• Nie Znaleziono Wyników

Other proofs of the Katai and Montgomery{Vaughan result have re ently been obtainedbyGoldston[3℄ and Languas o{Perelli[9℄

N/A
N/A
Protected

Academic year: 2021

Share "Other proofs of the Katai and Montgomery{Vaughan result have re ently been obtainedbyGoldston[3℄ and Languas o{Perelli[9℄"

Copied!
11
0
0

Pełen tekst

(1)

A onditional result on Goldba h numbers

in short intervals

by

A. Languas o(Genova)

1. Introdu tion. De neaGoldba h number (G-number)tobeaneven

number representable as a sum of two primes, and write L = logX. The

rst result on erningthe existen e of G-numbers in short intervals is due

to Linnik [11℄ who proved, assuming the Riemann Hypothesis (RH), that

for any ">0 and X suÆ ientlylarge, the interval [X;X +L 3+"

℄ ontains

aG-number. Linnik'sresultwasimprovedbyKatai[8℄and, independently,

byMontgomery{Vaughan [14℄ who showed that the interval [X;X +CL 2

ontains a G-number forsome onstant C and X suÆ iently large. Other

proofs of the Katai and Montgomery{Vaughan result have re ently been

obtainedbyGoldston[3℄ and Languas o{Perelli[9℄.

The mainaim ofthispaperistostudythedistributionofG-numbersin

short intervals under the assumption of RH and Montgomery's pair orre-

lation onje ture, aform of whi hassertsthat

(1) F(X;T)

1

2

TlogT forX!1

uniformlyforX

"

T X,forevery xed ">0,where

F(X;T)=4 X

0<

1

;

2

T X

i( 1 2)

4+(

1

2 )

2

and

j

,j =1;2, run overthe imaginarypart of the nontrivialzeros of the

Riemannzeta-fun tion (s).

It is easy to seethat

(2) F(X;T)Tlog

2

T

uniformlyinX. Moreover,Montgomery[13℄(seealsoGoldston{Montgomery

1991 Mathemati sSubje tClassi ation: Primary11P32.

(2)

[4℄) proved, againunder RH,that

(3) F(X;T)

1

2

TlogX forX!1

holdsuniformlyforX T.

In thefollowingwe willdenotebyMCthehypothesis (1)and byWMC

aweakerformofitwhererepla es. AsaslightgeneralizationofWMC,

we state thefollowing

Hypothesis. Let 2[1;2). For any ">0 the estimate

(4) F(X;T)T(logT)



holds uniformlyfor X

"

T X.

We willdenote thehypothesis above byWMC(). Observe that WMC

=WMC(1) and that, for2,(4) isimpliedby(2). Ourresult is

Theorem. Let  2 [1;2) be xed and 1=(2X)   1=2. Assume RH

and WMC() uniformly in the range 2XT X. Then



\



X

Xn2X

((n) 1)e(n )

2

d XL



+min



L 2

(log2) 2

;XL

+2



;

where is the von Mangoldt fun tionand e(x)=exp(2ix).

WeremarkthatthistheoremisananalogueofTheorem3ofLanguas o{

Perelli [10℄. As an appli ation we an obtain the following result on the

distributionof Goldba h numbersinshortintervals.

Corollary. Let2[1;2) and H=CL



, where C >0 is a suÆ iently

large onstant. Assume RH and WMC() uniformly in the range X=H 

T X. Then,for all suÆ iently large X,the interval [X;X+H℄ ontains

a G-number.

We remark that our Corollary an be obtained using the method of

Goldston[3℄.

We also re all that, under RH and MC, Goldston [3℄ proved that the

interval[X;X+CL℄ ontainsaG-numberandthatFriedlander{Goldston[2℄

provedthattheinterval



X;X+ C

(loglogX) 2

logloglogX



ontainsaG-numberassuming

RH together with a strong form of MC and a suitable form of theElliott{

Halberstam onje ture.

Our se ond aim is to prove the following result, whi h may have some

independentinterest,on themean-squareofthesingularseriesoftheGold-

(3)

Proposition.Let

S(n)= 8

>

>

<

>

>

: 2

Y

p>2



1

1

(p 1) 2



Y

pjn

p>2



p 1

p 2



if n is even,

0 if n is odd.

