• Nie Znaleziono Wyników

1. Introduction. In 1937, Cram´er [1] conjectured that every interval (n, n + f (n) log

N/A
N/A
Protected

Academic year: 2021

Share "1. Introduction. In 1937, Cram´er [1] conjectured that every interval (n, n + f (n) log"

Copied!
64
0
0

Pełen tekst

(1)

LXXVI.1 (1996)

Almost all short intervals containing prime numbers

by

Chaohua Jia (Beijing)

1. Introduction. In 1937, Cram´er [1] conjectured that every interval (n, n + f (n) log

2

n) contains a prime for some f (n) → 1 as n → ∞.

In 1943, assuming the Riemann Hypothesis, Selberg [19] showed that, for almost all n, the interval (n, n + f (n) log

2

n) contains a prime providing f (n) → ∞ as n → ∞. In the same paper, he also showed that, for almost all n, the interval (n, n + n

1977

) contains a prime.

In 1971, Montgomery [16] improved the exponent

1977

to

15

. The zero density estimate of Huxley [7] gives the exponent

16

.

In 1982, Harman [3] used the sieve method to prove that, for almost all n, the interval (n, n+n

101

) contains a prime. Heath-Brown [5] and Harman [4] mentioned that the exponent

121

can be achieved.

In [11], Jia Chaohua investigated the problem of the exceptional set of Goldbach numbers in the short interval. As a by-product, he proved that, for almost all n, the interval (n, n + n

131

) contains prime numbers. Li Hongze [14] improved the exponent

131

to

272

.

Recently, Jia Chaohua [12] showed that, for almost all n, the interval (n, n + n

141

) contains prime numbers. Watt [20] also obtained the same result. Their methods are different. In [12] only classical methods are used and in [20] a new mean value estimate of Watt [21] is used in addition. Li Hongze [15] combined these methods to improve the exponent

141

to

151

.

In this paper, we prove the following:

Theorem. Suppose that B is a sufficiently large positive constant, ε is a sufficiently small positive constant and X is sufficiently large. Then for positive integers n ∈ (X, 2X), except for O(X log

−B

X) values, the interval (n, n + n

201

) contains at least 0.005n

201

log

−1

n prime numbers.

Project supported by the Tian Yuan Item in the National Natural Science Foundation of China.

[21]

(2)

We apply a mean value estimate of Deshouillers and Iwaniec [2] (see Lemma 2). Using the classical mean value estimate instead of that of Des- houillers and Iwaniec, we can get the exponent

181

. We refer to [13] and the explanation in [11].

Throughout this paper, we always suppose that B is a sufficiently large positive constant, ε is a sufficiently small positive constant and ε

1

= ε

2

, δ = ε

13

. We also suppose that X is sufficiently large and that x ∈ (X, 2X), η =

12

X

1920

. Let c, c

1

and c

2

denote positive constants which have different values at different places. m ∼ M means that there are positive constants c

1

and c

2

such that c

1

M < m ≤ c

2

M . We often use M (s) (M may be another capital letter) to denote a Dirichlet polynomial of the form

M (s) = X

m∼M

a(m) m

s

, where a(m) is a complex number with a(m) = O(1).

The author would like to thank Profs. Wang Yuan and Pan Chengbiao for their encouragement.

2. Mean value estimate (I)

Lemma 1. Suppose that X

δ

 H  X

859

, M H = X, M (s) is a Dirichlet polynomial and

H(s) = X

h∼H

Λ(h) h

s

.

Let b = 1 + 1/ log X, T

0

= log

Bε

X. Then for T

0

≤ T ≤ X, we have min

2

 η, 1

T



2T

\

T

|M (b + it)H(b + it)|

2

dt  η

2

log

−10B

x.

P r o o f. Let s = b + it. By the zero-free region of the ζ function, for

|t| ≤ 2X we have

(1) X

c1H<h≤c2H

Λ(h)

h

s

= (c

2

H)

1−s

− (c

1

H)

1−s

1 − s + O(log

2Bε

x).

So, for T

0

≤ |t| ≤ 2X,

(2) H(s)  log

Bε

x.

