s e s t h e o p t i c a l method i s h i g h l y a c c u r a t e . c) an i n a d m i s s i b l e t e m p e r a t u r e r i s e i n t h e m e l t , t h e e f f e c t o f d e g r a d a t i o n o f t h e polymer d u r i n g the d e f o r m a t i o n o r a d i s t u r b a n c e o f the f l o w f i e l d a r e i m m e d i a t e l y d e t e c t e d .

The p r e s e n t i n v e s t i g a t i o n s o f the f l o w b e h a v i o u r o f polymer m e l t , as c a r -r i e d o u t w i t h the a i d o f t h e f l o w b i -r e f -r i n g e n c e t e c h n i q u e , f o -r m a c o n t i n u a t i o n o f the e x p e r i m e n t s c a r r i e d out by Wales (2) and Gortemaker ( 3 ) . Wales showed i n h i s e x p e r i m e n t s w i t h a c l o s e d c o n e - a n d - p l a t e a p p a r a t u s t h a t i n t h i s f l o w

(12)

t r y t h e c h e c k o f t h e v a l i d i t y o f t h e l i n e a r s t r e s s o p t i c a l r e l a t i o n was r e s t r i c -ted t o modest v a l u e s o f t h e s h e a r r a t e . However, h i s o p t i c a l measurements i n the 1,3-plane, as c a r r i e d o u t i n a s l i t geometry, p r o v e d t h e v a l i d i t y o f t h e l i n e a r s t r e s s o p t i c a l r e l a t i o n f o r a wide range o f s h e a r r a t e s up t o t h e r e g i o n of m e l t f r a c t u r e . The d i s c r e p a n c y between t h e s e r e s u l t s was c a u s e d by t h e p a r a -s i t i c b i r e f r i n g e n c e w h i c h o c c u r -s a t t h e r i m o f t h e c o n e - a n d - p l a t e a p p a r a t u -s b e i n g c l o s e d f o r t h e o p t i c a l measurements. L a t e r Govtemaker s u c c e e d e d i n r e d u -c i n g t h e p a r a s i t i -c b i r e f r i n g e n -c e by i n t e r -c h a n g i n g t h e -cone and t h e p l a t e . T h i s m o d i f i c a t i o n c a u s e d an i n c r e a s e o f t h e r a n g e o f s h e a r r a t e s o v e r w h i c h t h e l i n e a r s t r e s s o p t i c a l r e l a t i o n c o u l d be p r o v e n , b u t t h e r e g i o n o f t h e m e l t f r a c t u r e was n o t r e a c h e d y e t . From h i s t i m e dependent e x p e r i m e n t s Govtemaker has b e e n a b l e t o draw t h e c o n c l u s i o n t h a t t h e r u b b e r l i k e l i q u i d model o f Lodge

i s v a l i d f o r polymer m e l t s a t e x t r e m e l y low r a t e s o f s h e a r , a t any r a t e o f s h e a r , i f the t o t a l s h e a r does n o t exceed u n i t y . As a c o n t i n u a t i o n o f t h e men-t i o n e d measuremenmen-ts men-t h e p r e s e n men-t i n v e s men-t i g a men-t i o n e x i s men-t s o f men-the f o l l o w i n g i men-t e m s : a) A new m o d i f i c a t i o n o f t h e c o n e - a n d - p l a t e a p p a r a t u s f o r f l o w b i r e f r i n g e n c e measurements. T h i s m o d i f i c a t i o n e n a b l e s us t o e x t e n d t h e r e g i o n o f s h e a r r a t e s , i n w h i c h t h e s t r e s s o p t i c a l c o e f f i c i e n t c a n be p r o v e n , up t o and i n -c l u d i n g t h e r e g i o n o f m e l t f r a -c t u r e . T h i s m o d i f i -c a t i o n and t h e p e r t i n e n t e x p e r i m e n t s a r e d e s c r i b e d i n C h a p t e r 2. b) An a t t e m p t t o use t h e same k i n d o f m o d i f i c a t i o n i n a c l o s e d v e r s i o n o f an a p p a r a t u s c o n s i s t i n g o f two c o n c e n t r i c c y l i n d e r s , i n o r d e r t o e x t e n d t h e range o f s h e a r r a t e s i n t h i s t y p e o f a p p a r a t u s f o r polymer m e l t s . F o r t h e low s h e a r r a t e s t h e measurements w i t h t h i s a p p a r a t u s were v e r y a c c u r a t e . A t h i g h e r s h e a r r a t e s , however, t h e measurements f a i l e d b e c a u s e o f t h e f a c t t h a t i n t h e a r e a s where t h e end s u r f a c e s o f t h e r o t a t i n g c y l i n d e r and t h e f i x e d p l a t e s f o r m i n g b o t t o m and c o v e r meet, v e r y h i g h l o c a l s h e a r r a t e s seemed i n a v o i d a b l e , r e s u l t i n g i n the d e g r a d a t i o n o f t h e m e l t . A l t h o u g h t h e l i g h t beam d i d n o t p a s s t h r o u g h t h i s r e g i o n where t h e d e g r a d a t i o n o c c u r r e d no measurement was p o s s i b l e b e c a u s e o f t h e d e g r a d e d m e l t b e i n g s p r e a d t h r o u g h t h e whole a p p a r a t u s .

c ) A new a p p a r a t u s was c o n s t r u c t e d f o r t h e measurement o f t h e time dependent b e h a v i o u r o f t h e s e c o n d n o r m a l s t r e s s d i f f e r e n c e . I n a c l o s e d s l i t a s h e a r f l o w was c r e a t e d by moving one o f t h e w a l l s p a r a l l e l t o t h e e x t e n s i o n o f t h e s l i t . The m e n t i o n e d s t r e s s d i f f e r e n c e c a n be d e t e c t e d by m e a s u r i n g t h e b i r e -f r i n g e n c e e -f -f e c t o b s e r v a b l e w i t h a l i g h t beam p a s s i n g t h r o u g h t h e m e l t p a r a l l e l t o t h e s t r e a m l i n e s . To e l i m i n a t e t h e e n d - e f f e c t s , u s e must be made of s l i t s o f d i f f e r e n t l e n g t h s . I t i s hoped t h a t t h e measurements o f t h e t i m e dependent second normal s t r e s s d i f f e r e n c e w i l l be c a r r i e d o u t a t L i n z U n i v e r -s i t y .

(13)

d) Not o n l y a p p a r a t u s s e s f o r t h e measurement o f polymer m e l t s i n s h e a r f l o w were i n v e s t i g a t e d . A l s o an a p p a r a t u s f o r t h e measurement o f t h e e x t e n s i o n a l v i s c o s i t y was d e v e l o p e d . W i t h t h i s a p p a r a t u s i t i s p o s s i b l e t o c a r r y o u t m e c h a n i c a l and o p t i c a l measurements s i m u l t a n e o u s l y . A d e s c r i p t i o n o f t h i s a p p a r a t u s and t h e r e s u l t s o f s t e a d y s t a t e and t r a n s i e n t measurements a r e g i v e n i n C h a p t e r 3 and 4.

I n t h e f o l l o w i n g s e c t i o n s o f t h i s f i r s t c h a p t e r a s h o r t d e s c r i p t i o n o f t h e used T h e o l o g i c a l e q u a t i o n s i s g i v e n . C h a p t e r s 2, 3 and 4 o f t h i s work have a l -r e a d y been p u b l i s h e d as s e p a -r a t e p a p e -r s i n R h e o l o g i c a A c t a . 1.2 T e n s i l e S t r a i n I f a r e c t a n g u l a r element o f m a t e r i a l o f a l e n g t h 1 i s e x t e n d e d t o a l e n g t h 1 + 61, t h e Cauchy s t r a i n i s d e f i n e d as The r a t e o f s t r a i n i s g i v e n by O n l y i f a m a t e r i a l r e t u r n s t o i t s o r i g i n a l l e n g t h 1 when t h e s t r e s s a c t i n g o n i t i s removed, t h e Cauchy s t r a i n and r a t e o f s t r a i n has a s i g n i f i c a n t meaning. F o r m a t e r i a l s l i k e polymer m e l t s and s o l u t i o n s , however, t h e o r i g i n a l l e n g t h 1 has no meaning from t h e moment the m a t e r i a l s t a r t s t o f l o w . I n such c a s e s t h e Hencky s t r a i n i s t o be p r e f e r r e d . T h i s Hencky s t r a i n i s t h e summation o f s u c -c e s s i v e Cau-chy s t r a i n s : o

