• Nie Znaleziono Wyników

Sources of anthropogenic contamination of soil in the Upper Silesian Agglomeration (southern Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Sources of anthropogenic contamination of soil in the Upper Silesian Agglomeration (southern Poland)"

Copied!
16
0
0

Pełen tekst

(1)

Sources of anthropogenic con tam i na tion of soil in the Up per Silesian Ag glom er a tion (south ern Po land)

Anna PASIECZNA1, Agnieszka KONON1, * and Weronika NAD£ONEK2

1 Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute, Rakowiecka 4, 00-975 Warszawa, Po land

2 Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute, Królowej Jadwigi 1, 41-200 Sosnowiec, Po land

Pasieczna, A., Konon, A., Nad³onek, W., 2020. Sources of anthropogenic con tam i na tion of soil in the Up per Silesian Ag - glom er a tion (south ern Po land). Geo log i cal Quar terly, 64 (4): 988–1003, doi: 10.7306/gq.1564

This as sess ment of the en vi ron men tal deg ra da tion by toxic chem i cal el e ments within the Up per Silesian In dus trial Ag glom - er a tion of Po land en com passes the im pact of min ing for base met als and coal and non-fer rous met al lurgy, as well as the dis charge of in dus trial and mu nic i pal sew age caus ing strong deg ra da tion of the nat u ral en vi ron ment in the area over the years. The con tent of the fol low ing el e ments: Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, P, Pb, S, Sn, Sr, Ti, V and Zn has been as sessed both in the top soil (0.0–0.3 m) and the sub soil (0.8–1.0 m) of the study area. Con cen tra tions of the el e ments in the <2 mm soil frac tion were ana lysed us ing the ICP-OES method af ter Aqua regia ex trac tion. The soil con - tam i na tion was as sessed based on the en rich ment fac tor (EF) and geo-ac cu mu la tion in dex (Igeo). The tests re vealed el e - vated con tents of sev eral met als, ar senic and sul phur, ex ceed ing the re gional geo chem i cal back ground lev els. Un usu ally high con cen tra tions of the fol low ing el e ments: As (up to 5,300 mg/kg), Cd (up to 388.8 mg/kg), Cr (up to 1,638 mg/kg), Cu (up to 13,230 mg/kg), Hg (up to 23.44 mg/kg), Mo (up to 93.7 mg/kg), Pb (up to 54,940 mg/kg), Sn (up to 701 mg/kg) and Zn (up to 88,120 mg/kg) were re corded. The high est con cen tra tions of these el e ments were found in the prox im ity of smelt ers and res - i den tial ar eas. The spa tial dis tri bu tion of met als is shown as in ter po lated data on maps and com pared with the lo ca tions of min ing and in dus trial sites.

Key words: soil pol lu tion, toxic el e ments, en rich ment fac tor (EF), geo-ac cu mu la tion in dex (Igeo), Up per Silesian Ag glom er a - tion (south ern Po land).

INTRODUCTION

Deg ra da tion of the nat u ral en vi ron ment is at the pres ent time the most acute prob lem of hu man ity. Pol lu tion of soil by met als in in dus trial dis tricts all over the world is one of the most se ri ous is - sues that are di rectly af fect ing hu man health and biota (Basta and Gradwohl, 1998; De Volder et al., 2003; Wong et al., 2006;

Wuana and Okieimen, 2011; Barbieri et al., 2014). Pol lu tion of ur ban res i den tial ar eas ad join ing the sites of cur rent or for mer base metal mines, steel works of iron and non fer rous metal smelt ers has been shown to be highly haz ard ous (Basta et al., 2001; Basta and McGowen, 2004; Nachtegaal et al., 2005;

Kachenko and Singh, 2006; PelfrÃne et al., 2011). Many el e - ments and com pounds haz ard ous to hu man and an i mal health have been found in the soils of these ar eas (Everhart et al., 2006;

Filippelli and Laidlaw, 2010; Filippelli et al., 2012; Nannoni et al., 2011). Wors en ing crop con di tions and the growth of del e te ri ous mi cro or gan isms have also been doc u mented (Fernandez-Turiel et al., 2001; Cui et al., 2004; Friesl-Hanl et al., 2009; Nagajyoti et al., 2010; Klimek et al., 2016).

Min ing of base met als and the met al lurgy in dus try cause dra matic in creases in soil con tam i na tion in many ag glom er a - tions across the world, and among the great est haz ards is the im pact of waste from this ac tiv ity (Fuge et al., 1993; Swennen et al., 1994; Adamo et al., 2002; Cappuyns et al., 2005; Navarro et al., 2006; Tay lor et al., 2010; Acosta et al., 2011). Po ten tially toxic el e ments (PTE) haz ard ous to eco sys tems and hu man health pen e trate soil as a re sult of weath er ing of met al lurgy wastes and due to dis charges of in dus trial sew age to wa ter bod ies and aqui fers (Paulson, 1997; Gäbler and Schnei der, 2000; Alloway, 2012). The harm ful ef fects of ar senic, chro - mium, nickel, mer cury, cad mium, cop per, lead, zinc and of many or ganic com pounds of ores and aux il iary raw ma te ri als of the steel in dus try, such as coke, have been dem on strated (Alloway, 2012; Filippelli et al., 2012). PTE are bound to soil com po nents in var i ous ways, which de ter mines their mo bil ity and avail abil ity (Kabata-Pendias and Mukherije, 2007), and the char ac ter is tic fea ture of anthropogenically con tam i nated soils is the pres ence of 30–60% of heavy met als in readily avail able forms (Karczewska et al., 1998).

The Up per Silesian Ag glom er a tion of South ern Po land serves as an ex am ple of this phe nom e non. Cen tu ries of in dus - trial ac tiv i ties in this area, which have in cluded min ing for coal and base met als as for Pb and Zn, as well as non-fer rous met al - lurgy, have caused strong deg ra da tion of the nat u ral en vi ron - ment and can cause ex tremely neg a tive ef fects on the nat u ral en vi ron ment of this most pop u lated ag glom er a tion in Po land

* Cor re spond ing au thor, e-mail: agnieszka.konon@pgi.gov.pl Re ceived: June 25, 2020; ac cepted: Sep tem ber 10, 2020; first pub lished on line: Ocober 27, 2020

(2)

(~370 res i dents/km2 com pared to the coun try’s av er age of 124 res i dents/km2). Re claimed post-in dus trial soils of con sid er - able thick ness and ex tent (Michalik, 2003; Sordoñ-Kulibaba, 2010) that cover ar ti fi cial slopes, heaps and some al lot ment gar dens, as well as cul ti vated al lu vial plains (Duriasz and Cupia³, 2009) are among the most vul ner a ble.

Min ing for base met als, and the met al lurgy of lead-zinc ores, has played the great est role in the Up per Silesia econ omy since the 1800s (Lis and Pasieczna, 1995; Piwocki and Przenios³o, 2004). In the 1900s the iron tech nol o gies took over in the re gion and be came one of the lead ing in dus tries in Eu - rope (Szulc, 2013). Ex ploi ta tion of base met als and uti li za tion of coal pro duced piles of gangue; slag and other waste stored in the im me di ate vi cin ity of smelt ers and res i den tial ar eas caused pol lu tion of the soils and aqui fers. The ubiq ui tous pres ence of pol lut ants in the sur face en vi ron ment is de tect able even sev eral hun dred years af ter the ces sa tion of the ini tial in dus trial ac tiv ity.

This study iden ti fies and eval u ates the sources of anthro - pogenic con tam i na tion, and in ter prets the dis tri bu tion pat terns of heavy met als, ar senic and sul phur in soils of the cen tral part of the Up per Silesian Ag glom er a tion that in cludes parts of the cit ies of Zabrze, Bytom, Ruda Œl¹ska, Œwiêtoch³owice, Chorzów, Siemianowice Œl¹skie and Katowice.

OCCURRENCES AND COMPOSITION OF ECONOMIC MINERALS

The study area is lo cated in the Pol ish part of the Up per Silesia Re gion (Fig. 1). The re gion is known largely for the rich Up per Car bon if er ous coal de pos its (Bu³a and Kotas, 1994;

Jureczka et al., 2005) ex ca vated in many un der ground mines.

The qual ity pa ram e ters of the coal are highly di verse. Its ash con tent is in the range of 2–44% and the sul phur con tent is from 0.08 to 2.5%. There are traces of As, Be, Cd, Co, Cu, Mn, Pb and Zn in the min eral frac tion of coal, and Hg and Mo in the or - ganic mat ter.

Be sides the coal there are many Zn-Pb ore de pos its ex ca - vated in many lo ca tions across the dis trict. The large Zn-Pb ore de pos its, of the Mis sis sippi Val ley type, ex ploited in the past from Tri as sic ore-bear ing dolomites, be longed among the rich - est ones in the world (Górecka, 1993, 1996; Szuwarzyñski, 1996; Viets et al., 1996; Heijlen et al., 2003; Kucha, 2003). Bog iron has also been lo cally ex ploited by sur face min ing (Molenda, 1972; Grzechnik, 1978). Now a days, it is still pos si ble to find traces of old min ing ex ca va tions and waste heaps.

The min eral com po si tion of the sul phide and ox i dized ores ex ploited is rel a tively sim ple and in cludes sphalerite (ZnS), ga - lena (PbS), marcasite and py rite (FeS2; Górecka, 1996;

Sass-Gustkiewicz, 1997). Trace amounts of lead-ar senic sulphosalts in the form of jordanite and gratonite are also noted (Harañczyk, 1962; Ziêtek-Kruszewska, 1978; Górecka, 1996;

Viets et al., 1996; Caba³a, 1996, 2009). Gangue min er als in - clude car bon ates, sil ica and clay min er als (Caba³a, 2009). Nu - mer ous trace el e ments are as so ci ated with the ore min er als.