According to the discussion in [6], there are O(log

2

X) sets S(V, W ), where S(V, W ) is the set of t

k

(k = 1, . . . , K) with the property |t

r

− t

s

| ≥ 1 (r 6= s). Moreover,

V ≤ M

12

|M (b + it

k

)| < 2V, W ≤ H

12

|H(b + it

k

)| < 2W,

(3)

where X

−1

≤ M

12

V , X

−1

≤ H

12

W and V  M

12

, W  H

12

log

Bε

x.

Then (3)

2T

\

T

|M (b + it)H(b + it)|

2

dt  V

2

W

2

x

−1

log

2

x|S(V, W )| + O(x

−2ε1

), where S(V, W ) is one of sets with the above properties.

Assume X

k+11

≤ H < X

1k

, where k is a positive integer, k ≥ 9 and kδ  1. Applying the mean value estimate (see Section 3 of [9] or Lemma 7 of [11]) to M (s) and H

k

(s), we have

|S(V, W )|  V

−2

(M + T ) log

d

x,

|S(V, W )|  W

−2k

(H

k

+ T ) log

d

x,

where d = c/δ

2

. Applying the Hal´asz method (see Section 3 of [9] or Lemma 7 of [11]) to M (s) and H

k

(s), we have

|S(V, W )|  (V

−2

M + V

−6

M T ) log

d

x,

|S(V, W )|  (W

−2k

H

k

+ W

−6k

H

k

T ) log

d

x.

Thus,

V

2

W

2

|S(V, W )|  V

2

W

2

F log

d

x, where

F = min{V

−2

(M + T ), V

−2

M + V

−6

M T, W

−2k

(H

k

+ T ),

W

−2k

H

k

+ W

−6k

H

k

T }.

It will be proved that

(4) min

2

 η, 1

T



V

2

W

2

F  η

2

x log

Bε

x.

We consider four cases.

(a) F ≤ 2V

−2

M , 2W

−2k

H

k

. Then

V

2

W

2

F  V

2

W

2

min{V

−2

M, W

−2k

H

k

}

≤ V

2

W

2

(V

−2

M )

1−2k1

(W

−2k

H

k

)

2k1

= V

k1

W M

1−2k1

H

12

 x log

Bε

x and so

min

2

 η, 1

T



V

2

W

2

F  η

2

x log

Bε

x.

(b) F > 2V

−2

M, 2W

−2k

H

k

. Then

V

2

W

2

F  V

2

W

2

min{V

−2

T, V

−6

M T, W

−2k

T, W

−6k

H

k

T }

≤ V

2

W

2

(V

−2

)

1−2k3

(V

−6

M )

2k1

(W

−2k

)

k1

T = M

2k1

T.

(4)

Since k ≥ 9, we have H ≥ X

k+11

≥ X

1−10k

, M

2k1

 X

201

, and so min

2

 η, 1

T



V

2

W

2

F  η

T x

201

T  η

2

x

1−ε1

. (c) F ≤ 2V

−2

M, F > 2W

−2k

H

k

. Then

V

2

W

2

F  V

2

W

2

min{V

−2

M, W

−2k

T, W

−6k

H

k

T }

≤ V

2

W

2

(V

−2

M )

1−3k1

(W

−6k

H

k

T )

3k1

 M H

13

T

3k1

,

since V  M

12

. As H ≥ X

k+11

≥ X

1920·2k1

, we have min

2

 η, 1

T



V

2

W

2

F  η

2−3k1

T

3k1

x

1−1920·3k1

T

3k1

x

−ε1

 η

2

x

1−ε1

. (d) F > 2V

−2

M , F ≤ 2W

−2k

H

k

. Then

V

2

W

2

F  V

2

W

2

min{V

−2

T, V

−6

M T, W

−2k

H

k

}

≤ V

2

W

2

(V

−2

T )

1−2k3

(V

−6

M T )

2k1

(W

−2k

H

k

)

k1

= M

2k1

HT

1−1k

.