SI

a = — o [1.2.1] 1 [1.2.3] The Hencky s t r a i n r a t e i s g i v e n by I Ê1. 1 d t [1.2.4] ..3 S i m p l e Shear S t r a i n I n a C a r t e s i a n c o o r d i n a t e system t h e d i r e c t i o n s o f t h e axes a r e o f t e n g i v e n b y : 1 - d i r e c t i o n o f t h e f l o w 9

(14)

2- d i r e c t i o n o f t h e v e l o c i t y g r a d i e n t 3- n e u t r a l d i r e c t i o n . S i m p l e s h e a r i s r e p r e s e n t e d b y : 1 x] + Y x2 [1.3.1] x3 x3 i n w h i c h ( x j , x^, x^) a r e t h e c o o r d i n a t e s o f a " p a r t i c l e " a t p r e v i o u s time t ' and ( X j , X £ , x^) a r e t h e c o o r d i n a t e s o f t h e same p a r t i c l e a t p r e s e n t time t . I n the p e r t i n e n t time i n t e r v a l s h e a r y i s a p p l i e d i n some way. The s h e a r r a t e y i s

d j d t Y = I f t h e s h e a r r a t e i s time i n d e p e n d e n t t h e s h e a r c a n be w r i t t e n a s : Y( t , t ' ) = ( t - t ' ) Y [1-3.3] 1.4 The S t r e s s T e n s o r I n a r i g h t handed C a r t e s i a n c o o r d i n a t e s y s t e m t h e s t r e s s t e n s o r i s g i v e n by: CT11 0) 2 al 3 g = °21 a2 2 °23 [1.4.1] 0-3, a3 2 CT33

The d i a g o n a l e l e m e n t s 0 j j , a n <* ° 3 3a re t'l e n o r m a^ - s t r e s s components and t h e

o f f - d i a g o n a l e l e m e n t s a r e t h e s h e a r s t r e s s components. I n g e n e r a l one c a n choose a c o o r d i n a t e s y s t e m by w h i c h a l l t h e s h e a r components v a n i s h . The axes o f t h i s p a r t i c u l a r c o o r d i n a t e s y s t e m a r e c a l l e d t h e p r i n c i p a l a x e s . When an i n c o m p r e s -s i b l e f l u i d i -s i n a q u i e -s c e n t -s t a t e t h e r e i -s o n l y an i -s o t r o p i c h y d r o -s t a t i c p r e s s u r e whereas t h e s h e a r s t r e s s components a r e z e r o . I n a f l o w i n g s y s t e m some o f t h e s h e a r s t r e s s e s a r e f i n i t e , whereas t h e normal s t r e s s components may d i f f e r f r o m each o t h e r . The normal s t r e s s components 0j j » 022 a n c* °33a re c^an_

ged by e q u a l amounts, i f t h e h y d r o s t a t i c p r e s s u r e i s changed b e c a u s e t h i s p r e s -s u r e doe-s n o t i n f l u e n c e t h e -shape o f t h e m a t e r i a l . F o r t h i -s r e a -s o n -s e p a r a t e normal s t r e s s e s have no r h e o l o g i c a l meaning. The d i f f e r e n c e s o f t h e normal s t r e s s e s a . j - <^22' a2 2 ~ a3 3 a n t^a l 1 _ °33a r e n ot i -nf luence<^ byt ne h y d r o s t a

(15)

t i c p r e s s u r e . They g i v e , t o g e t h e r w i t h the s h e a r s t r e s s e s , t h e r h e o l o g i c a l r e s -ponse t o a change o f the shape o f t h e m a t e r i a l . F o r the m a t e r i a l s c o n s i d e r e d i n t h i s t h e s i s one may assume t h a t the s t r e s s t e n s o r i s symmetric, a t l e a s t f o r n o t too h i g h r a t e s o f d e f o r m a t i o n , v i z . :

a = a

[1.4.2]

As a c o n s e q u e n c e t h e number o f i n d e p e n d e n t components o f the s t r e s s t e n s o r i s r e d u c e d f r o m n i n e t o s i x . I f a s i m p l e s h e a r d e f o r m a t i o n i s c o n s i d e r e d , one can c o n c l u d e f r o m the symmetry o f the f l o w f i e l d t h a t a^ = = 0 and = aj j=0 .

The g e n e r a l s t a t e o f s t r e s s f o r an o r i g i n a l l y i s o t r o p i c m a t e r i a l i s p r e s e n -ted d u r i n g a s h e a r d e f o r m a t i o n by t h e f o l l o w i n g s t r e s s t e n s o r : ai l CT12 a2 1 °22 0 0 J33 [1.4.3]

The t h r e e i n d e p e n d e n t " d e v i a t o r i c " s t r e s s components a r e the s h e a r s t r e s s 0j2 = ° 2 1 ' t'l e ^•"•r s t n or ma l s t r e s s d i f f e r e n c e 0 - a^^ an<l tne second n o r m a l

s t r e s s d i f f e r e n c e ~ I f the s t r e s s t e n s o r has o n l y d i a g o n a l e l e m e n t s (and a l l o f f d i a g o n a l components a r e z e r o ) , the t h r e e p r i n c i p a l a x e s o f the s t r e s s e l l i p s o i d c o i n c i d e w i t h the axes o f the C a r t e s i a n c o o r d i n a t e s y s t e m . F o r a s i m p l e s h e a r d e f o r m a t i o n , however, o n l y the 3 - a x i s o r n e u t r a l d i r e c t i o n o f the l a b o r a t o r y c o o r d i n a t e system i s a p r i n c i p a l a x i s Cthe I l l a x i s ) . The two r e m a i -ming p r i n c i p a l axes must l i e i n the 1,2 p l a n e , the " p l a n e o f f l o w " . By d e f i n i t i o n ,

the f i r s t p r i n c i p a l a x i s i s the a x i s making an a n g l e s m a l l e r t h a n f o r t y f i v e d e g r e e s w i t h the d i r e c t i o n o f the s t r e a m l i n e s ( s e e f i g u r e 1.1). I f one t r a n s -forms t h e p r i n c i p a l s t r e s s e s 0 , a and 0J-J-J i n t o the components o f the s t r e s s t e n s o r i n t h e l a b o r a t o r y s y s t e m one o b t a i n e s w i t h 0^ — o" = A 0. A

a

s i n 2x = 2

0

A 0 cos 2x = O, j - 02 2 CTIII = CT33 [1.4.4a] [1.4.4b] [1.4.4c] E q u a t i o n [1.4.4b] d i v i d e d by e q u a t i o n [1.4.4a] r e s u l t s i n an e x p r e s s i o n f o r t h e o r i e n t a t i o n a n g l e x o f the s t r e s s e l l i p s o i d : 2 c o t g 2x = gl l " g2 2 °21 [1.4.5] 1 1

(16)

1

Fig. 1.1. Laboratory coordinate system:

x: direction of flow (1-direction); y : direction of velocity gradient (2-direc-tion); J and II : directions of stress; xm •' orientation angle of stress e l l i p

-soid; : velocity; q : shear rate.

1.5 R h e o l o g i c a l C o n s t i t u t i v e E q u a t i o n s I n t h i s s e c t i o n o n l y a few o f t h e r h e o l o g i c a l c o n s t i t u t i v e e q u a t i o n s and m o d i f i c a t i o n s o f t h e s e e q u a t i o n s a r e d i s c u s s e d b r i e f l y . An e x t e n s i v e d i s c u s s i o n o f t h e c o n s t i t u t i v e e q u a t i o n s o f t h e i n t e g r a l and o f t h e d i f f e r e n t i a l t y p e f o r l i n e a r and n o n - l i n e a r b e h a v i o u r i s i n p r e p a r a t i o n ( J a n e s c h i t z - K r i e g l ( 4 ) ) . As a s t a r t i n g p o i n t f o r t h e d i s c u s s i o n o f c o n s t i t u t i v e e q u a t i o n s w h i c h p r o p e r l y d e s c r i b e t h e b e h a v i o u r o f a polymer m e l t , an e x a m i n a t i o n i s g i v e n o f the equa-t i o n d e r i v e d f o r r u b b e r , b e c a u s e equa-t h e b e h a v i o u r o f a polymer m e l equa-t has much i n common w i t h t h a t o f r u b b e r . As w e l l known, an i d e a l r u b b e r shows "neo-Hookean" b e h a v i o u r i n s h e a r . I t i s p o s s i b l e t o d e r i v e a c o n s t i t u t i v e e q u a t i o n f o r such systems from t h e s t a t i s t i c a l t h e o r y . I f the d e f o r m a t i o n o c c u r s a t c o n s t a n t volume and w i t h no change o f i n t e r n a l e n e r g y , one h a s :