Zinc sul phide con tains cad mium, sil ver, co balt, cop per, thal lium and ger ma nium. The ga lena is usu ally ar gen ti fer ous (Harañczyk, 1962; Ekiert, 1971). The ores also con tain ar senic and an ti mony com pounds. The cad mium con cen tra tion in the sphalerite of the Silesian–Kraków de pos its at tains 5,000–10,000 mg/kg (Viets et al., 1996; Caba³a, 2009). Iron sulphides may con tain up to 1,000 mg/kg thal lium and

~500 mg/kg ar senic (Paulo and Strzelska-Smakowska, 2000).

Sil ver is found within the crys tal struc ture of sulphides, but most

of ten it is as so ci ated with sphalerite (up to 3310 ppm) and much less with ga lena (up to 730 ppm; Mikulski et al., 2020). The main com po nents of the ox i dized de pos its (galman) are car - bon ate min er als of zinc (smithsonite, monheimite) and lead (cerussite). They are ac com pa nied by li mo nite ag gre gates and in places by sul phate min er als (jarosite, melanterite), hydrozincite and cal cite (¯abiñski, 1960; Caba³a, 2009). In the north west ern part of the study area, bar ite has been found in frac tures within Car bon if er ous rocks, as well as in sul phide and galman ores (Ga³kiewicz and Œliwiñski, 1985).

HISTORY OF POLLUTION AND DEGRADATION

Con sid er able anthropogenic pol lu tion has been re corded across the en tire study area oc cu pied by min ing. Due to the lo - ca tion of in dus trial fa cil i ties, ex ten sive in fra struc ture and in -

Fig. 1. Lo ca tion of the study area

(3)

tense ur bani sa tion, ag ri cul tural soils oc cur over very small ar - eas, mainly of al lot ment gar dens. In these ar eas, the nat u ral com po nents of soils are mixed with for eign ma te ri als, of ten re - peat edly cul ti vated, wa tered and des ic cated.

The nat u ral en vi ron ment has suf fered con tam i na tion and deg ra da tion pre dom i nantly as a re sult of hard coal min ing (Szczepañska and Twardowska, 1999), and the met al lur gi cal (Kierczak et al., 2010; Tyszka et al., 2014), chem i cal and en - ergy in dus tries (Smieja-Król and Bauerek, 2015). The most in - ten sive de vel op ment of the area dates back to the 1900s, al - though Ag and Pb and Fe ores have been ex tracted at sev eral lo ca tions al ready since the 1600s (Molenda, 1972; Grzechnik, 1978). Min ing of coal be gun in the 1800s and was fol lowed by the es tab lish ment of iron and zinc smelt ers in this area. With the de vel op ment of the rail way net work, the iron and zinc smelt ers ex panded their fa cil i ties, and de vel op ment of power plants, ma - chin ery in dus try, metal prod ucts and other in dus tries took place. Part of the met als in the soils of the north-east ern part of the study area may orig i nate from weath er ing of out crop ping Zn-Pb ore-bear ing dolomites that were ex tracted in the past.

The soil is pol luted mainly by: (1) his tor i cal ex ploi ta tion and smelt ing of Zn-Pb ore, (2) steel in dus try ac tiv ity, (3) im pact of min ing waste (gangue heaps, sludge set tlers, coal slurry, mine wa ter; Bauerek et al., 2009), (4) im pact of steel (slag and oily mill scales), en ergy and chem i cal in dus try waste, (5) par tic u late mat ter emis sions from in dus trial plants (Jablonska et al., 2001;

Dombek et al., 2015) and (6) trans por ta tion. The dis sem i na tion of con tam i nants pen e trat ing the soil is some times fa cil i tated by the use of min ing waste for the rec la ma tion of brown field sites, and by road con struc tion and wa ter en gi neer ing. The re sults of soil mon i tor ing have shown that the per mis si ble lim its of metal con cen tra tions are dra mat i cally ex ceeded (Pasieczna, 2016).

Iron-smelt ing waste heaps are lo cated near the steel works and smelt ers. These are pre dom i nantly of slag with mi nor amounts of mould ing sand, re frac tory de bris, sludge and post-treat ment sed i ments. Slag is used as road ag gre gate. The larg est min ing waste heaps are lo cated near closed and ac tive coal mines.

MATERIALS AND METHODS

SAMPLING AND SAMPLE PREPARATION

Soil in the study area is de vel oped on Car bon if er ous and Tri as sic bed rock as well as on Qua ter nary de pos its. The pre - dom i nant types are podzols and pseudopodzols de vel oped on Car bon if er ous sand stones and on Qua ter nary flu vio gla cial de - pos its. The par ent ma te rial for cambisols and luvisols are gla - cial tills. Rendzinas oc cur in the ar eas of Tri as sic lime stone and do lo mite. Large ar eas are cov ered by anthropogenic soils formed in re claimed post-in dus trial ar eas or nat u rally veg e tated post-min ing ar eas (Michalik, 2003; Sordoñ-Kulibaba, 2010).

Soil sam ples were col lected based on a reg u lar grid of 250

´ 250 m (16 sam ples per km2) in the years 2013–2014. At ev ery site, the sam ples were col lected from two in ter vals: 0.0–0.3 m (top soil) and 0.8–1.0 m (sub soil). The to tal of top soil sam ples was 2,806 and of sub soil sam ples 2,242. The soil sam ples (~500 g) were col lected us ing a 60 mm hand probe. They were air dried and sieved through a 2 mm mesh.

ANALYTICAL METHODS PHYSICOCHEMICAL PROPERTIES OF THE SOILS

The <2 mm frac tion was used for the pH de ter mi na tion of top soil and sub soil, as well as to tal or ganic car bon (TOC) and

the granulometric com po si tion of the top soil. The pH was de ter - mined us ing dry soil and deionised wa ter (PN-ISO 10 390, 1997). The TOC con tent was mea sured us ing high-tem per a - ture com bus tion with in fra red spec tro met ric de tec tion (with the de tec tion limit 0.01–0.02%). The granulometric com po si tion of top soil was car ried out com bin ing sieve anal y sis with la ser dif - frac tion for fine ma te rial. The <2 mm frac tion sam ples were sieved through a set of 1-mm and 0.5 mm sieves. The 2–1 mm, 1.0–0.5 mm and <0.5 mm frac tions ob tained were weighed.

Mea sure ments of grains from the <0.5 mm frac tion were made with a la ser par ti cle size analyser. Their re sults can not there fore be used to clas sify the soils ac cord ing to soil sci ence cri te ria.

How ever, they are very help ful when in ter pret ing the geo chem i - cal re sults.

CHEMICAL ANALYSES

The <2 mm frac tion of the soil sam ples for chem i cal anal y - ses was pul ver ized in ag ate plan e tary ball mills to a grain size of

<0.06 mm. Af ter di ges tion of the sam ples with hot aqua regia the con cen tra tions of Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, S, Sn, Sr, Ti, V and Zn were de ter mined us - ing the ICP-OES method. The con tent of Hg was de ter mined us ing the CV-AAS method with FIAS-100 with a flow in jec tion sys tem.

The qual ity con trol of the anal y ses was checked us ing du pli - cate sam ples (5% of all sam ples), anal y sis of lab o ra tory con trol sam ples con firm ing cor rect in stru ment cal i bra tion (5% of all sam ples), cer ti fied stan dards (2% of all sam ples), and blanks.

The ex panded un cer tainty of re sults (with an as sumed prob a bil - ity level of 95% and cov er age fac tor k = 2) does not ex ceed 25%.

DATA ANALYSIS STATISTICAL ANALYSIS

Cal cu la tion of sta tis ti cal pa ram e ters of the el e ments was per formed for the whole sets of top soil and sub soil, as well as for the sub sets (for ests, farm lands, ur ban parks, res i den tial ar - eas and in dus trial ar eas). The geo chem i cal back ground in the Up per Silesian Ag glom er a tion and the Silesia–Kraków Re gion was cal cu lated as Me dian + 2 Me dian Ab so lute De vi a tion (MAD), which is rel a tively ro bust against the ef fect of data out li - ers that are com mon in geo chem i cal datasets (Reimann et al., 2005; Reimann and de Caritat, 2017). The re gional geo chem i - cal back ground (in the Silesia–Kraków Re gion) was cal cu lated based on a da ta base for the “De tailed geo chem i cal map of Up - per Silesia” (22,663 top soil sam ples and 19,307 sub soil sam - ples). In the case of some el e ments with back ground con tents lower than the de tec tion limit value for a given an a lyt i cal method, half of the de tec tion limit value was ap plied.

Fac tor Anal y sis (FA) and Prin ci pal Com po nent Anal y sis (PCA) were used in seg re gat ing sources (lithogenic, anthropogenic or mixed) con trib ut ing to the pol lu tion ob served (Lis and Pasieczna, 2005; Lu et al., 2012; Guo-Li et al., 2013).

Us ing ma tri ces ob tained af ter Varimax ro ta tion, three fac tors of eigenvalues >1 were dis tin guished within both top soil and sub - soil sam ple sets, im por tant for the in ter pre ta tion of re sults.