Then

X

nX S(n)

2

=2X Y

p>2



1+ 1

(p 1) 3



1

4 L

2

+O(L 5=3

):

The Propositionis a sharper version of Lemma 2 of Goldston [3℄, and

its proof isbased onthe argument inFriedlander{Goldston[2℄.

A knowledgments. We wishto thank Prof. A.Perellifor his en our-

agement. We also thank therefereeforhis positive suggestions andfor the

arefulrevision ofthispaper.

2. Some lemmas. Now we state two lemmas whoseproofsfollow the

linesof Languas o{Perelli [10℄ (seealso Heath-Brown [6℄).

Lemma 1. Writing

(X;T;v)= X

0< T X

i

e iv

we have

F(X;T)= 1

\

1

j(X;T;v)j 2

e 2jvj

dv:

Lemma 2. Let = (X) and = (X) be real numbers satisfying

 <  C for some absolute onstants ;C > 0. Let T > U  0.

Then

X

\

X

X

0< T y

i

2

dyXF(X;T)

and

X

U< T X

i

T 1=2

( max

UuT

F(X;u)) 1=2

:

The next lemma isan analogueof Lemma 2inwhi hweinsert a fa tor

1=%inthe summationon the .

Lemma 3. Let % =1=2+i , = (X) and = (X) bereal numbers

satisfying  <  C for some absolute onstants ;C > 0. Let

(4)

X

\

X

X

U< T y

i

%

2

dyX



F(X;T)

T 2

+

F(X;U)

U 2

+ 1

U 1=2

T

\

U

F(X;u) du

u 5=2



and

X

U< T X

i

%





1

T max

UuT

F(X;u)



1=2

+ T

\

U ( max

Uvu

F(X;v)) 1=2

du

u 3=2

:

Proof. By partialsummation

X

U< T X

i

%

 1

T

X

U< T X

i

+

T

\

U

X

U< u X

i

du

u 2

:

These ondestimateabove followsimmediatelyfromthese ondestimatein

Lemma2. Forthe rstestimatewehave,bytheCau hy{S hwarzinequality

and Lemma2,

X

\

X

X

U< T y

i

%

2

dy

 1

T 2

X

\

X

X

U< T y

i

2

dy+ X

\

X

T

\

U

X

U< u y

i

du

u 2

2

dy

 X

T 2

(F(X;T)+F(X;U))+ X

\

X



T

\

U

X

U< u y

i

2

du

u 5=2



T

\

U du

u 3=2



dy

 X

T 2

(F(X;T)+F(X;U))+ 1

U 1=2

T

\

U

X(F(X;u)+F(X;U)) du

u 5=2

X



F(X;T)

T 2

+

F(X;U)

U 2

+ 1

U 1=2

T

\

U

F(X;u) du

u 5=2



:

3. Proof of the Theorem and of the Corollary. Writing Selberg's

integral

J(X;2X;H)= 2X

\

X

j (t+H) (t) Hj 2

dt;

where (t) = P

nt

(n), we get, by Gallagher's lemma (see, e.g., Mont-

(5)

(5)



\



X

Xn2X

((n) 1)e(n )

2

d

 2



X

\

X 1=(2)



t+ 1

2



(X)



t X+ 1

2



2

dt

+J



X;2X 1

2

; 1

2



+ 2X

\

2X 1=(2)

j (2X) (t) (2X t)j 2

dt



+X

2

+

= 2

(I

1 +I

2 +I

3

)+O(X

2

+);

say. Weremarkthatthe termO(X

2

+) in(5)arises fromtheO(1) term

intheestimate P

a<n<b

1=b a+O(1)appliedinthe above integrals.

Using theexpli itformula (seeDavenport [1℄,Ch.17)

(x)=x

X

j jK x

%

% +O



x(logxK) 2

K



+O



logxmin



1;

x

Kkxk



;

wherekxk=min

n2N

jx nj,withK =XL 2

 1=2

,we get, by(5),

(6)



\



X

Xn2X

((n) 1)e(n )

2

d  2

(J

1 +J

2 +J

3

)+O(X);

where

J

1

= X

\

X 1=(2)

X

0< K

(y+1=(2))

%

X

%

%

2

dy;

J

2

=

2X 1=(2)

\

X

X

0< K

(y+1=(2))

%

y

%

%

2

dy;