O + p I = G B [1.5.1]

where 0 i s the s t r e s s t e n s o r , p the h y d r o s t a t i c p r e s s u r e , G the shear modulus and B t h e F i n g e r s t r a i n t e n s o r . The components o f t h e F i n g e r s t r a i n t e n s o r B a r e d e f i n e d i n C a r t e s i a n c o o r d i n a t e s a s :

3 5x. óx. r l 1

[1.5.2]

(17)

where a r e t h e components o f the p o s i t i o n v e c t o r x' o f a p a r t i c l e b e f o r e t h e d e f o r m a t i o n and x t h e components o f t h e c o r r e s p o n d i n g v e c t o r x a f t e r t h e d e f o r -m a t i o n . The Cauchy d e f o r -m a t i o n t e n s o r C i s o f t e n used i n r h e o l o g i c a l e q u a t i o n s . I t i s t h e i n v e r s e o f t h e F i n g e r s t r a i n t e n s o r :

C = -1 [1.5.3]

The components o f t h e Cauchy d e f o r m a t i o n t e n s o r a r e thus g i v e n i n C a r t e s i a n c o o r d i n a t e s by: 3

I

s=l 1 6x. [1.5.4] An i m p o r t a n t d e f o r m a t i o n used i n C h a p t e r s 3 and 4 i s t h e u n i a x i a l e x t e n s i o n . F o r an e x t e n s i o n r a t i o \ i n t h e 1 - d i r e c t i o n the Cauchy and the F i n g e r t e n s o r s r e a d : r -? 0 0 C. . = X 0 0 \ [1.5.5] 0 0 \ 0 [1.5.6] F o r a s i m p l e s h e a r d e f o r m a t i o n l i k e t h e one o c c u r r i n g d u r i n g f l o w i n a cone-and-p l a t e a cone-and-p cone-and-p a r a t u s , as d e s c r i b e d C h a cone-and-p t e r 2, t h e Cauchy and F i n g e r t e n s o r s a r e : C. . 1J 1 -Y 0 0 0 - v 1+Y 0 [1.5.7] B. . 1+Y Y Y 1 0 Ö [1.5.8] S u b s t i t u t i o n o f B ^ j ( e q u a t i o n [1.5.8]) i n [1.5.1] r e s u l t s i n t h e f o l l o w i n g e q u a t i o n s 13

(18)

[1.5.9] °>2 = G Y a , , + p - 6(1 + Y2) a3 3 + P = G By a p p r o p r i a t e s u b t r a t i o n one g e t s r i d o f t h e u n d e t e r m i n e d h y d r o s t a t i c p r e s s u r e P = o-j, - a2 2 = G Y2 [1.5.10] a2 2 - a3 3 = 0 [1.5.11] One n o t i c e s t h a t t h e c o n s t i t u t i v e e q u a t i o n f o r an i d e a l r u b b e r [1.5.1] r e s u l t s i n an u n r e s t r i c t e d l y l i n e a r r e l a t i o n between the s h e a r y and the s h e a r s t r e s s

UP to h i g h v a l u e s o f s h e a r (neo—Hookean b e h a v i o u r ) , a f i r s t normal s t r e s s

d i f f e r e n c e w h i c h i s p r o p o r t i o n a l t o t h e s q u a r e o f t h e s h e a r Y>and a second

normal s t r e s s d i f f e r e n c e o f t h e v a l u e z e r o .

Polymer m e l t s and s o l u t i o n s a r e t h o u g h t t o c o n s i s t o f temporary n e t w o r k s . I n s u c h a network e n t a n g l e m e n t s a r e supposed t o be d i s r u p t e d and r e f o r m e d c o n -t i n u o u s l y under -t h e i n f l u e n c e o f -t h e -t h e r m a l m o -t i o n . To d e s c r i b e -t h i s sys-tem

Lodge (1) p r o p o s e d h i s r u b b e r l i k e l i q u i d m o d e l . I n t h i s t h e o r y each component

o f t h e s t r e s s t e n s o r o b s e r v e d a t p r e s e n t time t i s r e l a t e d t o t h e c o r r e s p o n -d i n g component o f the F i n g e r s t r a i n t e n s o r a t p r e v i o u s time t ' by t h e same

o memory f u n c t i o n y ( t - t ' ) . C o n s e q u e n t l y , Lodge's c o n s t i t u t i v e e q u a t i o n f o r r u b b e r l i k e l i q u i d s i s t (g + P l )t = p ( t - t ' ) B ( t , t ' ) d t ' [1.5.12] t ' = 00

The memory, as e x p r e s s e d by the f u n c t i o n p ( t - t ' ) f a d e s f o r an i n c r e a s i n g t i m e i n t e r v a l ( t - t ' ) . T h i s memory f u n c t i o n i s r e l a t e d t o t h e r e l a x a t i o n s h e a r

o

modulus G ( t - t ' ) , as known from t h e l i n e a r t h e o r y o f v i s c o e l a s t i c i t y , by

g (t -1- ) = " s ^ ; , 0 t i . 5 . 1 3 ]

The time dependent b e h a v i o u r o f r u b b e r l i k e l i q u i d s c a n be c a l c u l a t e d from equat i o n [1.5.12] and [ 1 . 5 . 1 3 ] , i f equat h e r e l a x a equat i o n s h e a r modulus G ( equat equat ' ) i s w r i equat -t e n as a s e r i e s o f e x p o n e n -t i a l s . - - ( t - t » ) / t . G ( t - t ' ) = I g e [1.5.14] i = l 1 A f t e r s u b s t i t u t i o n i n e q u a t i o n [1.5.13] one o b t a i n e s f o r t h e memory f u n c t i o n : 14

(19)

» g - ( t - t ' ) / T U ( t - f ) = I ^ e [1.5.15] i = l i I n s h e a r e x p e r i m e n t s one o b t a i n e s f o r t h e s t r e s s i n g e x p e r i m e n t , w h i c h i s t h e b u i l d - u p o f t h e s h e a r s t r e s s and t h e f i r s t normal s t r e s s d i f f e r e n c e a t c o n s t a n t r a t e o f s h e a r Y : a2 ]( t ) = Y I g£ T . ( l - e x) [1.5.16] i = l - a22)t = 2 Y2 I fe T . a - a Ti) [1.5.17] i = l A s i m i l a r c a l c u l a t i o n c a n be made f o r e x t e n t i o n a l f l o w . T h i s c a l c u l a t i o n i s g i v e n i n C h a p t e r 4 where t h e time dependent measurements, w h i c h have been made w i t h t h e new a p p a r a t u s f o r t h e e x t e n s i o n a l f l o w s , a r e d i s c u s s e d .

F o r r a t h e r s m a l l t o t a l d e f o r m a t i o n s t h e r e s u l t s o f s h e a r and e x t e n s i o n a l e x p e r i m e n t s a r e i n agreement w i t h t h e r u b b e r l i k e l i q u i d m o d e l . On t h e o t h e r hand, f o r t h e s t e a d y s t a t e s i t u a t i o n o f f l o w t h e r e s u l t s o f Lodge's model do n o t always a g r e e w i t h t h e e x p e r i m e n t a l f a c t s . The s t e a d y s t a t e s h e a r v i s c o s i t y , d e f i n e d a s : ns = o2]/y [1.5.18] and t h e f i r s t normal s t r e s s d i f f e r e n c e c o e f f i c i e n t °11 " ° 2 2 8 „ - . 2 [1.5.19] Y

a r e s h e a r r a t e dependent. The second normal s t r e s s d i f f e r e n c e i s n o t z e r o . I n f a c t , e x p e r i m e n t s show f i n i t e second normal s t r e s s d i f f e r e n c e s w h i c h have always a s i g n r e v e r s e t o t h a t o f t h e f i r s t normal s t r e s s d i f f e r e n c e and a r e o f t h e o r d e r o f one t e n t h o f t h e l a t t e r q u a n t i t y . T h i s p r o b l e m c a n f o r m a l l y be s o l v e d by t h e r e p l a c e m e n t o f t h e F i n g e r t e n s o r B by a l i n e a r c o m b i n a t i o n o f t h e F i n g e r t e n s o r and t h e Cauchy t e n s o r (1 - a) B - a C [1.5.20] where a i s a p o s i t i v e c o n s t a n t o f t h e o r d e r o f one t e n t h . T h i s m o d i f i c a t i o n goes b a c k t o Mooney and Rivlin ( 5 ) , who a d a p t e d i n t h i s way e q u a t i o n [1.5.1] f o r n o n - i d e a l r u b b e r s . U n f o r t u n a t e l y t h e r e i s no m o l e c u l a r i n t e r p r e t a t i o n f o r

t h i s m o d i f i c a t i o n u n t i l now. I n o r d e r t o d e s c r i b e t h e dependency o f t h e v i s c o -15