GEOCHEMICAL INDICES

In or der to as sess the soil con tam i na tion around the Up per Silesian Ag glom er a tion, the en rich ment fac tor (EF) of top soil and sub soil and the geoaccumulation in dex (Igeo) of top soil were used. These in di ces are widely used for the es ti ma tion of geo -

(4)

chem i cal anom a lies and anthropogenic im pact on soil chem is - try, which re fers to the en rich ment de gree of metal con cen tra - tions in soils in ves ti gated rel a tive to un con tam i nated back - ground lev els (base line; Loska et al., 2004; Barbieri, 2016).

The en rich ment fac tor (EF) was cal cu lated for top soil and sub soil:

EF = (C/X)sam ple/(C/X)me dianfor Up per Silesian Ag glom er a tion [1]

where: C – the chem i cal el e ment in ves ti gated, X – the ref er ence el e - ment that is pre dom i nantly bound in sil i cate min er als, geochemically con ser va tive and re sis tant to chem i cal al ter ation dur ing earth sur - face pro cesses.

The most com mon ref er ence el e ments are Al, Fe, Mn, Sc and Ti (Reimann and de Caritat, 2000; Suther land et al., 2000).

This study uses Ti as the ref er ence el e ment for the cal cu la tion of EF. It is as sumed that an EF value of ~1 in di cates a geogenic or i gin of the el e ment. Val ues within the ranges of 1.5–3, 3–5 and >5 point to, re spec tively, min i mal, mod er ate and sig nif i cant changes in the en vi ron ment, where the chem i cal el e ment or i gin is other than nat u ral (Blaser et al., 2000; Suther land et al., 2000;

Zhang and Liu 2002; Loska et al., 2004).

The geoaccumulation in dex (Igeo) was orig i nally de fined and used for as sess ing metal con cen tra tions in sed i ments (Müller, 1969), but it is also used to de ter mine the con di tion of soils (Loska et al., 2004; Barbieri, 2016). This in dex is cal cu lated ac - cord ing to the for mula:

Igeo = log2(A/1.5 ´ B) [2]

where: A – mea sured con cen tra tion of the el e ment in the sam ple, B – me dian for the Up per Silesian Ag glom er a tion.

The fac tor 1.5 in the for mula is in tro duced to re duce the li - thol ogy-re lated vari abil ity in the geo chem i cal base line. The geoaccumulation in dex en ables the clas si fi ca tion of soils as fol - lows: Igeo £0 un con tam i nated; 0£ Igeo £1 un con tam i nated to mod er ately con tam i nated; 1£ Igeo £2 mod er ately con tam i nated;

2£ Igeo £3 mod er ately to heavily con tam i nated; 3£ Igeo £4 heavily con tam i nated; 4£ Igeo £5 heavily to ex tremely con tam i nated;

Igeo> 5 ex tremely con tam i nated (Loska et al., 2004; Barbieri, 2016).

GEOCHEMICAL MAPPING

The spa tial dis tri bu tions of some el e ments in top soil and sub soil are de picted in maps com piled us ing kriging as a method of in ter po la tion and per cen tiles to de fine the dis tri bu tion classes.

RESULTS AND DISCUSSION

PHYSICOCHEMICAL PROPERTIES OF THE SOIL

The top soil sam ples ana lysed show a wide range of prop er - ties such as pH (from very acidic to al ka line), TOC con tent (0.05–55.90%) and granulometric com po si tion (from sand to clay) in di cat ing their sig nif i cant trans for ma tion (Ta ble 1).

The larg est area of strongly al ka line top soil (pH >8) cov ers the cen tral, most in dus tri al ized part of the Up per Silesian Ag - glom er a tion (Figs. 2–4) and the ar eas lo cated near cur rently ac - tive metal smelt ers. Al ka line pH also pre vails in the sub soil of these ar eas, which shows the in flu ence of anthropogenic al ka - liz ing fac tors to con sid er able depths. One of the causes of the soil alkalisation is the long-term emis sion of par tic u late mat ter from metal plants and com bus tion of coal in which the CaO con - tent can reach 10% (Zapotoczna-Sytek et al., 2013). Other alkalising fac tors in clude agents used for snow re moval from streets (CaCl2, MgCl2), pe ri odic dust trans fer from mine, slag and fur nace waste dumps, and dis per sion of dust from small quar ries of Tri as sic lime stone and do lo mite ex tracted for lo cal needs. A higher pro por tion of al ka line sub soil can be as so ci - ated with a greater amount of alkalising ma te ri als (con struc tion and in dus trial waste) and the prox im ity of lo cal car bon ate rocks in the deep parts of the soil pro files.

The low est TOC con tent (<3%) was found in top soil de vel - oped on Qua ter nary sandy de pos its. In the soils de vel oped on Qua ter nary gla cial tills and Tri as sic car bon ates, the con tent of this con stit u ent com monly var ies be tween 3 and 6%. Val ues of

>6% are typ i cal of soils in ur ban and in dus trial ar eas. Around hard coal mines, the TOC con tent ex ceeds 12%, lo cally even 24%. The mean value of TOC con tent in farm land top soil is 2.8%, in ur ban parks 3.4%, in res i den tial ar eas 4.6%, in for ests 6.4%, and in in dus trial ar eas 7.2%.

The grain size dis tri bu tion of the top soil is clearly re lated to the par ent li thol ogy. Car bon if er ous sand stones and Pleis to - cene flu vio gla cial sands are the main par ent ma te rial of soils con tain ing 40–80% of the sand frac tion, which typ i cally also con tain <20% of silt and <10% of clay. This soil cov ers pre dom i - nantly the south-west ern part of the mapped area. Soils that de - vel oped on Pleis to cene gla cial tills are rich in silt, com monly in ex cess of 40%. This is ac com pa nied by clay, usu ally ac count - ing for 10–15%. Soil that are rich in silt and clay and have higher metal con cen tra tions pre vail in the cen tral and north-east ern parts of the map area.

CONCENTRATIONS OF SELECTED ELEMENTS IN SOIL

Com par i son of the geo chem i cal back ground val ues of the el e ments stud ied in the soils of the Up per Silesian Ag glom er a -

pH TOC Sand

1.0–0.1 mm

Silt 0.1–0.02 mm

Clay

<0.02 mm

%

Range 4.0–10.4 0.05–55.90 0–96.7 0.1–99.9 0.1–99.9

Av er age 7.4 5.41 32.8 49.0 16.4

Me dian 7.6 3.71 30.6 55.4 14.4

T a b l e 1 Sta tis ti cal val ues of physicochemical pa ram e ters of the top soil

(5)

Fig. 2. Cad mium con tent in top soil (A) and sub soil (B)

(6)

Fig. 3. Mo lyb de num con tent in top soil (A) and sub soil (B) Explanations as in Fig ure 2

(7)

Fig. 4. Mer cury con tent in top soil (A) and sub soil (B) Ex pla na tions as in Fig ure 2

(8)

El e ment De tec tion limit

*Up per Silesian Ag glom er a tion **Silesia–Kraków Re gion (Pasieczna, 2016)

Range Mean Me dian ***Geoche-

mical back -

ground SD CV (%) Me dian ***Geo chem i -

cal back ground

mg/kg mg/kg

Ag 1 <1–97 <1 <1 – 2.7 – <1 –

<1–86 <1 <1 – 2.9 – <1 –

As 3 <3–5288 26 10 19 149.3 574 6 12

<3–5300 17 4 10 133.5 785 <3 –

Ba 1 4–1830 221 172 334 168.7 76 59 128

9–1869 150 72 160 194.4 130 28 56

Cd 0.5 <0.5–388.8 6.4 3.2 7 16.1 252 2 5

<0.5–369.8 4.0 0.7 4 17.5 438 <0.5 –

Co 1 <1–218 6 5 8 5.8 97 2 5

1–61 5 4 8 4.3 86 2 5

Cr 1 <1–1317 26 15 27 56.2 216 8 17

1–1638 17 12 26 44.5 262 5 12

Cu 1 4–13230 53 26 53 306.7 577 9 19

1–2772 28 11 25 86.1 308 4 10

Hg 0.05 <0.05–23.44 0.19 0.10 0.18 0.7 368 0.05 0.10

<0.05–23.04 0.14 <0.05 – 0.7 500 <0.05 –

Mn 2 3–42380 868 515 996 1956.1 225 242 646

3–37100 247 519 859 1353.9 548 72 204

Mo 0.5 <0.5–93.7 1.4 0.7 1.6 4.3 307 <0.5 –

<0.5–74.1 0.8 <0.5 – 2.6 325 <0.5 –

Ni 1 <1–433 18 13 25 21.6 120 6 14

1–587 14 9 19 22.1 158 4 10

Pb 2 4–54940 307 137 287 1398.4 456 72 152

<2–17890 172 30 68 811.8 472 11 28

Sn 2 <2–701 5 2 4 16.5 330 <2 –

<2–361 3 <2 – 12.6 420 <2 –

Sr 1 1–806 51 33 71 59.1 116 9 21

<1–921 37 14 33 64.1 173 4 8

Ti 5 7–4086 126 96 173 144.9 115 74 132

19–2480 116 89 145 101.4 87 69 129

V 1 1–225 22 19 30 16.8 76 12 24

1–268 17 15 29 13.8 81 8 19

Zn 1 8–55460 454 479 1104 2678.0 590 164 405

3–88120 720 108 258 3445.2 479 33 78

%

Al 0.01 0.05–4.33 0.67 0.64 0.96 0.3 44 0.49 0.95

0.07–2.50 0.64 0.60 1.02 0.3 47 0.40 0.88

Ca 0.01 <0.01–27.61 0.99 0.53 1.30 1.4 141 0.16 0.44

<0.01–16.60 0.75 0.20 0.50 1.4 187 0.05 0.14

Fe 0.01 0.05–34.30 1.82 1.40 2.44 1.9 104 0.69 1.55

0.02–20.43 1.37 1.06 2.36 1.5 109 0.41 1.06

Mg 0.01 <0.01–6.38 0.26 0.16 0.33 0.4 154 0.07 0.18

<0.01–9.33 0.21 0.12 0.26 0.5 238 0.05 0.13

P 0.002 0.003–0.510 0.050 0.041 0.072 0.04 80 0.028 0.039

<0.002–0.600 0.028 0.019 0.043 0.04 143 0.009 0.021

S 0.003 <0.003–8.790 0.074 0.038 0.073 0.26 351 0.022 0.046

<0.003–5.960 0.053 0.012 0.024 0.21 396 0.006 0.013

*Top soil (n = 2806) **Top soil (n = 22,663)