J

3

= 2X

\

2X 1=(2)

X

0< K (2X)

%

y

%

%

2

dy:

We rst onsider the terms in J

1 +J

2 +J

3

where 0 <  2X, and

showthat they make a ontribution

(7) 

1

X

2 X

\

X

y i

2

dy:

(6)

UsingtheCau hy{S hwarz inequalitywith0<V <W we get

X

0< U W

%

V

%

%

2

=

W

\

V X

0< U u

% 1

du

2

jW Vj W

\

V

X

0< U u

i

2

du

u :

Applying this estimate in J

1

;J

2 and J

3

we obtain (7). By Lemma 2 and

WMC() the right hand sideof (7) is  F(X;2X)=

2

 XL



=, whi h,

by(6), makesthe ontributionXL



.

Now we onsider the ontribution from the terms 2X <  K in

J

1 +J

2 +J

3

. We see immediatelythatthis ontributionis

X X

\

X

X

2X< K y

i

%

2

dy+ X





X

2X< K X

i

%

2

+

X

2X< K (2X)

i

%

2



:

By Lemma3and WMC() the rsttermisXL



=. The otherterms

on the right ome from J

1 and J

3

. By Lemma 3 and WMC() they on-

tribute  XL 2+

=; alternatively they are bounded by I

1 +I

3

, whi h by

theBrun{Tit hmarshtheoremisL 2

=(

3

(log2) 2

). Theseestimates, om-

binedwith (6), givethe se onderrorterm intheTheorem.

NowweprovetheCorollary. LetH=[CL



℄,whereC 1isa onstant.

De ne

L( )=

H

X

m=1

e( m )

2

= H

X

m= H

a(m)e( m );

wherea(m)=H jmj,

R (n)= X

h+k=n

(h)(k); S( )= X

Xn2X

(n)e(n );

T( )= X

Xn2X

e(n ); E( )=S( ) 2

T( ) 2

:

We have

X+H

X

n=X H

a(n X)R (n)= 1=2

\

1=2 S( )

2

L( )e( X )d (8)

= 1=2

\

1=2 T( )

2

L( )e( X )d

+ 1=2

\

E( )L( )e( X )d =A+B;

(7)

say. It iseasy to prove that

(9) A=

X+H

X

n=X H

a(n X) X

h+k=n 1=H

2

X+O(H 3

):

Now we pro eedto estimate B. Using

T( )min(X;1=j j) forj j 1=2

we get

(10)



\

 jT( )j

2

d



X 2

 if0<<1=X;

=X+O(1=) if1=X1=2:

Hen e,usingtheidentity

f 2

g 2

=2f(f g) (f g) 2

;

theCau hy{S hwarz inequalityand(10), we have

(11)



\



jE( )jd 



X



\



jS( ) T( )j 2

d



1=2

+



\



jS( ) T( )j 2

d

provided1=X  1=2.

Sin e

(12) L( )min(H

2

;1=j j 2

) forj j1=2;

we have

(13) B H

2 1=H

\

1=H

jE( )jd + 1=2

\

1=H jE( )j

d

2

:

Fromthe Theoremand (11)weget

(14) H

2 1=H

\

1=H

jE( )jd H 3=2

XL

=2

:

By partialintegration,theTheorem and(11) we obtain

(15)

1=2

\

1=H jE( )j

d

2

H 3=2

XL

=2

:

Hen e from (13){(15) we have

(16) B H

3=2

XL

=2

;

(8)

(17)

X+H

X

n=X H

a(n X)R (n)H 2

X

providedthat C is suÆ ientlylarge. Thusthe Corollaryfollows.

4. Proof of the Proposition. Let

S= Y

p>2



1

1

(p 1) 2



:

We have

X

nX S(n)

2

=4S 2

X

2nX Y

pjn

p>2



p 1

p 2



2

(18)

=4S 2

X

2nX Y

pjn

p>2



1+

2p 3

(p 2) 2



=4S 2

X

nX=2 X

jjn f(j);

where

f(j)= 8

<

:

 2

(j) Y

pjj

2p 3

(p 2) 2

ifj isodd,

0 ifj iseven.