(20)

s i t y on t h e r a t e o f s h e a r , s e v e r a l m o d i f i c a t i o n s o f t h e memory f u n c t i o n were p r o p o s e d . The a s s u m p t i o n i s made t h a t t h e memory f u n c t i o n i s n o t o n l y a f u n c t i o n o f t h e e l a p s e d t i m e ( t - t ' ) b u t a l s o o f t h e f i r s t and second i n v a r i a n t s o f t h e F i n g e r s t r a i n t e n s o r B ( t h e t h i r d i n v a r i a n t i s 1^ = D e t ( B ^ jc) = 1 b e c a u s e o f t h e c o n s t a n t volume a s s u m p t i o n ) . One h a s : u ( t - t ' ; I , , I2) [1.5.21] I n t h e most g e n e r a l f o r m u l a t i o n t h e memory f u n c t i o n s h o u l d be a f u n c t i o n o f t h e r a t e o f s t r a i n t e n s o r as w e l l . I n o r d e r t o o b t a i n u s e f u l r e s u l t s t h i s model c a n be s i m p l i f i e d by a f a c t o r i s a t i o n o f t h e memory f u n c t i o n , as g i v e n by eq. [ 1 . 5 . 2 1 ] , v i z . : u ( t - f ; I]; I2) = y ( t - t ' ) h ( I , , I2) [1.5.22] o , where U ( t - t ' ) i s t h e memory f u n c t i o n o f t h e l i n e a r v i s c o e l a s t i c t h e o r y and

h ( I j , I2) i s a f u n c t i o n o f t h e s t r a i n , c a l l e d t h e "damping f u n c t i o n " . T h i s

damping f u n c t i o n i s e x t e n s i v e l y e v a l u a t e d by Wagner ( 6 , 7) and Laun ( 8 , 9 ) . I n t h e I n d e p e n d e n t A l i g n m e n t model o f Doi and Edwards (1013) t h i s damping f u n c -t i o n i s i n c o r p o r a -t e d i n -t h e -t e n s o r Q w h i c h r e p l a c e s -t h e F i n g e r -t e n s o r B i n

Lodge's e q u a t i o n [1.5.12]

t (a + p p c =

t1 =—CO

I n t h i s l a t t e r model t h e memory f u n c t i o n i s t h e same as i n e q u a t i o n [ 1 . 5 . 1 3 ] : i t i s o n l y dependent on t h e e l a p s e d t i m e ( t - t ' ) . Doi and Edwards have worked out t h e i r t h e o r y f o r s h e a r f l o w , s t r e t c h i n g f l o w (A > 1) and c o m p r e s s i o n f l o w

o

(A < 1 ) . I f one wants t o use t h e memory f u n c t i o n p ( t - t ' ) as o b t a i n e d f r o m l i n e a r v i s c o e l a s t i c p r o p e r t i e s , t h e t e n s o r Q i n t h e o r i g i n a l p a p e r s must be m u l t i p l i e d by a f a c t o r 5 as e x p l a i n e d b y Janesehitz-Kriegl ( 4 ) .

U n t i l h e r e o n l y c o n s t i t u t i v e e q u a t i o n s o f t h e i n t e g r a l t y p e were p r e s e n t e d . The f o l l o w i n g n o n - l i n e a r c o n s t i t u t i v e e q u a t i o n i s o f t h e d i f f e r e n t i a l t y p e . T h i s e q u a t i o n was p r o p o s e d by Acierno, Marruoai, La Montia, Rizzo and Titomanlio i n a s e r i e s o f p a p e r s ( 1 4 1 6 ) . They f o r m u l a t e d t h e i r t h e o r y i n terms o f an a p p r o -x i m a t e l i n e s p e c t r u m . The c o n t r i b u t i o n s o f t h e s e p a r a t e r e l a -x a t i o n p r o c e s s e s a r e s i m p l y summed up. The p e r t i n e n t e q u a t i o n s a r e :

a = I 0 [1.5.24]

V(t - t ' ) Q d t [1.5.23]

(21)

I i s 1 CT + T i ï t (G 7 2I> - 2 T i 2 [1-5.25] 1 G. = G . x. ; T. = T . x^,'4 [1.5.26] l o i l l o i 2 L J dx 1 , E _ = _ (, _ x. ) _ a x . - / - 11.5.27] i i i The d i f f e r e n t i a l e q u a t i o n [1.5.25] c o n t a i n s a c o n t r a v a r i a n t t i m e d e v i a t i v e and i s s i m i l a r t o t h e w e l l - k n o w n Maxwell e q u a t i o n . G ^ i s t h e r e l a x a t i o n s t r e n g t h , T ^ t h e r e l a x a t i o n time o f the i - t h r e l a x a t i o n p r o c e s s a c c o r d i n g t o t h e l i n e a r v i s c o e l a s t i c b e h a v i o u r o f t h e m a t e r i a l , t h e p a r a m e t e r x. w i t h 1 > x. > 0 i s l — l — an i n t e r n a l s t r u c t u r a l p a r a m e t e r . P a r a m e t e r a i s a d j u s t a b l e , p r e f e r a b l y t o t h e non-Newtonian s t e a d y s h e a r v i s c o s i t y , b u t i s e s s e n t i a l l y t h e same f o r a l l t y p e s o f p o l y m e r s . The symbol D s t a n d s f o r t h e r a t e o f s t r a i n t e n s o r D = | ( V v + V vt) . [1.5.28]

and i s t h e c o n t r i b u t i o n o f the i - t h r e l a x a t i o n mechanism t o t h e e l a s t i c e n e r g y , v i z . : Ei = I t r g... [1.5.29] As c a n be seen f r o m e q s . [ 1 . 5 . 2 6 ] , t h e n o n l i n e a r i t y i s i n t r o d u c e d by t h e i n t e r -n a l s t r u c t u r a l p a r a m e t e r x^. I -n eq. [1.5.27] t h e r a t e o f c r e a t i o -n o f -n e t w o r k j u n c t i o n s o f t h e t y p e " i " (due t o t h e B r o w n i a n M o t i o n ) i s g i v e n by (1 - x ^ ) / x ^ , x. E.

whereas the t e r m a — / d e s c r i b e s t h e r a t e o f d e s t r u c t i o n o f t h e network. T. G.

l l

I f the e l a s t i c e n e r g y E ^ i n c r e a s e s the d e s t r u c t i o n o f t h e network i s enhanced. T h i s model h a s s u c c e s s f u l l y been checked by De Cindio (17) w i t h t h e a i d o f s h e a r e x p e r i m e n t s c a r r i e d o u t by Gortemaker ( 3 ) . F o r t h e same polymer t h i s t h e o r y i s e v a l u a t e d i n C h a p t e r 4 f o r s t e a d y s t a t e e x t e n s i o n a l e x p e r i m e n t s .

(22)

1.6 The F l o w B i r e f r i n g e n c e T e c h n i q u e

In t h i s s e c t i o n o n l y the e x p r e s s i o n s needed i n the f o l l o w i n g c h a p t e r s a r e d i s c u s s e d . The e x p e r i m e n t a l t e c h n i q u e f o r the d e t e c t i o n o f the components o f the r e f r a c t i v e i n d e x t e n s o r i s b r i e f l y o u t l i n e d . F u r t h e r , the l i n e a r s t r e s s - o p t i c a l r e l a t i o n i s i n t r o d u c e d . I t c l a i m s a s i m p l e p r o p o r t i o n a l i t y between the d e v i a -t o r i c componen-ts o f -the s -t r e s s -t e n s o r and o f -the r e f r a c -t i v e i n d e x -t e n s o r , v i z . :

n = C g, [1.6.1]

where C i s the s t r e s s - o p t i c a l c o e f f i c i e n t . From t h i s r e l a t i o n i t i s a l s o o b v i o u s t h a t t h e r e s p e c t i v e t e n s o r e l l i p s o i d s a r e c o a x i a l . D e v i a t i o n s from t h i s s i m p l e r u l e have o n l y been found a t t e n s i l e s t r e s s e s h i g h e r t h a n 10^ Pa (18) and a t a t i m e - t e m p e r a t u r e - s c a l e c l o s e t o the g l a s s t r a n s i t i o n ( 1 9 ) . Owing t o non—New-t o n i a n v i s c o s i non—New-t y , s p u r non—New-t (20) and m e l non—New-t - f r a c non—New-t i o n (21) s h e a r s non—New-t r e s s e s o f 10 Pa have n e v e r been r e a c h e d . A l s o d e v i a t i o n s from eq. [1.6.1] have n e v e r been f o u n d i n s h e a r e x p e r i m e n t s . I n a d d i t i o n , C has been found to be i n d e p e n d e n t o f tempe-r a t u tempe-r e i n the s p e c i a l c a s e o f p o l y s t y tempe-r e n e ( 2 ) .