If k ≥ 10, then H ≤ X

k1

≤ X

1−10(2k−1)19(k−1)

, M  X

10(2k−1)19(k−1)

, and so min

2

 η, 1

T



V

2

W

2

F  η

1+1k

x

1−1920(1−1k)

 η

2

x

1−ε1

. If k = 9, then X

101

≤ H  X

859

, M  X

7685

, and so

min

2

 η, 1

T



V

2

W

2

F  η

2

(x

1920

)

89

x

1−3845

 η

2

x

1−ε1

. Combining the above, we obtain (4). Hence, Lemma 1 follows.

Lemma 2. Suppose that N (s) is a Dirichlet polynomial and L(s) = X

c1L<l≤c2L

1 l

s

. Let T ≥ 1. Then

I =

2T

\

T

L

 1 2 + it



4

N

 1 2 + it



2

dt





T + N

2

T

12

+ N

54

 T min

 L, T

L



1

2

+ N L

2

T

−2



T

ε1

.

(5)

P r o o f. First we assume c

1

L ≤ T

12

. If N ≤ T , then by the discussion in Section 2 of [2], we have

I  (T + N

2

T

12

+ N

54

(T L)

12

)T

ε1

. If N > T , the mean value estimate yields

I  (L

2

N + T )(LN )

ε1

 (T + N

2

T

12

)T

ε1

.

Now we assume T

12

< c

1

L ≤ 2T . By the discussion in Section 2 of [2], we get

I 



T + N

2

T

12

+ N

54

 T · T

L



1

2

 T

ε1

.

Lastly we assume 2T < c

1

L. It follows from Theorem 1 on page 442 of [18] that

X

c1L<l≤c2L

1

l

12+it

= (c

2

L)

12−it

− (c

1

L)

12−it

1

2

− it + O

 1 L

12

 . Hence,

L

 1 2 + it



 L

12

|t| + 1

L

12

 L

12

|t|

and

I  L

2

T

4

2T

\

T

N

 1 2 + it



2

dt  L

2

T

4

(N + T )  N L

2

T

2

. Combining the above, we get Lemma 2.

Lemma 3. Suppose that M N L = X, M (s), N (s) are Dirichlet polyno- mials, and

L(s) = X

l∼L

1 l

s

. Let b = 1 + 1/ log X, T

1

=

L. Assume further that M and N lie in one of the following regions:

(5)

M  X

329

, N  M

23

X

101

; (i)

X

329

 M  X

16053

, N  X

2380

; (ii)

X

16053

 M  X

1332

, N  M

23

X

12061

; (iii)

X

1332

 M  X

321680

, N  M

−2

X

2120

. (iv)

Then for T

1

≤ T ≤ X, we have min

2

 η, 1

T



2T

\

T

|M (b + it)N (b + it)L(b + it)|

2

dt  η

2

x

−2ε1

.

(6)

P r o o f. It is sufficient to show that I = min

2

 η, 1

T



2T

\

T

M

 1 2 + it

 N

 1 2 + it

 L

 1 2 + it



2

dt  η

2

x

1−2ε1

. We shall show that the above inequality holds, providing M and N satisfy the following conditions:

M

2

N  X

2120

, M

2

N

3

 X

6140

, M

6

N

7

 X

4110

, N  X

2380

, N

3

 M

2

X

103

.

Using the mean value estimate and Lemma 2, we have

2T

\

T

M

 1 2 + it

 N

 1 2 + it

 L

 1 2 + it



2

dt





2T

\

T

M

 1 2 + it



4

N

 1 2 + it



2

dt



1

2

×



2T

\

T

L

 1 2 + it



4

N

 1 2 + it



2

dt



1

2

 (M

2

N + T )

12

(T + N

2

T

12

+ N

54

(T L)

12

+ N L

2

T

−2

)

12

T

ε1

. Hence,

I  min

2

 η, 1

T



(M

2

N + T )

12

(T + N

2

T

12

+ N

54

(T L)

12

)

12

T

ε1

+ η

2

T

112

x

1+ε1

 η

2

(M

2

N + η

−1

)

12

−1

+ N

2

η

12

+ N

54

−1

L)

12

)

12

x

ε1

+ η

2

x

1−2ε1

 η

2

x

1−2ε1

.

In every region of (5), our conditions are satisfied. So Lemma 3 follows.