Then, hangingthe orderof summation in(18), we obtain

X

nX S(n)

2

=4S 2

X

jX=2 f(j)



X

2j



(19)

=2S 2

X 1

X

j=1 f(j)

j

2S 2

X X

j>X=2 f(j)

j

2S 2

X

jX=2

f(j) 4S 2

X

jX=2 f(j)P



X

2j



;

whereP(u)=u [u℄ 1=2.

By straightforward omputations weget

2S 2

1

X

j=1 f(j)

j

=2 Y

p>2



1

1

(p 1) 2



2



1+

2p 3

p(p 2) 2



(20)

=2 Y



1+ 1

(p 1) 3



:

(9)

Next, we willshow

(21)

X

jU

f(j)= 1

8S 2

log 2

U+BlogU +O(1);

whereB isa onstant. By partialsummation thisimplies

(22)

X

j>U f(j)

j

= 1

4S 2

 logU

U +O



1

U



:

The Propositionfollowsfrom (19){(22) togetherwith theestimate

(23)

X

jX

f(j)P(X=j)L 5=3

:

Now we prove (21). Writing

H(s)= 1

X

m=1

f(m)m s

= Y

p>2



1+

2p 3

p s

(p 2) 2



we see that H(s) is an analyti fun tion for Res =  > 0 and, using the

Perronformulawith errorterm(see,e.g., Lemma3.12 ofTit hmarsh[15℄),

we obtain

X

jU

f(j)= 1

2i +iZ

\

iZ H(s)

U s

s

ds+O



U

1

X

m=1

jf(m)j

m

(1+Zjlog (U=m)j)



;

where">0 isa xed onstant, ="+1=logU <1=4 andZ willbe hosen

lateron.

The errorterm anbe estimatedusing

f(m) d(m)

m X

hjm d

2

(h)

h

(see (30)of Goldston[3℄), whered(m) is thedivisor fun tion,and the las-

si alestimates P

vm d(v)

q

m(logm) 2

q

1

(see,e.g., Theorem5.3of Hua

[7℄) and d(m)  m

"

(see, e.g., Theorem 315 of Hardy{Wright [5℄). So we

have

(24)

X

jU

f(j)= 1

2i +iZ

\

iZ H(s)

U s

s

ds+O



U

Z



:

Now we observe that

H(s)=



1 1

2 s+1



2

(s+1) 2

g(s);

where

g(s)= Y



1 1

p s+1



2



1+

2p 3

p s

(p 2) 2



;

(10)

whi h onverges absolutelyand isanalyti for > 1=2. So H(s)U s

=s has

a triplepoleat s=0 withresidue

1

8S 2

log 2

U +BlogU+O(1):

Consider a re tangular ontour with right side s = +it, t 2 [ Z ;Z℄,

and left side 1=4+it, t 2 [ Z ;Z℄. The ontribution of the top, bottom

and left sides of the ontour an be estimated using (+it)  t 1=6

for

1=2 (see,e.g., Tit hmarsh [15℄,p.115). Hen ewehave

X

jU

f(j)= 1

8S 2

log 2

U +BlogU+O(Z 2=3

U

+Z 1=3

U 1=4

)+O(1):

ChoosingZ =U 3

,we obtain(21).

Now we prove (23). Forj odd we have

f(j)= 2

(j) Y

pjj



2

p 2



p 3=2

p 2



=

 2

(j)d(j)

'

2 (j)

Y

pjj



1+ 1

2(p 2)



=

 2

(j)d(j)

'

2 (j)

X

Æjj

 2

(Æ)

2

!(Æ)

'

2 (Æ)

;

where!(n) is thenumberof distin tprimefa tors of n, '

2

(p)=p 2 and

'

2

isextendedto square-free numbersbymultipli ativity.

Hen e, inter hangingtheorder ofsummation,weobtain

X

jX f(j)P



X

j



= X

ÆX

(Æ;2)=1

 2

(Æ)d(Æ)

2

!(Æ)

('

2 (Æ))

2



X

kX=Æ

(k;2)=1

 2

(k)d(k)

'

2 (k)

P



X=Æ

k



:

Usingtheargumentin(2.9){(2.13)ofFriedlander{Goldston[2℄,we ndthat

theinnersum an be estimated by

X

nX d(n)

n

P(X=n);

whi h is  L 5=3

by the remark at the end of Se tion 2 of [2℄. Using this

estimate we obtain

X

jX f(j)P



X

j



L 5=3

X

ÆX

(Æ;2)=1

 2

(Æ)d(Æ)

('

2 (Æ))

2

and hen e(23) follows fromthe onvergen e ofthe series

1

X

Æ=1

 2

(Æ)d(Æ)

('

2 (Æ))

2 :

(11)

Referen es

[1℄ H.Davenport,Multipli ative NumberTheory,2nded.,Springer,1980.