1.6.1 E x t i n c t i o n A n g l e and B i r e f r i n g e n c e

I f a l i n e a r l y p o l a r i z e d l i g h t beam p a s s e s t h r o u g h an o p t i c a l l y i s o t r o p i c medium ( l e t us say a polymer m e l t i n i t s s t a t i o n a r y s t a t e ) and the emerging

l i g h t beam i s o b s e r v e d t h r o u g h an a n a l y s e r , w h i c h i s p l a c e d i n a c r o s s p o s i t i o n w i t h r e s p e c t to the p o l a r i z e r , e x t i n c t i o n w i l l be o b s e r v e d . However, i f t h i s polymer m e l t i s f o r c e d to f l o w , i t becomes o p t i c a l l y b i a x i a l . T h i s means t h a t the r e f r a c t i v e i n d e x t e n s o r has got t h r e e d i f f e r e n t p r i n c i p a l a x e s . In the s h e a r f l o w d i s c u s s e d i n C h a p t e r 2 the l i g h t beam p a s s e s t h r o u g h the m e l t i n the 3 - d i r e c t i o n w h i c h i s - by symmetry - one o f the p r i n c i p l e a x e s , say the a x i s I I I . I n o t h e r words, the p l a n e o f o b s e r v a t i o n i s the 1,2 p l a n e . The o t h e r two p r i n c i p a l axes l i e i n the l a t t e r p l a n e . By d e f i n i t i o n , the p r i n c i p a l a x i s I makes an a n g l e o f XQ < 45° w i t h the 1 - a x i s o f the l a b o r a t o r y c o o r d i n a t e system

( f l o w d i r e c t i o n ) . T h i s a n g l e XQ i s c a l l e d the e x t i n c t i o n a n g l e . I f c r o s s e d

p o l a r i z e r and a n a l y s e r a r e t u r n e d s i m u l t a n e o u s l y , u n t i l the p o s i t i o n o f one o f them c o i n c i d e s w i t h the a n g l e XD> no l i g h t w i l l p a s s t h r o u g h the system b e c a u s e

the p l a n e o f v i b r a t i o n o f the l i n e a r l y p o l a r i z e d l i g h t o f w a v e l e n g t h \ makes an a n g l e o f 4 5 ° w i t h one o f the p r i n c i p a l axes i n the p l a n e o f o b s e r v a t i o n , the r e s p e c t i v e d i f f e r e n c e o f the r e f r a c t i v e i n d i c e s c a n be d e t e r m i n e d . T h i s i s a c c o m p l i s h e d by the measurement o f the phase d i f f e r e n c e 6 between the two mu-t u a l l y p e r p e n d i c u l a r l y p o l a r i z e d componenmu-ts o f mu-the l i g h mu-t , w h i c h emerge f r o m mu-the 18

(23)

m e l t . The o p t i c a l p a t h d i f f e r e n c e as " r e t a r d a t i o n " T i s t h e n g i v e n by

[ 1 . 6 . 2 ]

and the b i r e f r i n g e n c e An i s

An = ~ [ 1 . 6 . 3 ]

where L i s the o p t i c a l p a t h l e n g t h t h r o u g h the m e l t . F o r the components o f the s t r e s s t e n s o r i n s h e a r f l o w one o b t a i n e s w i t h the a i d o f the s t r e s s o p t i c a l r e l a t i o n :

° 1 2 = Tc Sin 2 Xo t1-6-4]

ai l " ° 2 2 = H I C0S 2 Xo [ 1 . 6 . 5 ]

w i t h An >= ij - n ^ .

I n t h e e x t e n s i o n e x p e r i m e n t ( C h a p t e r s 3 and 4 ) the d i r e c t i o n s of the p r i n -c i p a l axes a r e e q u a l t o t h o s e o f the l a b o r a t o r y system. The e x t i n -c t i o n a n g l e becomes zero o r n i n e t y d e g r e e s and t r i v i a l . The o p t i c a l and m e c h a n i c a l measure-ments a r e s i m p l y r e l a t e d by

An = C a j j [ 1 . 6 . 6 ]

whereaj j (= ° j ) i s the t e n s i l e s t r e s s ( w i t h = ^-J-J = 0 ) * \ The experiments d i s c u s s e d i n t h i s t h e s i s were c a r r i e d o u t on a p o l y s t y r e n e , w h i c h has p r e v i o u s -l y b e e n used f o r a s e r i e s o f r h e o -l o g i c a -l i n v e s t i g a t i o n s ( 3 ) ( 1 7 ) .

2 The Ehringhaus Compensator

The o p t i c a l r e t a r d a t i o n T i s d e t e r m i n e d w i t h the a i d o f a compensator a c c o r d i n g t o E h r i n g h a u s ( 2 2 ) . By t u r n i n g a p l a t e , which c o n s i s t s o f two q u a r t z c r y s t a l s , a r e t a r d a t i o n i s p r o d u c e d , w h i c h s e r v e s f o r c o m p e n s a t i o n o f t h e r e t a r -d a t i o n p r o -d u c e -d by the polymer sample. The a n g l e by w h i c h t h e p l a t e i s r o t a t e -d , i s a measure f o r the b i r e f r i n g e n c e . T h i s compensator i s p l a c e d i n f r o n t o f the a n a l y s e r . W i t h t h e E h r i n g h a u s compensator o n l y r e t a r d a t i o n s c o r r e s p o n d i n g w i t h

*) Sometimes i n t h i s work the symbol 0zz i s used i n s t e a d o f O J J , the z - a x i s

b e i n g the a x i s o f the s t r e t c h .

(24)

p h a s e - d i f f e r e n c e s s m a l l e r t h a n 2TT can be d e t e c t e d . I f t h e phase d i f f e r e n c e i s more t h a n 2TT, one has t o c o u n t t h e " f r i n g e s " p a s s i n g by f r o m t h e moment when t h e f l o w i s s t a r t e d u n t i l t h e s t e a d y s t a t e i s r e a c h e d .

REFERENCES

Lodge, A.S., " E l a s t i c L i q u i d s " , Academic P r e s s , New Y o r k (1964) Wales, J.L.S.j "The A p p l i c a t i o n o f Flow B i r e f r i n g e n c e to R h e o l o g i c a l

S t u d i e s o f Polymer M e l t s " D e l f t (1976)

Gortemaker, F.H., "A Flow B i r e f r i n g e n c e Study o f S t r e s s e s i n Sheared

Polymer M e l t s , T h e s i s , D e l f t (1976)

Janesehitz-Rriegl, H., "Flow B i r e f r i n g e n c e i n Polymer M e l t Rheometry"

monograph i n p r e p a r a t i o n f o r S p r i n g e r , H e i d e l b e r g

Mooney, M., J . A p p l . P h y s . , _H> 582 C194Q)

Wagner, M.H., R h e o l . A c t a J_8, 33 (1979)

Wagner, M.H., S.E. Stephenson, J . o f R h e o l o g y 23, 489 (1979) Laun, H.M., R h e o l . A c t a J_7, 1 (1978)

Laun, H.M., M.H. Wagner, H. Janesehitz-Kriegl, R h e o l . A c t a J_8, 615 (1979) Doi, M., S.F. Edwards, J.C.S. F a r a d a y I I 74, 1789 (1978)

Doi, M., S.F. Edwards, J.C.S. F a r a d a y I I 74, 1802 (1978) Doi, M., S.F. Edwards, J.C.S. F a r a d a y I I 74, 1818 (1978) Doi, M., S.F. Edwards, J.C.S. F a r a d a y I I 75, 38 (1979)

Aoierno, D., F.F. La Mantia, G. Marruooi, G. Titomanlio, J . Non-Newtonian

F l u i d Mech. 125 (1976)

Aoierno, D., F.F. La Mantia, G. Marruooi, G. Rizzo, G. Titomanlio, J .

Non-Newtonian F l u i d Mech. i_, 147 (1976)

Aoierno, D., F.F. La Mantia, G. Marruooi, J . Non-Newtonian F l u i d Mech.

2, 271 (1977)

De Cindio, B., D. Aoierno, F.H. Gortemaker, H. Janeschitz-Rriegl, R h e o l .