Sub soil (n = 2242) Sub soil (n = 19,307)

***Geo chem i cal back ground = Me dian + 2 Me dian Ab so lute De vi a tion (MAD)

T a b l e 2 Sta tis ti cal pa ram e ters of the chem i cal el e ments analysed

(9)

tion and the Silesia–Kraków Re gion (Ta ble 2) shows that their con cen tra tion in the study area is clearly re lated to the lo ca tion of anthropogenic sources. The top soil re veals more than/or al - most three fold en rich ment in Ca, Sr and Zn, and over two fold en rich ment in Cu, Ba and Zn, com pared to the geo chem i cal back ground lev els in the Silesia–Kraków Re gion. In the sub soil, there is four fold en rich ment in Mn and Sr and over three fold en - rich ment in Zn and Ca, as well over two fold en rich ment in Ba, Cr, Cu, Fe, P and Pb as com pared to the re gional geo chem i cal back ground lev els.

The high val ues of stan dard de vi a tion (SD) and co ef fi cients of vari abil ity (CV) for most el e ments in di cate high data dis per - sion in re la tion to the av er age val ues (Ta ble 2). The low CV%

val ues (<200) for Al, Ba, Ca, Co Fe, Ni, P, Sr, Ti and V sug gest that their dis tri bu tion in the soils is rel a tively ho mo ge neous, and that they are re lated mainly to lithogenic or i gin. In the case of As, Cd, Cr, Cu, Hg, Mn, Mo, Pb, S, Sn and Zn, the high CV%

val ues in di cate that these el e ments are char ac ter ized by inhomogeneous dis tri bu tion sug gest ing that part of them might have been in tro duced ar ti fi cially into the en vi ron ment. The dis - tri bu tion of many el e ments de rived mainly from the par ent rocks has been dis turbed by anthropogenic fac tors es pe cially in the top soil. Anthropogenic trans for ma tions have led to such sig nif i - cant changes in the chem i cal com po si tion of the soils in re la tion to the par ent rocks that the ba sic geo chem i cal fea tures of the orig i nal rocks in top soil are dif fi cult to dis cern.

The spa tial dis tri bu tion of Cd, Mo and Hg in the soils of the Up per Silesian Ag glom er a tion (Figs. 2–4) is quoted as an ex - am ple of the pres ence of pol lu tion orig i nat ing from var i ous in - dus trial ac tiv i ties – zinc smelt ers, iron-steel fac to ries and cok ing plants.

The con cen tra tion lev els of Cd in top soil and sub soil are sim i lar: <0.5–388.8 mg/kg and <0.5–369.8 mg/kg, re spec tively (Fig. 2) The con tam i na tion of soils by this po ten tially toxic el e - ment is a se ri ous prob lem in some ar eas of the Up per Silesian Ag glom er a tion (Ch³opecka et al., 1996; Caba³a and Teper, 2007) and else where across the world (Alary et al., 1983; Moir and Thorn ton, 1989).

The high est con tam i na tion by Cd (Fig. 2) and As, Pb, S and Zn has been noted in the cen tral part of the study area around for mer zinc smelt ers and their waste dump sites. The Cd con - cen tra tion anom a lies (>18.1 mg/kg) oc cupy smaller ar eas within top soil com pared to sub soil (>12.3 mg/kg), in di cat ing easy mi gra tion of this el e ment from the sur face to deeper soil ho ri zons, al though com par i son of the mean val ues of As, Pb, S and Zn in di cates that top soil is gen er ally more en riched in these el e ments than is the sub soil (Ta ble 2). A greater ex tent of these anom a lies in sub soil is as so ci ated with both the tex ture of highly per me able soils (pre dom i nance of sandy soils) and the oc cur - rence of un sta ble metal sulphates, in di cat ing that the wastes re - main in tensely geochemically ac tive even many years af ter pro - duc tion ceased (Merrington and Alloway, 1994; Caba³a and Teper, 2007; Kabata-Pendias and Mukherjee, 2007; Ro¿ek et al., 2015).

In the ar eas of Cd anom a lies within both top soil and sub soil, there are also strong Pb and Zn anom a lies of sim i lar spa tial ex - tent with con cen tra tions of >770 mg/kg Pb, >3,190 mg/kg Zn, and >540 mg/kg and >2,260 mg/kg, re spec tively. Ex treme val - ues of these el e ments oc cur only on a lo cal scale (5% of soils ana lysed). The ma jor sources of As, Cd, Pb, Zn and S are the re main ing Zn-Pb ore piles and tail ings heaps of some for mer small zinc smelt ers, al though soils heavily pol luted with these el e ments are also found near steel works.

The Mo anom a lies that oc cur in the study area around iron smelt ers and steel works are very clearly marked in both top soil (>3.8 mg/kg) and sub soil (>2.3 mg/kg), al though the val ues are

not high in most of the soil sam ples (Fig. 3). The Mo con cen tra - tion is re lated to the ac tiv ity of iron and steel in dus try plants, most of which are no lon ger ac tive. Cur rently, there is only one blast fur nace in the ArcelorMittal steel works, pro duc ing pig iron from im ported iron ores and steel scrap (Burchart-Korol, 2010).

Due to the en vi ron men tal re quire ments of cur rent pro duc tion, it af fects the en vi ron ment to a lesser ex tent than the for mer more harm ful tech nol o gies.

In 75% of the top soil and sub soil sam ples, the Mo con cen - tra tions are <1.2 mg/kg and <0.7 mg/kg, re spec tively. The top - soil con cen tra tion of Mo is <0.5–93.7 mg/kg, and its sub soil con cen tra tion is <0.5–74.1 mg/kg (Ta ble 2). The en vi ron men tal im pact of tech nol o gies used in the pro duc tion of steel is as - sessed pri mar ily with re spect to the emis sion of CO2 from met - al lur gi cal fur naces and or ganic com pounds from cok ing plants.

The el e ments oc cur ring as ad mix tures in ores (As, Zn, Pb) and emit ted mainly dur ing ore sintering and smelt ing in elec tric fur - naces, as well as steel re fin ing met als (Mo, Cr, Ni, Sn, V, Zn) added in plants that man u fac ture spe cial steels and coated prod ucts, e.g. gal va nised zinc- and tin-plated sheets, etc., are also harm ful (Burchart-Korol, 2010; Krzak and Paulo, 2018).

In the ar eas of Mo anom a lies, the soil shows en rich ments in Cr, Ni and Sn, most likely be cause these el e ments are fre - quently found in Mo-con tain ing steels. Be cause of its re sis tance to high tem per a ture, Mo is added to high-speed steel cut ting tools, cor ro sion-re sis tant steels, and spe cial al loys (Reimann and de Caritat, 1998; Smedley and Kinniburgh, 2017). The most con tam i nated soil oc curs within a belt ex tend ing from Œwiêtoch³owice to Katowice. This is the Rawa River val ley that, for de cades, re ceived in dus trial sew age from the Batory, Florian and Silesia steel works, as well as leachates from their dumpsites and set tling tanks. In a set tling tank of one of no lon - ger ac tive steel mill, 200 mg/kg Mo, 681 mg/kg Ni, 132 mg/kg Sn, and 2,420 mg/kg Cu have been de tected (Pasieczna et al., 2017).

An ad di tional source of soil con tam i na tion by Mo in the area stud ied is burn ing of hard coal and stor ing of fly ash af ter com - bus tion. Most of the hard coals have sig nif i cant Mo con tents, which in turn af fects the con tent in the power plant ash, where there can be up to sev eral tens mg/kg of Mo (Pandey et al., 2009; Bhattacharyya et al., 2009; Deonarine et al., 2015), while its mo bile frac tions, which can be leached from ash un der par - tic u lar en vi ron men tal con di tions, ac count for 24%

(Kalembkiewicz and Soèo, 2009). It is prob a ble that the high mo bil ity of Mo ex plains a much greater range of its anom a lies in sub soil than in top soil (Fig. 3). Even re claimed land fills of such ashes pose a threat to the en vi ron ment due to the po ten tial mi - gra tion of trace el e ments, in clud ing mo lyb de num.

Soil con tam i nated by Hg was found pri mar ily in the vi cin ity of ac tive and old cok ing plants and iron works, as well as around mine shafts and waste heaps of hard coal mines (Fig. 4). In the nat u ral en vi ron ment, Hg is con sid ered one of the most toxic met als, even at very low con cen tra tions, due to its chem i cal and bi o log i cal ac tiv ity and the di ver sity of its forms of oc cur rence (Kabata-Pendias and Mukherjee, 2007; Rice et al., 2014). In the study area, Hg con cen tra tions are in the range of

<0.05–23.44 mg/kg in top soil, and <0.05–23.04 mg/kg in sub - soil (Ta ble 2). The anom a lies usu ally have a small spa tial range in top soil, and larger in sub soil. The soil con tam i na tion by Hg in the study area is high as com pared to the con cen tra tion of

<0.05–7.55 mg/kg found across Po land (Lis and Pasieczna, 1995), Eu rope with 0.002–1.35 mg/kg (De Vos and Tarvainen, 2006) and Eu ro pean ag ri cul tural and graz ing land soils with

<0.030–3.12 mg/kg (Ottesen at al., 2013).