Lemma 4. Under the assumptions of Lemma 3, (5) being replaced by the region

(6) M  X

2140

, N  X

16019

, for T

1

≤ T ≤ X, we have

min

2

 η, 1

T



2T

\

T

|M (b + it)N (b + it)L(b + it)|

2

dt  η

2

x

−2ε1

. P r o o f. It is sufficient to show that

I = min

2

 η, 1

T



2T

\

T

M

 1 2 + it

 N

 1 2 + it

 L

 1 2 + it



2

dt  η

2

x

1−2ε1

.

(7)

Using the mean value estimate and Lemma 2, we have I  min

2

 η, 1

T



2T

\

T

M

 1 2 + it



4

dt



1

2

×



2T

\

T

L

 1 2 + it



4

N

 1 2 + it



4

dt



1

2

 min

2

 η, 1

T



(M

2

+ T )

12



T + N

4

T

12

+ N

52

 T min

 L, T

L



1

2

+ N

2

L

2

T

−2



1

2

T

ε1

 η

2

(M

2

+ η

−1

)

12

−1

+ N

4

η

12

)

12

x

ε1

+ η

2

M N

54

−1

L)

14

x

ε1

+ N

54

η

2−78

x

ε1

+ η

2

T

112

x

1+ε1

 η

2

x

1−2ε1

,

since min(L, T /L) ≤ T

12

. Thus Lemma 4 follows.

3. Mean value estimate (II)

Lemma 5. Suppose that M HK = X and M (s), H(s) and K(s) are Dirichlet polynomials, and G(s) = M (s)H(s)K(s). Let b = 1 + 1/ log X, T

0

= log

Bε

X. Assume further that for T

0

≤ |t| ≤ 2X, M (b + it)  log

Bε

x and H(b + it)  log

Bε

x. Moreover , suppose that M and H satisfy one of the following three conditions:

1) M H  X

157290

, X

11019

 H, M

29

/H  X

10

, X

103

 M , H

29

/M  X

315

, X

5710

 M

12

H

11

;

2) M H  X

2645

, M

29

H

19

 X

594

, X

3845

 M

2

H, M

2

H

11

 X

2910

, X

572

 M

58

H

49

;

3) M H  X

2544

, X

10019

 H, M

6

H  X

115

, X

1970

 M , M H

8

 X

2310

, X

5720

 M

6

H

5

.

Then for T

0

≤ T ≤ X, we have

(7) min

2

 η, 1

T



2T

\

T

|G(b + it)|

2

dt  η

2

log

−10B

x.

P r o o f. Using the method of Lemma 1, we only show that for T = 1/η = 2X

1920−ε

,

(8) I =

2T

\

T

|G(b + it)|

2

dt  log

−10B

x.

(8)

I. First, we assume condition 1). On applying the mean value estimate and Hal´asz method to M

3

(s), H

5

(s) and K

2

(s), we get

I  U

2

V

2

W

2

x

−1

F log

c

x, where

F = min{V

−6

(M

3

+ T ), V

−6

M

3

+ V

−18

M

3

T, W

−10

(H

5

+ T ),

W

−10

H

5

+ W

−30

H

5

T, U

−4

(K

2

+ T ), U

−4

K

2

+ U

−12

K

2

T }.

We discuss the following cases:

(a) F ≤ 2V

−6

M

3

, 2W

−10

H

5

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−10

H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

103

(W

−10

H

5

)

15

(U

−4

K

2

)

12

= V

15

M

109

HK  x log

−11B

x.

(b) F ≤ 2V

−6

M

3

, 2W

−10

H

5

, F > 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−10

H

5

, U

−4

T, U

−12

K

2

T }

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−10

H

5

)

15

(U

−4

T )

209

(U

−12

K

2

T )

601

= T

157

M HK

301

 x

1−ε1

.

(c) F ≤ 2V

−6

M

3

, F > 2W

−10

H

5

, F ≤ 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−10

T, W

−30

H

5

T, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−10

T )

203

(W

−30

H

5

T )

601

(U

−4

K

2

)

12

= T

16

M KH

121

 x

1−ε1

.