A c t a _T6, 484 (1977)

Matsvmoto, T., D.C. Bogue, J . Polym. S e i . , Polym. Phys. Ed. 1663 (1977) Read, B.E., Polymer 5, 1 (1964)

Vinogradov, G.V., A. Ya. Malkin, Y.G. Yanouskü, E.K. Borisonkova, B.V. Yarlykov, G.V. Berezknaya, J . Polym. S e i . , A2, j_0, 1061 (1972) Den Otter, J.L., P l a s t i c s and P o l y m e r s 38, 155 (1970)

Ehringhaus, A., Z. K r i s t a l l o g r a p h i e 76, 315 ( 1 9 3 1 ) .

(25)

CHAPTER 2

QUASI-LINEAR RHEOLOGICAL BEHAVIOUR OF POLYMER MELTS: COMPARISON BETWEEN MECHANICAL AND IMPROVED FLOW BIREFRINGENCE MEASUREMENTS*^

I n t r o d u c t i o n

When the f i r s t a p p a r a t u s (1) f o r c o n t i n u o u s measurements o f t h e f l o w b i r e -f r i n g e n c e o -f polymer m e l t s was p u b l i s h e d i n 1967, i t was n o t c l e a r , whether t h e a p p l i e d c o n e a n d p l a t e geometry was r e a l l y t h e most p r o m i s i n g one f o r e x p e r i -ments i n s h e a r . Some y e a r s l a t e r , Wales (2) a p p l i e d the s l i t geometry i n o r d e r to measure t h e b i r e f r i n g e n c e i n the 1,3-plane. He o b s e r v e d t h a t , i n c o n t r a s t t o t h e e x p e r i e n c e s g a t h e r e d w i t h the c o n e - a n d - p l a t e a p p a r a t u s , measurements c o u l d be e x t e n d e d i n t o the s o - c a l l e d h i g h s h e a r r a t e r a n g e , i . e . t h e r a n g e o f s h e a r r a t e s c h a r a c t e r i s t i c o f polymer p r o c e s s i n g c o n d i t i o n s . As i s well-known, t h i s r a n g e depends on t h e p o l y m e r ( m o l e c u l a r mass and m o l e c u l a r mass d i s t r i b u t i o n ) and i s bound i n e x t r u s i o n e x p e r i m e n t s by the o n s e t o f m e l t f r a c t u r e . O n l y r e -c e n t l y , i t was p r o v e d a t the D e l f t l a b o r a t o r y t h a t a l s o the -c o n e - a n d - p l a t e geo-metry i s c a p a b l e o f c o v e r i n g t h e whole range o f i n t e r e s t i n g s h e a r r a t e s . I n the p r e s e n t c h a p t e r the improvements a r e d e s c r i b e d w h i c h l e a d t o t h i s p r o g r e s s . A p r e r e q u i s i t e f o r s t a b l e f l o w i n a c o n e - a n d - p l a t e a p p a r a t u s i s t h a t t h e r e i s no open r i m where the m e l t c a n t e a r i n . Whereas a c l o s e d c o n s t r u c t i o n c a n n o t e a s i -l y be used f o r the measurement o f t h e norma-l t h r u s t , such a c o n s t r u c t i o n i s p a r t i c u l a r l y u s e f u l f o r o p t i c a l measurements. The d e c i s i v e improvement c o n s i s -t e d i n a r e a r r a n g e m e n -t o f p a r -t s so -t h a -t -t h e l i g h -t beam c a n be d i r e c -t e d -t h r o u g h the "deadwater" r e g i o n s n e a r t h e windows. I n t h i s way the i n f l u e n c e o f p a r a s i -t i c b i r e f r i n g e n c e e f f e c -t s can be m i n i m i z e d . In f a c -t , i n f o r m e r e x -t i n c -t i o n a n g l e measurements (3) t h e s e e f f e c t s c a u s e d enormous t r o u b l e s . Some l a t e s t r e s u l t s a r e p r e s e n t e d . T h e i r i m p l i c a t i o n f o r the i n t e r p r e t a t i o n o f p o l y m e r m e l t f l o w a r e d i s c u s s e d .

*) v a n Aken, J.A., F.H. Gortemaker, H. J a n e s c h i t z - K r i e g l , H.M. Laun R h e o l . A c t a 19, 159 (1980)

(26)

.2 D e s c r i p t i o n o f t h e R e v i s e d R o t o r U n i t

The d e s c r i p t i o n o f a r e d e s i g n e d a p p a r a t u s has b e e n p u b l i s h e d q u i t e r e c e n t -l y ( 3 ) . R e s u -l t s , as o b t a i n e d w i t h t h i s a p p a r a t u s , were p u b -l i s h e d and i n t e r p r e t e d i n a s e r i e s o f p a p e r s ( 4 - 6 ) . As a c o n s e q u e n c e , t h e p r e s e n t a u t h o r s c a n r e s t r i c t t h e i r d i s c u s s i o n t o t h e e s s e n t i a l l y new f e a t u r e s i n t r o d u c e d l a t e l y . I n f i g u r e 2.1 t h e v e r y newest c o n s t r u c t i o n o f t h e r o t o r u n i t i s shown. One o f t h e p r e s e n t a u t h o r s (F.H.G.) i s r e s p o n s i b l e f o r t h e u n d e r l y i n g i d e a s . The i m p o r t a n t change w i t h r e s p e c t t o t h e p r e v i o u s a p p a r a t u s c o n s i s t s i n t h e f a c t t h a t , i n s t e a d o f

the r o t o r , t h e s t a t o r (7) i s now formed by t h e " p l a t e " , whereas t h e r o t o r (6) i s m o d e l l e d a s t h e "cone".

VA

/ / A

B

Fig. 2.1. Cvoaa-aeation through the rotor unit, (1) linearly polarized light beam entering the ring-shaped gap, (2) reflection prism, (3) inner window, (4) outer window, (5) stationary plate, (6) rotor with conical front surface, (7) ring-shaped gap (gap angle exaggerated in the drawing, real gap angle 1°8 ', causing a maximum gap width of ~ 0.4 mm), (8) blind hole for the thermocouple,

(9) sample injection hole, (10) e l l i p t i c a l l y polarized light beam emerging from the gap, (11) analyser.

A s h o r t d e s c r i p t i o n o f t h e o p e r a t i o n o f t h e u n i t i s g i v e n f i r s t . As was p o i n t e d o u t a l r e a d y i n e a r l i e r p a p e r s , n e i t h e r p l a t e n o r cone a r e c o m p l e t e . I n 22

(27)

the c e n t r e o f the u n i t a c y l i n d r i c a l chamber i s l o c a t e d , w h i c h c o n t a i n s t h e r e -f l e c t i o n p r i s m ( 2 ) . The r i n g - s h a p e d gap between "cone" and " p l a t e " i s l a t e r a l l y c o n f i n e d by c o n c e n t r i c c y l i n d r i c a l w a l l s n o t shown i n the f i g u r e . The windows (3 and 4) a r e mounted i n t h e s e w a l l s . The p o l a r i z e d l i g h t beam (see the c o u r s e o f t h e arrows f r o m the r i g h t l e t t e r A to t h e upper l e t t e r B) p a s s e s t h r o u g h t h e gap i n a r a d i a l outward d i r e c t i o n . The l i g h t s o u r c e (not shown) and t h e r e f l e c -t i o n p r i s m a r e moun-ted on a h o r i z o n -t a l o p -t i c a l bench h i n g i n g a r o u n g -t h e a x i s

(B-B). Between t h e l i g h t s o u r c e and t h e r e f l e c t i o n p r i s m a p o l a r i z i n g f i l t e r i s p l a c e d on the b e n c h . By t h i s f i l t e r the l i g h t beam i s p o l a r i z e d i n a f i x e d v e r t i c a l d i r e c t i o n . The p l a n e o f p o l a r i z a t i o n i s t h e same b e f o r e and a f t e r r e f l e c -t i o n by -t h e p r i s m . The a n g u l a r p o s i -t i o n o f -the bench d e f i n e s -t h e d i r e c -t i o n o f l i n e a r p o l a r i z a t i o n o f t h e l i g h t e n t e r i n g t h r o u g h t h e i n n e r window ( 3 ) . (The gap a n g l e i s 1 8 ' as i n p r e v i o u s v e r s i o n s . )