[2℄ J.B.Friedlanderand D.A. Goldston,Some singularseriesaverages andthe

distribution of Goldba h numbers in short intervals, Illinois J. Math. 39 (1995),

158{180.

[3℄ D.A.Goldston,Linnik'stheorem onGoldba h numbersinshort intervals,Glas-

gowMath.J.32(1990),285{297.

[4℄ D.A.GoldstonandH.L.Montgomery,Pair orrelationofzerosandprimesin

short intervals,in: Analyti NumberTheoryand Dioph.Probl., A.C.Adolphson

etal.(eds.),Birkhauser,1987,183{203.

[5℄ G.H.HardyandE.M.Wright,AnIntrodu tiontotheTheory ofNumbers,5th

ed.,ClarendonPress, 1990.

[6℄ D. R. Heath-Brown,Gaps between primes, andthe pair orrelationof zeros of

thezeta-fun tion,A taArith.41(1982),85{99.

[7℄ L.K.Hua,Introdu tion toNumberTheory,Springer,1982.

[8℄ I. Katai, A remark on a paper of Yu. V.Linnik, Magyar Tud. Akad. Mat.Fiz.

Oszt.Kozl.17(1967),99{100(inHungarian).

[9℄ A.Languas oandA.Perelli,OnLinnik'stheoremonGoldba hnumbersinshort

intervalsandrelated problems,Ann.Inst.Fourier(Grenoble)44(1994),307{322.

[10℄ |,|,Apair orrelationhypothesisandtheex eptionalsetinGoldba h'sproblem,

Mathematika43(1996),349{361.

[11℄ Yu.V.Linnik,Some onditionaltheorems on erningthebinaryGoldba hproblem,

Izv.Akad.NaukSSSRSer.Mat.16(1952),503{520(inRussian).

[12℄ H. L. Montgomery, Topi s in Multipli ative Number Theory, Le ture Notes in

Math.227, Springer,1971.

[13℄ |,Thepair orrelationofzerosofthezetafun tion,in:Pro .Sympos.PureMath.

24,Amer.Math.So .,1973,181{193.

[14℄ H.L.MontgomeryandR.C.Vaughan,Theex eptionalsetinGoldba h'sprob-

lem,A taArith.27(1975),353{370.

[15℄ E.C.Tit hmarsh,TheTheoryofRiemannZeta-Fun tion,2nded.,OxfordUniv.

Press,1986.

DipartimentodiMatemati a

UniversitadiGenova

ViaDode aneso35

16146Genova,Italy

E-mail:languas odima.unige.it

Re eivedon30.4.1996

andinrevisedformon8.9.1997 (2973)

Cytaty

Powiązane dokumenty

The results established in the preceding section enable us to derive expansion formulas for Appell functions in terms of products of Gauss hypergeometric functions of the

The system is first converted to an abstract evolution equation in an appropriate Hilbert space, and the spectral and semigroup properties of the system operator are

Section 4 presents the general formula (26) (known formula) giving the decomposition of the Stirling numbers of second kind in the linear combination of binomial coefficients by using

Due to the “density results” of the authors mentioned above, the constant 1/4 has been sharpened and the latest 1/6 follows from Sel- berg’s method on using Huxley’s result... In

Further, in the main case (large p 1 and small q), we are able to get an improvement by removing the restriction that the map constructed is 1-1 (Lemmas 10 and 11).. As for the

Soon after that, employing Vinogradov’s idea, Hua Loo Keng [3] proved that if B is a sufficiently large positive constant and N is sufficiently large, then the even numbers in (2, N

VFKRROJLUOVS.. 7KXV WKH ODVW VFHQH RI WKH VWRU\ PDNHV WKH UHDGHUV DZDUH WKDW WKH

Hosokawa proved that if f 1 is open, then f is open and he gave an example showing that the converse of this implication is not true.. In the same paper he asked the following