(d) F ≤ 2V

−6

M

3

, F > 2W

−10

H

5

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

M

3

, W

−10

T, W

−30

H

5

T, U

−4

T, U

−12

K

2

T }

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−10

T )

15

(U

−4

T )

209

(U

−12

K

2

T )

601

= T

23

M K

301

 x

1−ε1

.

(e) F > 2V

−6

M

3

, F ≤ 2W

−10

H

5

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

T, V

−18

M

3

T, W

−10

H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

T )

1760

(V

−18

M

3

T )

601

(W

−10

H

5

)

15

(U

−4

K

2

)

12

= T

103

M

201

HK  x

1−ε1

.

(9)

(f) F > 2V

−6

M

3

, F ≤ 2W

−10

H

5

, F > 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

T, V

−18

M

3

T, W

−10

H

5

, U

−4

T, U

−12

K

2

T }

≤ U

2

V

2

W

2

(V

−6

T )

13

(W

−10

H

5

)

15

(U

−4

T )

209

(U

−12

K

2

T )

601

= T

45

HK

301

 x

1−ε1

.

(g) F > 2V

−6

M

3

, 2W

−10

H

5

, F ≤ 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

T, V

−18

M

3

T, W

−10

T, W

−30

H

5

T, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

T )

13

(W

−10

T )

203

(W

−30

H

5

T )

601

(U

−4

K

2

)

12

= T

12

H

121

K  x

1−ε1

.

(h) F > 2V

−6

M

3

, 2W

−10

H

5

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−6

, V

−18

M

3

, W

−10

, W

−30

H

5

, U

−4

, U

−12

K

2

}T

≤ U

2

V

2

W

2

(V

−6

)

1760

(V

−18

M

3

)

601

(W

−10

)

15

(U

−4

)

12

T

= T M

201

 x

1−ε1

, since M  X.

II. Next, we assume condition 2). On applying the mean value estimate and Hal´asz method to M

2

(s)H(s), H

5

(s) and K

2

(s), we get

I  U

2

V

2

W

2

x

−1

F log

c

x, where

F = min{V

−4

W

−2

(M

2

H + T ), V

−4

W

−2

M

2

H + V

−12

W

−6

M

2

HT, W

−10

(H

5

+ T ), W

−10

H

5

+ W

−30

H

5

T, U

−4

(K

2

+ T ), U

−4

K

2

+ U

−12

K

2

T }.

We consider several cases:

(a) F ≤ 2V

−4

W

−2

M

2

H, 2W

−10

H

5

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−4

W

−2

M

2

H, W

−10

H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

M

2

H)

38

(W

−10

H

5

)

18

(U

−4

K

2

)

12

= V

12

M

34

HK  x log

−11B

x.

(10)

(b) F ≤ 2V

−4

W

−2

M

2

H, 2W

−10

H

5

, F > 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

M

2

H, W

−10

H

5

, U

−4

T, U

−12

K

2

T }

≤ U

2

V

2

W

2

(V

−4

W

−2

M

2

H)

12

(W

−10

H

5

)

101

(U

−4

T )

207

(U

−12

K

2

T )

201

= T

25

M HK

101

 x

1−ε1

.

(c) F ≤ 2V

−4

W

−2

M

2

H, F > 2W

−10

H

5

, F ≤ 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−4

W

−2

M

2

H, W

−10

T, W

−30

H

5

T, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

M

2

H)

12

(U

−4

K

2

)

12

= W H

12

M K  x log

−11B

x.

(d) F ≤ 2V

−4

W

−2

M

2

H, F > 2W

−10

H

5

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

M

2

H, W

−10

T, W

−30

H

5

T, U

−4

T, U

−12

K

2

T }

≤ U

2

V

2

W

2

(V

−4

W

−2

M

2

H)

12

(W

−30

H

5

T )

301

(U

−4

T )

209

(U

−12

K

2

T )

601

= T

12

M H

23

K

301

 x

1−ε1

.

(e) F > 2V

−4

W

−2

M

2

H, F ≤ 2W

−10

H

5

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

T, V

−12

W

−6

M

2

HT, W

−10

H

5

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

T )

207

(V

−12

W

−6

M

2

HT )

201

(W

−10

H

5

)

101

(U

−4

K

2

)

12

= T

25

M

101

H

1120

K  x

1−ε1

.