The main source of Hg is cer tainly its dis per sion when burn - ing large amounts of hard coal. Hg is quite com mon in hard

(10)

coal, both in or ganic and min eral mat ter (Diehl et al., 2004;

Yudovich and Ketris, 2005; Kolker et al., 2006; H³awiczka, 2008; Gade, 2015).

Part of the Hg is prob a bly re lated to its pres ence in iron sulphides, which are an ad mix ture in Zn-Pb ores (Bojakowska and Soko³owska, 2001). Hg can also be de rived from com - pounds in wood pre ser va tives (pro tect ing rail way sleep ers). In gar den plots, Hg anom a lies can be the re sult of ex ces sive use of in sec ti cides. In other cases, mer cury co mes from the scrap of flu o res cent lamps, Zn-HgO bat ter ies, fuses and de vices for - merly used in mea sur ing and con trol in stru ments across many in dus tries, and in the electrotechnical equip ment of so - dium-chlo ride plants (Szpadt, 1994; Paulo and Strzelska-Sma - kowska, 2000).

ASSESSMENT OF METAL POLLUTION OF SOILS AFFECTED BY DIFFERENT INDUSTRY TYPES AND DIFFERENT LAND USES

Group ing of chem i cal el e ments us ing Prin ci pal Com po nent Anal y sis (PCA) (Ta ble 3) en ables de ter mi na tion of their main sources.

Fac tor F1 (load ing on Al, Ba, P, Sr) ex plained 31.2% of the to tal vari ance in top soil and 33.49% of the to tal vari ance in sub - soil (load ing on Al, Ba, Co, Fe, P, Sr, Ti, V) can be re lated to a mixed lithological-anthropogenic or i gin of the el e ments. They are sourced pri mar ily from soil par ent ma te ri als. Both Qua ter - nary gla cial tills and Car bon if er ous mudstones-claystones have nat u rally el e vated con cen tra tions of Al, Co,V, Ba, Fe, P and Ti.

The sources of Sr are both the soils’ par ent ma te ri als and the dis charges of mine wa ter to wa ter courses, which in crease the con cen tra tion of this el e ment in river val ley soils. Sig nif i cant anthropogenic sources of Ba are also par ti cles from coal com - bus tion (Ró¿kowska and Ptak, 1995) and leachates from waste heaps af ter in dus trial coal en rich ment with the use of bar ite.

Fac tor F2 (load ing on Ag, As, Cd, Pb, S and Zn) ex plained 13.0% of the to tal vari ance in top soil and 14.32% in sub soil, sug gest ing that these el e ments were af fected by anthropogenic (in dus trial) ac tiv i ties in ad di tion to the nat u ral con tent from weath ered ore de pos its. They are as so ci ated mainly with min - ing and pro cess ing of Zn-Pb ores and with zinc met al lurgy. The pe riod of in creased ex ploi ta tion of Zn-Pb ores and con struc tion of mills for its pro cess ing be gan in the 19th cen tury and lasted un til the end-20th cen tury. Ini tially, the main raw ma te ri als for the pro duc tion of this metal were Ag and Pb smelt ing slags, then calaman de pos its, and fi nally Zn-Pb sul phide ores (Majorczyk, 1986). At dif fer ent pe ri ods, zinc was pro duced in the fol low ing smelt ers: Marien Wunsch, Bobrek, Guidotto, Godulla, Konstancja, Constantin, Gabor, Klara and Dawid.

More over, zinc-pro cess ing plants op er ated in the pre mises of the for mer Zygmunt iron smelter (at the be gin ning of its ac tiv ity), and as one of the de part ments of the iron smelter in Chorzów (Degenhardt, 1870; Szczech, 2003).

Fac tor F3 (load ing on Cr, Mo and Ni) ex plained 7.38% of the to tal vari ance in top soil and 8.49% in sub soil. It can be con sid - ered mainly anthropogenic, group ing el e ments re lated to the iron and steel in dus try. The soil has been con tam i nated by both El e ment

Top soil Sub soil

F1 Al, Ba, P, Sr

F2

Ag, As, Cd, Pb, S, Zn

F3 Cr, Mo, Ni

F1 Al, Ba, Co, Fe, P, Sr,

Ti, V

F2

Ag, As, Cd, Pb, S, Zn

F3 Cr, Mo, Ni

Ag 0.104 0.624 0.049 0.051 0.607 0.069

Al 0.664 0.056 0.160 0.880 0.078 0.050

As –0.003 0.812 0.009 0.088 0.705 0.038

Ba 0.817 0.049 0.065 0.602 –0.036 0.061

Ca 0.238 0.232 0.118 0.351 0.283 0.093

Cd 0.101 0.798 0.113 0.037 0.843 0.029

Co 0.428 0.156 0.419 0.752 0.154 0.280

Cr –0.016 –0.067 0.769 0.153 –0.042 0.924

Cu 0.017 0.051 0.027 0.213 0.294 0.202

Fe 0.314 0.288 0.499 0.607 0.395 0.386

Hg 0.098 0.030 0.032 0.107 0.068 0.029

Mg 0.052 0.325 0.230 0.239 0.361 0.084

Mn 0.176 0.094 0.205 0.347 0.301 0.184

Mo 0.029 0.039 0.872 0.129 0.107 0.923

Ni 0.277 0.214 0.829 0.386 0.091 0.836

P 0.709 0.058 0.058 0.526 –0.036 –0.031

Pb 0.054 0.774 0.137 0.059 0.868 0.058

S –0.098 0.675 –0.049 0.117 0.686 0.030

Sn 0.107 0.093 0.110 0.111 0.185 0.084

Sr 0.723 0.107 0.060 0.614 0.009 0.081

Ti 0.474 0.003 0.199 0.627 0.013 0.099

V 0.390 0.015 0.485 0.773 0.064 0.331

Zn 0.132 0.865 0.069 0.045 0.898 0.020

Vari ance % 31.20 13.00 7.38 33.49 14.32 8.49

Cu mu la tive % 50.58 56.30

T a b l e 3 Prin ci pal Com po nent Anal y sis (Varimax-nor mal ized fac tor model); marked loads >0.5

(11)

chem i cal el e ments from raw ma te ri als and pro duc tion wastes (met al lur gi cal slag, mould ing ma te ri als, re frac tory rub ble, and neu tra li sa tion and other types of sludge). The el e ments grouped by fac tor F3 have been dis persed from iron smelt ers for many years. In the area of the larg est, Pokój steel works, iron smelt ing was car ried out as early as 1642. Later, the Antonienhütte and Ber tha iron works came into op er a tion (Sulimierski et al., 1880–1914). The Pokój steel works started pro duc tion in 1840. Be fore the Sec ond World War, it was the larg est smelter in Po land and the only one that pro duced ferro - manga nese (Owczarek et al., 2012), which prob a bly con trib - uted to the con cen tra tion of Fe (>2%), Cr (> 40 mg/kg) and Mn (>1,600 mg/kg) in the sur round ing soils (Pasieczna, 2016). The Zabrze, Zygmunt, Florian, Batory and Silesia steel works op er - ated from the mid-19th cen tury to the be gin ning of the 21st cen - tury (Niemierowski, 1983; Walerjañski, 2006).

Sin gle-el e ment box plots of se lected el e ments (Cd, Cu, Hg, Pb) were used to dem on strate the con cen tra tion and de gree of pol lu tion in soils of for ests, farm lands, ur ban parks, res i den tial

ar eas and in dus trial ar eas (Fig. 5). The land use in cludes pre - dom i nantly scat tered res i den tial ar eas, in clud ing com mer cial and ser vice build ings – 31%, and in dus trial ar eas (mines, steel - works, met al lur gi cal plants, land fills and mine heaps) – 11%.

Ur ban parks oc cupy 6%, for ests 16%, and farm lands 7% of the area. Wa ter res er voirs, roads, rail way lines, trans port bases and waste land rep re sent the re main ing part of the area.

Com par i son of box plot data of Cd, Cu, Hg and Pb with re - gional geo chem i cal val ues of these el e ments in the Sile - sian–Kraków Re gion in di cates that their great est con cen tra - tions are found in top soil of res i den tial and in dus trial ar eas (Fig. 5). The me dian val ues of in di vid ual el e ments for top soil are sig nif i cantly higher than in sub soil in all land-use cat e go ries.

This in di cates that the en rich ments re sult from non-geo log i cal sources.

When con sid er ing the po si tion of boxes for Cd, Cu, Hg and Pb in dif fer ent land uses, a fur ther no ta ble fea ture is the least con tam i na tion of sub soil in for ests and farm lands. But in top soil, the sit u a tion is more com pli cated, e.g. 25–75 per cen tile Cd con - Fig. 5. Boxplots of the per cen tile classes of Cd, Cu, Hg and Pb in top soil and sub soil

(12)

cen tra tions in ur ban parks and farm lands are higher than in in - dus trial and res i den tial ar eas. Max i mum ex treme val ues and 25–75 per cen tile of Hg, Cu and Pb in top soils shows the high est con cen tra tions in in dus trial ar eas.