A t t h i s s t a g e o f the d e s c r i p t i o n we a r e i n the p o s i t i o n to e x p l a i n t h e m e r i t s o f the l a t e s t improvement. By t h e r e f l e c t i o n p r i s m t h e l i g h t p a t h i s f l e c t e d by e x a c t l y 90 d e g r e e s . T h i s i s not o n l y a c o n s e q u e n c e o f t h e s i m p l e de-s i g n o f t h e p r i de-s m b u t a l de-s o a n e c e de-s de-s i t y . O t h e r w i de-s e , t h e l i g h t beam e m e r g i n g f r o m the p r i s m would n o t p u r s u e the same p a t h i n d e p e n d e n t l y o f t h e a n g u l a r p o s i t i o n o f t h e b e n c h . We a r e f o l l o w i n g t h i s p a t h t h r o u g h t h e gap. I n t h e e a r l i e r c o n -s t r u c t i o n t h i -s l i g h t p a t h wa-s v e r y c l o -s e to the r o t o r , -s i n c e the r o t o r wa-s mo-d e l l e mo-d as t h e p l a t e w i t h i t s s u r f a c e p a r a l l e l to t h e l i g h t p a t h . From an econo-mic p o i n t o f v i e w the o p t i o n was f o r an i n t e r c h a n g e a b l e s t a t i o n a r y c o n e . The main drawback o f such a c o n s t r u c t i o n , however, was t h a t n e a r t h e windows t h e l i g h t beam p a s s e d t h r o u g h zones, where the c o n c e n t r a t i o n o f f l o w l i n e s was ex-t r a o r d i n a r i l y h i g h . I n f a c ex-t , ex-t h e r e a r e ex-two ( c i r c u l a r ) s i n g u l a r l i n e s a ex-t ex-t h e o u t e r edge and a t the i n n e r edge o f t h e r o t o r s u r f a c e , where t h e r o t o r f i t s i n t o the c o n c e n t r i c c y l i n d r i c a l w a l l s m e n t i o n e d above. The s h e a r r a t e i n the f l u i d becomes t h e o r e t i c a l l y i n f i n i t e a t t h e s e s i n g u l a r l i n e s . T h i s means t h a t , w i t h a

l i g h t beam p a s s i n g t h r o u g h t h i s z o n e s , c o n s i d e r a b l e p a r a s i t i c b i r e f r i n g e n c e e f f e c t s can be e x p e c t e d . The r e a s o n f o r the l a t e s t change i s now o b v i o u s . I f , i n c o n t r a s t to t h e e a r l i e r d e s i g n s , the p l a t e i s formed by the s t a t i o n a r y c o u n t e r -p a r t o f the r o t o r - which i s now n e c e s s a r i l y m o d e l l e d as t h e cone - t h e l i g h t beam p a s s e s t h r o u g h the dead-water r e g i o n s n e a r the windows. As an a d d i t i o n a l p r o v i s i o n , t h e c l e a r a n c e s between t h e l a t e r a l c y l i n d r i c a l s u r f a c e s o f t h e r o t o r and t h e c o n f i n i n g c y l i n d r i c a l w a l l s were e n l a r g e d , i n o r d e r to r e d u c e t h e s t r e a m l i n e d e n s i t y n e a r t h e edges o f t h e r o t o r .

(28)

.3 New Measurements

I n f i g u r e s 2.2 and 2.3 t h e a c h i e v e d improvements a r e d e m o n s t r a t e d .

9 0 ° r

Fig. 2. 2. Doubled extinction angle 2\ as a function of the nominal shear rate q

for a teohnioal polystyrene (Hostyren N 4000 V) at 170°C according to ref. (3).

The e a r l i e r c o n s t r u c t i o n was used when the e x t i n c t i o n a n g l e c u r v e o f a commer-c i a l p o l y s t y r e n e ( H o s t y r e n N 4000 V, Mw = 240000, Mn = 87000), as d e p i c t e d i n

f i g u r e 2.2, was measured. The i n t e r s e c t i o n s o f t h e dashed v e r t i c a l l i n e s w i t h t h e a b s c i s s a i n d i c a t e t h e s h e a r r a t e s a t w h i c h the main b i r e f r i n g e n c e c a u s e s o p t i c a l p a t h d i f f e r e n c e s o f one, two and more f u l l wave l e n g t h s ( e q u i v a l e n t to f i r s t , second and h i g h e r o r d e r f r i n g e s ) . A t t h e s e p o i n t s t h e main b i r e f r i n g e n c e becomes v i r t u a l l y z e r o so t h a t the p a r a s i t i c b i r e f r i n g e n c e s n e a r t h e windows become p r e d o m i n a n t . An i n t e r p r e t a t i o n o f t h i s phenomenon was t r i e d i n r e f . ( 3 ) . I n any c a s e , a d e d u c t i o n o f t h e c o r r e c t e x t i n c t i o n a n g l e c u r v e becomes r a t h e r d i f f i c u l t on the b a s i s o f t h e e x p e r i m e n t s shown i n f i g u r e 2.2. I n f i g u r e 2.3, t h e c o n s e q u e n c e s o f t h e l a t e s t c o n s t r u c t i o n a r e shown. The s t i l l p e r c e p t i b l e d e v i a t i o n s o f t h e e x t i n c t i o n a n g l e c u r v e f r o m i t s c o r r e c t c o u r s e as o c c u r n e a r

(29)

Fig. 2.3. Doubled extinction angle 2x vs. nominal shear rate q for the polysty-rene mentioned in the caption to figure 2.2, as measured with the newest rotor unit at 170°C. The measurements were continued to a sixfold rate of shear of

18 s , The extinction angle remained essentially constant (viz. 2x ~ 37.5°) over this extended range, when taken halfway between the fringes.

the " f r i n g e s " have o b v i o u s l y become r a t h e r s m a l l . F o r p r a c t i c a l p u r p o s e s a smoothed c u r v e i s drawn t h r o u g h t h e p o i n t s l o c a t e d h a l f w a y between t h e f r i n g e s . F u r t h e r i t s h o u l d be m e n t i o n e d t h a t the measurements c o u l d be c o n t i n u e d up t o a s h e a r r a t e o f 18 s ' w i t h o u t d i f f i c u l t i e s , whereas w i t h t h e p r e v i o u s c o n s t r u c -t i o n measuremen-ts became i m p o s s i b l e a l r e a d y h a l f way -t h e s i x -t h f r i n g e (~ 1.8 s ')

W i t h t h e new c o n s t r u c t i o n t h e a c c e s s i b l e r a n g e o f s h e a r r a t e s i s l i m i t e d by the o n s e t o f t o o much f r i c t i o n a l h e a t . As a consequence o f t o o much f r i c t i o n a l h e a t , t e m p e r a t u r e g r a d i e n t s a r e b u i l t up i n the gap, by w h i c h the l i g h t beam i s d e f l e c t e d o u t o f the normal l i g h t p a t h , so t h a t no l i g h t r e a c h e s the eye p i e c e any more. As c a n be shown (7, 8 ) , t h i s i s a v e r y s e n s i t i v e t e s t . T h i s means t h a t f r i c t i o n a l h e a t p r o d u c t i o n i s o f no i m p o r t a n c e under normal o p e r a t i o n c o n d i t i o n , i . e . as l o n g as t h e l i g h t beam i s u n d i s t u r b e d .

(30)

1000

10 15 20

q[s-i

Fig. 2.4. Flow birefringence of the investigated polystyrene (Hostyren N 4000 V) at 170°C as a function of the rate of shear q. At the points of measurements the extinction position was found by interpolation on a smoothed curve obtained from figure 2.3.

I n f i g u r e 2.4 t h e p e r t i n e n t p a t h d i f f e r e n c e , r e c a l c u l a t e d as b i r e f r i n g e n c e i s shown as a f u n c t i o n o f t h e s h e a r r a t e . A s l i g h t d i f f i c u l t y w i t h t h i s r e c a l -c u l a t i o n i s t h a t the e f f e -c t i v e p a t h l e n g t h I i s unknown, i n p r i n -c i p l e , s i n -c e t h e e x a c t f l o w p r o f i l e n e a r t h e edges as w e l l as t h e e x a c t i n f l u e n c e o f t h e d i v e r g e n c e o f the l i g h t beam a r e unknown. As i n the p r e v i o u s p a p e r ( 3 ) , an e s t i mate o f the e f f e c t i v e p a t h l e n g t h I was made ('1 = d 2c, where d i s t h e d i s -t a n c e be-tween -t h e windows and c i s -the c l e a r a n c e be-tween r o -t o r and w a l l ) . The i m p l i c a t i o n s o f t h e s e new r e s u l t s w i l l be d i s c u s s e d i n the n e x t s e c t i o n . I n t h e A p p e n d i x the o b t a i n e d r e s u l t s a r e q u o t e d i n T a b l e 2.1.