(f) F > 2V

−4

W

−2

M

2

H, F ≤ 2W

−10

H

5

, F > 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

T, V

−12

W

−6

M

2

HT, W

−10

H

5

, U

−4

T, U

−12

K

2

T }

≤ U

2

V

2

W

2

(V

−4

W

−2

T )

207

(V

−12

W

−6

M

2

HT )

201

(W

−10

H

5

)

101

(U

−4

T )

12

= T

109

M

101

H

1120

 x

1−ε1

.

(11)

(g) F > 2V

−4

W

−2

M

2

H, 2W

−10

H

5

, F ≤ 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

T, V

−12

W

−6

M

2

HT, W

−10

T, W

−30

H

5

T, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−4

W

−2

T )

209

(V

−12

W

−6

M

2

HT )

601

(W

−30

H

5

T )

301

(U

−4

K

2

)

12

= T

12

M

301

H

1160

K  x

1−ε1

.

(h) F > 2V

−4

W

−2

M

2

H, 2W

−10

H

5

, 2U

−4

K

2

. Then U

2

V

2

W

2

F

 U

2

V

2

W

2

min{V

−4

W

−2

, V

−12

W

−6

M

2

H, W

−10

, W

−30

H

5

, U

−4

, U

−12

K

2

}T

≤ U

2

V

2

W

2

(V

−4

W

−2

)

209

(V

−12

W

−6

M

2

H)

601

(W

−30

H

5

)

301

(U

−4

)

12

T

= T M

301

H

1160

 x

1−ε1

.

III. Lastly, we assume condition 3). On applying the mean value estimate and Hal´asz method to M

3

(s), H

4

(s) and K

2

(s), we get

I  U

2

V

2

W

2

x

−1

F log

c

x, where

F = min{V

−6

(M

3

+ T ), V

−6

M

3

+ V

−18

M

3

T, W

−8

(H

4

+ T ), W

−8

H

4

+ W

−24

H

4

T, U

−4

(K

2

+ T ), U

−4

K

2

+ U

−12

K

2

T }.

Consider the following cases:

(a) F ≤ 2V

−6

M

3

, 2W

−8

H

4

, 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−8

H

4

, U

−4

K

2

}

≤ U

2

V

2

W

2

(V

−6

M

3

)

14

(W

−8

H

4

)

14

(U

−4

K

2

)

12

= V

12

M

34

HK  x log

−11B

x.

(b) F ≤ 2V

−6

M

3

, 2W

−8

H

4

, F > 2U

−4

K

2

. Then

U

2

V

2

W

2

F  U

2

V

2

W

2

min{V

−6

M

3

, W

−8

H

4

, U

−4

T, U

−12

K

2

T }

≤ U

2

V

2

W

2

(V

−6

M

3

)

13

(W

−8

H

4

)

14

(U

−4

T )

38

(U

−12

K

2

T )

241

= T

125

M HK

121

 x

1−ε1

.

Cytaty

Powiązane dokumenty

In fact, with respect to the Nullstellensatz, nice estimates (for the case of maps proper over the origin) can be obtained following a method due to A. In order to be complete, we

This paper deals with a weak convergence of maximum vectors built on the base of stationary and normal sequences of relatively strongly dependent random vectors.. The

On the other hand, several references [2]–[4], [6], [8]–[10] investigated the approximation of continuous functions on [0, 1] and [−1, 1] by elements from Π n k (actually,

For any fixed 20/21 &lt; γ ≤ 1, every sufficiently large odd integer N can be written as a sum of three Piatetski-Shapiro primes of type γ..

Heath- Brown [6] proved that there exist infinitely many arithmetic progressions of four different terms, three of which are primes and the fourth is P 2 (as usual, P r denotes

tipli ative re urrent sequen es shrinks S to the lassi al system. Then, similar to the proof of

A smooth weight is used to control error terms, and this weight can in typical applications be removed from the final result.. Similar results are obtained for the tails of

We repeat all steps up to formula (5.4) (proof of which was the most dif- ficult part of Theorem 1) and observe that (5.4) trivially holds for squarefree numbers without any