GEOCHEMICAL INDICES

The PCA re sults are sup ported by the EF val ues of the el e - ments ana lysed (Fig. 6). Based on clas si fi ca tion of EF val ues pro posed by var i ous au thors (Blaser et al., 2000; Suther land et al., 2000; Zhang and Liu, 2002; Loska et al., 2004) it can be con cluded that a sig nif i cant part of met als, ar senic and sul phur in the top soil and sub soil of the Up per Silesian Ag glom er a tion co mes from anthropogenic sources. As sum ing that val ues of EF <1.5 show both mi nor changes in soil chem is try and the lithogenic or i gin of the el e ments in top soil, we can in fer that Ag, Al, and V def i nitely come from nat u ral sources. These el e ments are ac com pa nied in the sub soil by Ba, Co, Cr, Fe, Mg, Mn, Ni, P and Sr orig i nat ing pri mar ily from par ent ma te ri als. The high est EF val ues in the top soil and sub soil were found for S, Zn and Pb, an this can be re lated to both the dis per sion of these el e - ments from in dus trial sources (es pe cially in top soil, which also ac cu mu lates As, Ca, Mo and Sr) and the pres ence of these metal sulphides in the par ent ma te ri als of the soils (Tri as sic Zn-Pb ore-bear ing dolomites). Mod er ate or min i mal en rich - ments in Ca, Cu, Mo, Sr, Cd and Hg have been seen both in the top soil and sub soil (Fig. 6). The en rich ment of the sub soil in Cd, Hg, Pb and S vs top soil is prob a bly re lated to the pres ence of these el e ments in the form of finely dis persed Zn and Pb sulphides in the par ent ma te rial.

The most use ful as sess ment of top soil con tam i na tion is the geoaccumulation in dex (Igeo). The dis tri bu tion of the 25–75 per - cen tile val ues and the Igeo me dian of in di vid ual el e ments show the pres ence of the great est ac cu mu la tion of Zn, Pb and Ca in top soil as well as of Sr, Fe, Mn, Cu, Cd and S (Fig. 7). The max i - mum val ues of Igeo in di ces for most of the el e ments ana lysed in - di cate strong and ex treme con tam i na tions that oc cur only at a few small lo ca tions. The low est Igeo val ues are found for Ag, Al, Ti, and V.

CONCLUSIONS

1. Pol lu tion his tory by base met als is doc u mented in part in the study area. Some pre vi ously ac tive but now for got ten lo ca - tions of small zinc smelt ers and waste land fills have been in - ferred from these geo chem i cal stud ies. The anal y ses per - formed show that chem i cal trans for ma tion of the soil in many re gions is very ad vanced and anthropogenic changes have been re corded in all soil types that de vel oped from dif fer ent lithologies of the Car bon if er ous, Tri as sic and Qua ter nary suc - ces sions.

2. Wide ranges of prop er ties such as pH (from very acidic to al ka line), TOC con tent (0.05–55.90%) and grain size dis tri bu - tion (from sandy to clayey soils) have been found in the top soils stud ied.

3. The top soil of the study area shows three-fold en rich ment in Ca and Sr, and/or more than two fold en rich ment in Cu, Ba, and Zn com pared to the geo chem i cal back ground in the Silesia–Kraków Re gion. The sub soil shows four-fold en rich - Fig. 6. Mean val ues of en rich ment fac tors

(13)

ment in Mn and Sr and over three-fold en rich ment in Zn and Ca in com par i son to the re gional geo chem i cal back ground.

4. High val ues of stan dard de vi a tion (SD) of most el e ments in di cate great data dis per sion in re la tion to the av er age val ues.

Low val ues of vari a tion co ef fi cients (CV) for Al, Ba, Ca, Co Fe, Mg, Ni, P, Sr, Ti and V in di cate that their dis tri bu tion in the soil is rel a tively ho mo ge neous and there fore they are as so ci ated mainly with lithogenic or i gin. High CV val ues were found for As, Cd, Cr, Cu, Hg, Mn, Mo, Pb, S, Sn and Zn, in di cat ing het er o ge - neous dis tri bu tion of these el e ments and their sec ond ary in tro - duc tion into the en vi ron ment.

5. Based on multi-el e men tal prin ci pal com po nent anal y ses the ma jor fac tors al low ing link ing of the chem i cal el e ment dis tri - bu tions to the main in dus tries in the Up per Silesian Ag glom er a - tion are as fol lows: Fac tor F1 (Al-Ba-P-Sr) in top soil and (Al-Ba-Co-Fe-P-Sr-Ti-V) in sub soil can be linked to their lith o - logic-anthropogenic or i gin and sug gest that the main sources are the soil par ent ma te ri als; Fac tor F2 (Ag-As-Cd-Pb-S-Zn) is as so ci ated pre dom i nantly with min ing and pro cess ing of Zn-Pb ores and zinc smelt ing and Fac tor F3 (Cr-Mo-Ni) group el e - ments are re lated to the iron and steel in dus try.

6. Com par i son of ar eas with the stron gest anom a lies of se - lected el e ments (Cd, Mo and Hg) in soil with the lo ca tion of in - dus trial plants shows that their most pro lific sources are mine

waste ac cu mu la tions and tail ings of Zn-Pb ores and waste piles of his tor i cal zinc smelt ers (caus ing ac cu mu la tion of Zn, Cd, As, Pb and S), mod ern iron and steel met al lurgy (af fect ing dis per - sion of Cr, Mn, Mo, Cu and Sn) and coal com bus tion caus ing emis sion of Hg, S and metal-con tain ing par ti cles.

7. The val ues of the in di ca tors used to as sess anthropo - genic con tam i na tion of the soil (en rich ment in di ca tors EF and geo-ac cu mu la tion in di ca tors Igeo) in di cated that the high con - cen tra tions of most met als, ar senic and sul phur in the top soil are caused by past min ing of Zn-Pb ores and zinc and iron met - al lurgy. The EF and Igeo val ues are characterized by good mu - tual con ver gence.

Ac knowl edge ments. Firstly, we would like to thank T. Jerzykiewicz for fruit ful dis cus sions on dif fer ent as pects of en vi ron ment pol lu tion, sug ges tions and ed i to rial ad vice.

Thanks are also due to W. Markowski for his help in de vel op ing the maps. We would like to thank A. Ladenberger and the sec - ond, anon y mous re viewer for com ments which sig nif i cantly im - proved this pa per. This study was sup ported by Pro ject No.

22.1407.1302.00.1 from the Na tional Fund for En vi ron men tal Pro tec tion and Wa ter Man age ment. The fi nal ed i to rial work was sup ported by PGI-NRI stat u tory funds (Pro ject No.

62.9012.1911.00.0).

Fig. 7. Sta tis ti cal pa ram e ters of geoaccumulation in dexes of el e ments in top soil (0.0–0.3 m)

(14)

REFERENCES

Acosta, J.A., Mar ti nez-Mar ti nez, S., Zornoza, R., Carmona, D.M., Kabas, S., 2011. Multivariate sta tis ti cal and GIS-based ap - proach to eval u ate heavy met als be hav iour in mine sites for fu - ture rec la ma tion. Jour nal of Geo chem i cal Ex plo ra tion, 109:

8–17.

Adamo, P., Arienzo, M., Bi anco, M.R., Terribile, F., Violante, P., 2002. Heavy metal con tam i na tion of the soils used for stock ing raw ma te ri als in the for mer ILVA iron-steel in dus trial plant of Bagnoli (south ern It aly). Sci ence of the To tal En vi ron ment, 295:

7–34.

Alary, J., Bour bon, P., Esclassan, J., Lepert, J.C., Vandaele, J., Klein, F., 1983. Zinc, lead, mo lyb de num con tam i na tion in the vi - cin ity of an elec tric steel works and en vi ron men tal re sponse to pol lu tion abate ment by bag fil ter. Wa ter, Air and Soil Pol lu tion, 20: 137–145.

Alloway, B.J., 2012. Sources of heavy met als and metalloids in soils. En vi ron men tal Pol lu tion, 22: 11–50.

Barbieri, M., Sappa, G., Vitale, S., Parisse, B., Battistel, M., 2014.

Soil con trol of trace met als con cen tra tions in land fill: a case study of the larg est land fill in Eu rope, Malagrotta, Rome. Jour nal of Geo chem i cal Ex plo ra tion, 143: 146–154.

Barbieri, M., 2016. The im por tance of En rich ment Fac tor (EF) and Geoaccumulation In dex (Igeo) to eval u ate the soil con tam i na - tion. Jour nal of Ge ol ogy & Geo phys ics, 5: 1–4.

Basta, N.T., Gradwohl, R., 1998. Remediation of heavy metal-con - tam i nated soil us ing rock phos phate (Oklahoma). Better Crops, 82: 29–31.

Basta, N.T., Gradwohl, R., Snethen, K.L., Schroder, J.L., 2001.

Chem i cal im mo bi li za tion of lead, zinc, and cad mium in smelter-con tam i nated soils us ing biosolids and rock phos phate.

Jour nal of En vi ron men tal Qual ity, 30: 1222–1230.

Basta, N.T., McGowen, S.L., 2004. Eval u a tion of chem i cal im mo bi - li za tion treat ments for re duc ing heavy metal trans port in a smelter-con tam i nated soil. En vi ron men tal Pol lu tion, 127:

73–82.

Bauerek, A., Ca bala, J., Smieja-Król, B., 2009. Min er al og i cal al ter - ations of Zn-Pb flo ta tion wastes of the Mis sis sippi Val ley Type ores (South ern Po land) and their im pact on con tam i na tion of rain wa ter run off. Pol ish Jour nal of En vi ron men tal Stud ies, 18:

781–788.