The m e c h a n i c a l d a t a were o b t a i n e d by means o f a m o d i f i e d W e i s s e n b e r g R h e o g e n i o -meter (9) under n e a r l y s t e a d y s t a t e c o n d i t i o n s . I n f i g u r e 2.5 t h e t i m e - d e p e n d e n t ' v i s c o s i t i e s " n ( t , y ) , which a r e measured a t c o n s t a n t s h e a r r a t e s y o f 0.1 s ,

I s ' , and 10 s ', s u d d e n l y imposed a t t i m e t = 0, a r e p l o t t e d as f u n c t i o n s o f

(31)

3

103 l 1 1 _ i

0 20 40 - 60

Fig. 2.5. Time-dependent "viscosity" r\(t, y) of PS Hostyren N 4000 V versus accumulating shear strain y in "stressing" tests at constant shear rates y and T = 170°C. Mechanical measurements with modified Weisseriberg Rheogoniometer at 24 mm plate diameter and 8° gap angle. Symbols with pip denote repeated measure-ments.

t h e t o t a l a c c u m u l a t i n g s h e a r s t r a i n y = y.t. S h o r t l y a f t e r t h e i m p o s i t i o n o f t h e s h e a r r a t e a pronounced maximum i s o b s e r v e d a t y - 2.5. A f t e r t h e o v e r s h o o t t h e c u r v e l e v e l s o f f . U n f o r t u n a t e l y , a t ] s ' and 10 s ' a c o n t i n u i n g s l i g h t d e -c r e a s e o f t h e v i s -c o s i t y i s f o u n d w i t h i n -c r e a s i n g s h e a r d e f o r m a t i o n . T h i s must be a t t r i b u t e d t o some i n s t a b i l i t y w h i c h may be caused by n e a r l y a d i a b a t i c h e a t i n g o f t h e m e l t o r by a c o n t i n u o u s s l i g h t d e c r e a s e o f t h e e f f e c t i v e r a d i u s o f t h e m e l t i n t h e c o n e a n d p l a t e system. An e x t r a p o l a t i o n p r o c e d u r e was used t o e v a -l u a t e t h e s t e a d y - s t a t e v i s c o s i t y n i n t h i s c a s e . The r a p i d -l y d e c r e a s i n g p a r t o f t h e c u r v e s b e h i n d t h e maximum and t h e s l i g h t l y d e c r e a s i n g p a r t a t h i g h e r d e f o r -m a t i o n s a r e a p p r o x i -m a t e d by s t r a i g h t l i n e s ( b r o k e n l i n e s i n f i g . 2 . 5 ) . The h e i g h t o f t h e i n t e r s e c t i o n p o i n t was assumed t o r e p r e s e n t n • Such a p r o c e d u r e h a s been found t o be r e a s o n a b l e e v e n i n t h o s e c a s e s where t h e m e l t i s p e r c e p t i b l y l e a k i n g

from t h e gap.

(32)

0 2 0 ¿ 0 — - 6 0

Fig, 2.8. Time-dependent primary normal-stress coefficient Q(t, y) versus shear

strain y in stressing tests as described in figure 2.5.

The c o r r e s p o n d i n g time—dependent p r i m a r y n o r m a l - s t r e s s c o e f f i c i e n t s • * 2 0 ( t , y ) = N j ( t ) / Y a r e shown i n f i g u r e 2.6. Remarkably, t h e o v e r s h o o t o f t h e normal t h r u s t ( i n t h e s h e a r s t r a i n r a n g e o f y - 12) i s l e s s pronounced t h a n t h a t of t h e s h e a r s t r e s s ( f i g . 2 . 5 ) . A l s o t h e d e c r e a s e a t h i g h d e f o r m a t i o n s i s much l e s s . P o s s i b l y , t h i s p o i n t s t o a d e c r e a s e o f the e f f e c t i v e r a d i u s R' d u r i n g 3

f l o w . I n f a c t , t h e measured t o r q u e i s p r o p o r t i o n a l t o R' whereas t h e normal 2 t h r u s t i s o n l y p r o p o r t i o n a l t o R' , so t h a t t h e f o r m e r e f f e c t i s i n f l u e n c e d more pronouncedly by a d e c r e a s e o f R'. From t h e n e a r l y c o n s t a n t v a l u e s o f 0 a t h i g h s h e a r s t r a i n s the s t e a d y - s t a t e p r i m a r y n o r m a l - s t r e s s c o e f f i c i e n t s 0g (open c i r -c l e s i n f i g . 2.8) were d e t e r m i n e d . I t s h o u l d be emphasized t h a t t h e d e -c r e a s e o f 0s w i t h g r o w i n g s h e a r r a t e i s v e r y s t r o n g . The s t e a d y - s t a t e v a l u e s ng and 0g a r e quoted i n t a b l e 2.2 ( s e e A p p e n d i x ) f o r t h e s h e a r r a t e s a p p l i e d . 28

(33)

.4 D i s c u s s i o n

F i r s t o f a l l , we c a n deduce from t h e r e s u l t s o f f i g u r e s 2.3 and 2.4 - and f r o m t a b l e 2.1 - t h a t f l o w i n t h e r i n g shaped gap o f o u r a p p a r a t u s i s s t a b l e up to s h e a r r a t e s comparable w i t h t h o s e a t w h i c h m e l t - f r a c t u r e o c c u r s i n c a p i l l a r y f l o w . A s i m i l a r c o n c l u s i o n c a n be drawn f r o m f l o w b i r e f r i n g e n c e r e s u l t s , a s o b -t a i n e d by Wales and Philippe*ff (10) on a h i g h m o l e c u l a r w e i g h -t s i l i c o n e o i l some y e a r s ago. However, as such an e x p e r i e n c e c o u l d n o t be r e p r o d u c e d w i t h o t h e r p o l y m e r s a t t h a t time, i t was n o t c o n s i d e r e d t o be g e n e r a l l y v a l i d f o r polymer m e l t s . A t t h e moment we know t h e e x p l a n a t i o n f o r t h i s e x c e p t i o n a l p o s i t i o n o f s i l i c o n e s : The o p t i c a l a n i s o t r o p y o f t h e c h a i n backbone o f t h i s m a t e r i a l i s v e r y s m a l l compared w i t h t h a t o f most o t h e r p o l y m e r s , i n p a r t i c u l a r t h a t o f p o l y s t y -r e n e . As a c o n s e q u e n c e , t h e t -r o u b l e s e x p e -r i e n c e d when a f -r i n g e p a s s e d by w i t h i n c r e a s i n g s h e a r r a t e , were n o t undergone w i t h t h i s m a t e r i a l . As a s e c o n d p o i n t t h e v a l i d i t y o f t h e l i n e a r s t r e s s o p t i c a l r u l e s h o u l d be d i s c u s s e d . I n f i g u r e 2.7 t h e s t r e s s - o p t i c a l c o e f f i c i e n t , as o b t a i n e d f r o m t h e e x p e r i m e n t a l d a t a by t h e e q u a t i o n A n s i n 2y 2 Y n [2.1] 10-8r -C[m2/N]l

I

-O -P.S. Hoechst T=170°C 10"9 Rotor F 1 0-io 10-1 10° 10 io-2 q[s-í

Fig. 2.7. The stvess-optioal eoeffieient of the investigated polystyrene

(Hostyren N 4000 V) at 170°C, plotted against the rate of shear.

Cytaty

Powiązane dokumenty

Ważniejsza teczka o sprawach ekonomicznych w Besarabii, zawierająca raporty Konsu- latu R.P. w Kiszyniowie, znajduje się pod numerem 71 w zespole 487 AAN. Najstarszy akt pochodzi z

Już wtedy Klose dał się poznać jako realizator fryderycjańskich reform szkolnych, bibliofil i kolekcjoner odnoszących się do historii W rocław ia dru­ ków oraz manuskryptów.. Z

To do so, the im- pact of alkalinity, salinity, interfacial tension (IFT) reduction and in situ soap generation was systematically studied by a comprehensive measurement of

(a) in the pure-water cavity, and (b) in the cavity filled with 15.3 mm hydrogel spheres in BCT packing... the active hot/cold walls. Consequently, there is less interaction between

Recommender system algorithms can be complex. Usually, they are configured specifically for specific data, users, and tasks and are optimized for specific desired measures.

We optimized four state-of-the-art deep learning approaches (Faster R- CNN, R-FCN, SSD and YOLOv3) to serve as baselines for the new person detection benchmark; we found a variant

Prognoza kursu sprzedaży EUR na maj 2013 roku, wyznaczona z wykorzysta- niem modelu adaptacyjnego wygładzania wykładniczego wyniosła 4,20 PLN.. Za- stosowanie modelu liniowego

Ważność oświadczenia o wykonaniu prawa pierwokupu nieruchomości wbrew zakazowi zawartemu w. wytycznych Rady Ministrów Palestra