Bhattacharyya, S., Donahoe, R.J., Patel, D., 2009. Ex per i men tal study of chem i cal treat ment of coal fly ash to re duce the mo bil ity of pri or ity trace el e ments. Fuel, 88: 1173–1184.

Blaser, P., Zim mer mann, S., Luster, J., Shotyk, W., 2000. Crit i cal ex am i na tion of trace el e ment en rich ments and de ple tions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss for est soils. The Sci - ence of the To tal En vi ron ment, 249: 257–280.

Bojakowska, I., Soko³owska, G., 2001. Mer cury in min eral raw ma - te ri als ex ploited in Po land as po ten tial sources of en vi ron men tal pol lu tion (in Pol ish with Eng lish sum mary). Biuletyn Pañstwowego Instytutu Geologicznego, 394: 5–54.

Bu³a Z., Kotas A., 1994. Geo log i cal At las of the Up per Silesian Coal Ba sin, Part III Struc tural Geo log i cal Maps. Pol ish Geo log i cal In - sti tute.

Burchart-Korol, D., 2010. En vi ron ment eval u a tion of iron and steel pro duc tion tech nol o gies based on LCA (in Pol ish with Eng lish sum mary). Prace Naukowe G³ównego Instytutu Górnictwa, Górnictwo i Œrodowisko, 3: 5–13.

Caba³a, J., 1996. Con cen tra tions of trace el e ments in Zn-Pb ores and pos si bil i ties of their trans fer to waste de pos its (in Pol ish with Eng lish sum mary). Prace Naukowe G³ównego Instytutu Górnictwa, seria Konferencje, 13: 17–32.

Caba³a, J., 2009. Heavy met als in ground soil en vi ron ment of the Olkusz area of Zn-Pb ore ex ploi ta tion (in Pol ish with Eng lish sum mary). Wydawnictwo Uniwersytetu Œl¹skiego, Katowice.

Caba³a, J., Teper, L., 2007. Met al lif er ous con stit u ents of rhizosphere soils con tam i nated by Zn-Pb min ing in south ern Po - land. Wa ter, Air and Soil Pol lu tion, 178: 351–362.

Cappuyns, V., Swennen, R., Vandamme, A., Niclaes M., 2005.

En vi ron men tal im pact of the for mer Pb–Zn min ing and smelt ing in East Bel gium. Jour nal of Geo chem i cal Ex plo ra tion, 88: 6–9.

Ch³opecka, A., Ba con, J.R., Wil son, J., Kay, J., 1996. Forms of cad mium , lead and zinc in con tam i nated soils from south west Po land. Jour nal of En vi ron men tal Qual ity, 25: 69.

Cui, Y.J., Zhu, Y.G., Zhai, R.H., Chen, D.Y., Huang, Y.Z., Qiu, Y., Liang, J.Z., 2004. Trans fer of met als from soil to veg e ta bles in an area near a smelter in Nanning, China. En vi ron ment In ter na - tional, 30: 785–791.

Degenhardt, O., 1870. Der Oberschlesian-Polnische-Bergdistrict mit Hinweglassung des Diluviums. Karte von Oberschlesien 1:100000. Verlag der Landkarten Handlung von J.H. Neumann, Berlin.

Deonarine, A., Kolker, A., Doughten, M.W., 2015. Trace el e ments in coal ash. U.S. Geo log i cal Sur vey Fact Sheet 2015–3037:

1–6.

De Volder, P.S., Brown, S.L., Hesterberg, D., Pandya, K., 2003.

Metal bioavailability and speciation in a wet land tail ings re pos i - tory amended with biosolids com post, wood ash, and sul fate.

Jour nal of En vi ron men tal Qual ity, 32: 851–864.

De Vos, W., Tarvainen, T. (eds.), 2006. Geo chem i cal At las of Eu - rope. Part 2, Geo log i cal Sur vey of Fin land, Espoo.

Diehl, S.F., Goldhaber, M.B., Hatch, J.R., 2004. Modes of oc cur - rence of mer cury and other trace el e ments in coals from the war - rior field, Black War rior Ba sin, North west ern Al a bama. In ter na - tional Jour nal of Coal Ge ol ogy, 59: 193–208.

Dombek, V., Gembalová, L., Matýsek, D., Drobek, L., Bzowski, Z., Ženatý, L., Seibert, R., 2015. Im pact of se lected post-min - ing and met al lur gi cal dumps on air pol lu tion on sites in the Czech Re pub lic and Po land. GeoScience En gi neer ing, 61:

24–36.

Duriasz, I., Cupia³, A., 2009. Prognoza oddzia³ywania na œrodowisko dla zmiany studium uwarunkowañ i kierunków zagospodarowania przestrzennego miasta Œwiêtoch³owice (in Pol ish), https://www.swietochlowice.pl/bip/gpn/zal7.pdf (date of last ac cess: 27.04.2020).

Ekiert, F., 1971. Ge ol ogy of the zinc and lead ore de pos its in the north-east ern mar gin of the Up per Silesian Coal Ba sin (in Pol ish with Eng lish sum mary). Biuletyn Instytutu Geologicznego, 241:

47–56.

Everhart, J.L., McNear, D.Jr., Peltier, E, van der Lelie, D., Chaney, R.L, Sparks, D.L., 2006. As sess ing nickel bioavailability in smelter-con tam i nated soils. Sci ence of the To - tal En vi ron ment, 367: 732–744.

Filippelli, G.M, Laidlaw, M.A.S., 2010. The el e phant in the play - ground: Con front ing lead-con tam i nated soils as an im por tant source of lead bur dens to ur ban pop u la tions. Per spec tives in Bi - ol ogy and Med i cine, 53: 31–45.

Filippelli, G.M, Mor ri son, D., Cicchella, D., 2012. Ur ban geo chem - is try and hu man health. El e ments, 8: 439–444.

Fernandez-Turiel, J.L., Aceñolaza, P., Me dina, M.E., Llorens, J.F., Sardi, F., 2001. As sess ment of a smelter im pact area us ing sur face soils and plants. En vi ron men tal Geo chem is try and Health, 23: 65–78.

Friesl-Hanl, W., Platzer, K., Horak, O., Gerzabek, M.H., 2009. Im - mo bi lis ing of Cd, Pb, and Zn con tam i nated ar a ble soils close to a for mer Pb/Zn smelter: a field study in Aus tria over 5 years. En - vi ron men tal Geo chem is try and Health, 31: 581–594.

Fuge, R., Pearce, F.M., Pearce, N.J.G., Perkins, W.T., 1993. Geo - chem is try of Cd in the sec ond ary en vi ron ment near aban doned met al lif er ous mines, Wales. Ap plied Geo chem is try, Sup ple - ment, 2: 29–35.

Gade, D., 2015. Mer cury Emis sions from Coal-Fired Power plants. En - vi ron men tal Man age ment & Risk As sess ment (PH 560). Pa per 4, https://pdfs.semanticscholar.org/9294/67546a642c57592f97ceb9 49dc93b9160cf7.pdf

Ga³kiewicz, T., Œliwiñski, S., 1985. Geo log i cal char ac ter is tics of the Silesian-Cracovian lead-zinc ore de pos its (in Pol ish with

(15)

Eng lish sum mary). Annales Societatis Geologorum Poloniae, 53: 63–90.

Gäbler, H.E., Schnei der, J., 2000. As sess ment of heavy-metal con tam i na tion of floodplain soils due to min ing and min eral pro - cess ing in the Harz Moun tains, Ger many. En vi ron men tal Ge ol - ogy, 39: 774–782.

Górecka, E., 1993. Geo log i cal set ting of the Silesian-Cra cow Zn-Pb de pos its. Geo log i cal Quar terly, 37 (2): 127–146.

Górecka, E., 1996. Min eral se quence de vel op ment in the Zn–Pb de pos its of the Silesian-Cra cow area, Po land. Prace Pañstwowego Instytutu Geologicznego, 154: 26–36.

Grzechnik, Z., 1978. His tory of pre vi ous ex plo ra tion and ex ploi ta - tion (in Pol ish with Eng lish sum mary). Prace Instytutu Geologicznego, 83: 23–41.

Guo-Li, Y., Tian-He, S., Peng, H., Jun, L., 2013. En vi ron men tal geo chem i cal map ping and multivariate geostatistical anal y sis of heavy met als in top soils of a closed steel smelter: Cap i tal Iron &

Steel Fac tory, Beijing, China. Jour nal of Geo chem i cal Ex plo ra - tion, 130: 15–21.

Harañczyk, C., 1962. Ore min er als of Silesia-Cra cow zinc and lead de pos its (in Pol ish with Eng lish sum mary). Prace Geologiczne, 8: 1–74.

Heijlen, W., Muchez, P., Banks, D.A., Schnei der, J., Kucha, H., Keppens, E., 2003. Car bon ate-hosted Zn-Pb de pos its in Up per Silesia, Po land: or i gin and evo lu tion of min er al iz ing flu ids and con strains on ge netic mod els. Eco nomic Ge ol ogy, 98: 911–932.

H³awiczka, S., 2008. Mer cury in the at mo spheric en vi ron ment (in Pol ish with Eng lish sum mary). Wyd. Instytutu Podstaw In¿ynierii Œrodowiska PAN, Zabrze.

Jablonska, M., Frans, J., Rietmeijer, J., Janeczek, J., 2001.

Fine-grained bar ite in coal fly ash from the Up per Silesian In dus - trial Re gion. En vi ron men tal Ge ol ogy, 40: 941–948.

Jureczka, J., Dopita, M., Ga³ka, M., Krieger, W., Kwarciñski, J., Martinec P., 2005. Geo log i cal At las of Coal De pos its of the Pol - ish and Czech Parts of the Up per Silesian Coal Ba sin. Pol ish Geo log i cal In sti tute, War saw.

Kabata-Pendias, A., Mukherjee, A., 2007. Trace El e ments from Soil to Hu man. Springer-Verlag, Berlin Hei del berg.

Kachenko, A.G., Singh, B., 2006. Heavy metal con tam i na tion in veg e ta bles grown in ur ban and metal smelter con tam i nated sites in Aus tra lia. Wa ter, Air and Soil Pol lu tion, 169: 101–123.

Kalembkiewicz, J., Soèo, E., 2009. In dus trial fly ash as a po ten tial source of mo lyb de num emis sion (in Pol ish with Eng lish sum - mary). Ochrona Œrodowiska i Zasobów Naturalnych, 40:

601–607.

Karczewska, A., Szerszen, L., Ka ba la, C., 1998. Forms of se - lected heavy met als and their trans for ma tion in soils pol luted by the emis sions from cop per smelt ers. Ad vanced GeoEcology, 31: 705–712.

Kierczak, J., Bril, H., Neel, C., Puziewicz, J., 2010.

Pyrometallurgical slags in Up per and Lower Silesia (Po land):

from en vi ron men tal riska to use of slag-based prod ucts – a re - view. Ar chives of En vi ron men tal Pro tec tion, 36: 11–126.

Klimek, B., Sitarz, A., Choczyñski, M., Nikliñska, M., 2016. The ef fects of heavy met als and to tal pe tro leum hy dro car bons on soil bac te rial ac tiv ity and func tional di ver sity in the Up per Silesia In dus trial Re gion (Po land). Wa ter, Air and Soil Pol lu tion, 227:

265.

Kokowska-Paw³owska, M., 2016. Re la tion ship of the trace el e - ments con tent with min er als and or ganic mat ter of the lithotypes from the coal seam 308 (Orzesze beds) USCB (in Pol ish with Eng lish sum mary). Systemy Wspomagania w In¿ynierii Produkcji, 5: 109–120.

Kolker, A., Se nior, C.L., Quick, J.C., 2006. Mer cury in coal and the im pact of coal on mer cury emis sions from com bus tion sys tems.

Ap plied Geo chem is try, 21: 1821–1836.

Krzak, M., Paulo, A., 2018. Mod ern trade stan dards for steel raw ma te ri als. Gospodarka Surowcami Mineralnymi – Min eral Re - sources Man age ment, 34: 25–50.

Kucha, H., 2003. Mis sis sippi Val ley Type Zn -Pb de pos its of Up per Silesia, Po land. In: Eu rope’s Ma jor Base Metal De pos its (eds.

J.G. Kelly, C.J. An drew, J.H. Ash ton, M.B. Bolland, G. Earls, L.F.

Fuscardi and G. Stan ley): 253–271. Irish As so ci a tion for Eco - nomic Ge ol ogy.

Lis, J., Pasieczna, A., 1995. Geo chem i cal At las of Up per Silesia (1:200 000). Pol ish Geo log i cal In sti tute.

Lis, J., Pasieczna, A., 2005. Fac tor anal y sis for geo chem i cal char - ac ter is tic of soils in the min ing and smelt ing area (S³awków-Boles³aw re gion). Prace Specjalne Polskiego Towarzystwa Mineralogicznego, 25: 146–149.

Loska, K., Wiechu³a, D., Korus, I., 2004. Metal con tam i na tion of farm ing soils af fected by in dus try. En vi ron men tal In ter na tional, 30: 159–165.

Lu, A., Wang, J., Qin, X., Wang, K., Han, P., Zhang, S., 2012.

Multivariate and geostatistical anal y ses of the spa tial dis tri bu - tion and or i gin of heavy met als in the ag ri cul tural soils in Shunyi, Beijing, China. Sci ence of the To tal En vi ron ment, 425: 66–74.

Majorczyk, R., 1986. 125 lat Zak³adów Górniczo-Hutniczych Orze³ Bia³y (in Pol ish). Rudy Metale, 31: 462–469.

Merrington, G., Alloway, B.J., 1994. The trans fer and fate of Cd, Cu and Zn from two his toric met al lif er ous mine sites in the UK.

Ap plied Geo chem is try, 9: 677–687.

Michalik, J. (ed.), 2003. Pro gram Ochrony Œrodowiska wraz z Planem Gospodarki Odpadami dla Miasta Chorzów na lata 2004–2007 wraz z prognoz¹ do roku 2011 (in Pol ish), http://www.bip.chorzow.eu/add_www/file/prog_os.pdf

Mikulski, S.Z., Oszczepalski, S., Sad³owska, K., Chmielewski, A., Ma³ek, R., 2020. Trace el e ment dis tri bu tions in the Zn-Pb (Mis sis sippi Val ley-Type) and Cu-Ag (Kupferschiefer) sed i - ment-hosted de pos its in Po land. Min er als, 75;

https://doi.org/10.3390/min10010075

Moir, A.M., Thorn ton, I., 1989. Lead and cad mium in ur ban al lot - ment gar den soils and veg e ta bles in the United King dom. En vi - ron men tal Geo chem is try and Health, 11: 113–119.

Molenda, D., 1972. Kopalnie rud o³owiu na terenie z³ó¿

œl¹sko-krakowskich od XVI do XVIII wieku (in Pol ish). Z dziejów postêpu technicznego eksploatacji kruszców: 25–31. Wyd.

Ossolineum, Wroc³aw.

Müller, G., 1969. In dex of geoaccumulation in sed i ments of the Rhine River. Geojournal, 2: 108–118.

Nachtegaal, M., Marcus, M.A., Sonke, J.E., Vangronsveld, J., Livi, K.J.T., van der Lelie, D., Sparks, D.L., 2005. Ef fects of in situ remediation on the speciation and bioavailability of zinc in a smelter con tam i nated soil. Geochimica et Cosmochimica Acta, 69: 4649–4664.

Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M., 2010. Heavy met als, oc cur rence and tox ic ity for plants: a re view. En vi ron men tal Chem is try Let ters, 8: 199–216.

Nannoni, F., Protano, G., Riccobono, F., 2011. Up take and bioaccumulation of heavy el e ments by two earth worm spe cies from a smelter con tam i nated area in north ern Kosovo. Soil Bi ol - ogy and Bio chem is try, 43: 2359–2367.

Navarro, M.C., Pérez-Sirvent, C., Martínez-Sánchez, M.J., Vidal, J., Marimón, J., 2006. Lead, cad mium and ar senic bioavailability in the aban doned mine site of Cabezo Rajao (Murcia, SE Spain). Chemosphere, 63: 484–489.

Niemierowski, W., 1983. Dwa wieki huty „Zabrze” 1782–1982 (in Pol ish). Zabrze.

Ottesen, R.T., Birke, M., Finne, T.E., Gosar, M., Locutura, J., Reimann, C., Tarvainen, T., the GEMAS Pro ject Team., 2013.

Mer cury in Eu ro pean ag ri cul tural and graz ing land soils. Ap plied Geo chem is try, 33: 1–12.

Owczarek, J., Syska, A., Caban, E., Szala, M., Szymañska, J., WoŸniakowska, A., 2012. Wstêpne sprawozdanie z inwentaryzacji obiektów przemys³owych w województwie œl¹skim (in Pol ish). Wyd. Œl¹skiego Centrum Dziedzictwa Kulturowego, Katowice.

Pasieczna A. (ed.), 2016. De tailed Geo chem i cal Map of Up per Silesia. Pol ish Geo log i cal In sti tute, http://www.mapgeo - chem.pgi.gov. pl/for ward.html

Pasieczna, A., Bojakowska, I., Nad³onek, W., 2017. The im pact of anthropogenic fac tors on the oc cur rence of mo lyb de num in stream and river sed i ments of cen tral Up per Silesia (South ern

Cytaty

Powiązane dokumenty

Z analizy wypowiedzi pracowników socjalnych wynika, że rodziny korzysta- jące ze wsparcia pomocy społecznej to na ogół rodziny z usztywnionymi rolami, w których płeć uznaje się

Konsekwencją tych zjawisk jest zniszczenie wszystkich urzą- dzeń znajdujących się w pobliżu oraz uszkodzenie różnych narzą- dów człowieka, a w konsekwencji często jego

Then taking into account the inverse operator theorem in C(∆) and Lemma 1.2, the problem of existence of continuous automorphisms in the commutant of l 1 and l 2 , is reduced to

In this talk I will discuss new function-theoretic estimates for the essential norm of arbitrary weighted composition operators uC ϕ : f 7→ u(f ◦ ϕ) acting on the space BMOA and

Aopposite tendency was reported in case of the power lost on the rolling resistance – at both levels of a vertical load, higher values of this power concerned a wheel exploited

In this case, regressive linear function could be used as linear estimation of coefficient DEA method values without the need of extensive process of DEA method verification each time

Często dla jednego gestu, dla jed- nego słowa podejmiemy się trudu powołania ich do życia na tę jedną chwilę (Schulz 1998: 37).. Strategia autokreacji Schulza wskazuje jednak na

Powierzchnia scaleń w Polsce w latach 2000–2014 Źródło: opracowanie własne na podstawie materiałów udostępnionych przez Departament Gospodarki Ziemią Ministerstwa Rolnictwa