• Nie Znaleziono Wyników

Encounter probability of extreme structural response values based on multi-parameter descriptions of the physical environment

N/A
N/A
Protected

Academic year: 2021

Share "Encounter probability of extreme structural response values based on multi-parameter descriptions of the physical environment"

Copied!
8
0
0

Pełen tekst

(1)

BOSS'79

Second International Conference

on Behaviour of Off-Shore Structures Held at: Imperial College, London, England 28 to 31 August 1979

ENCOUNTEB PBOBABIUTy O F EXTREME STBUCTUBAL BESPGNSE VALUES BASED

ON MULTI-PABAMETEB DESCBIPTIONS OF THE PHYSICAL ENVIBONMENT

J - A . Battjes

Delft University of Technology, The Netherlands.

Summary

This paper deals with some aspects of long-term statistics of environmental

con-ditions and their use in design of offshore structures. It appears that the consequences of

describing the environmental conditions with more than one independent parameter (instead

of just one, such as a characteristic wind speed) have not been sufficiently realised in the

past. Also, the usefuhiess of specifymg environmental conditions for design, at some a

priori chosen probability level, is questioned. It is argued that it would be more logical to

work with the probabilities of response parameters. Finally, methods are described for

estimating long-term distributions (parent and extreme) of a structural response parameter

for cases of multi-parameter descriptions of the environmental conditions.

Sponsored by: Delft University of Technology, The Netherlands Massachusetts Institute of Technology, U.S.A. The Norwegian Institute of Technology, Norway University of London, England

Secretariat provided by: B H R A Fluid Engineering

Copyright: ©

609

B H R A Fluid Engineering Cranfield, Bedford, England

(2)

I n l o n g - t e r m s t a t i s t i c a l d e s c r i p t i o n s o f e n v i r o n m e n t a l f a c t o r s which a r e r e l e v a n t t o the d e s i g n o f o f f s h o r e s t r u c t u r e s , d i f f e r e n t degrees o f c o m p l e x i t y a r e b e i n g used.The s i m p l e s t one i s t o d e s c r i b e t h e (extreme) e n v i r o n m e n t a l c o n d i t i o n s t h r o u g h o n l y one independent parameter ( e . g . , a windspeed, o t h e r parameters then b e i n g supposed t o depend on t h i s ) . As more indedependent parameters a r e used, such as w i n d o r wave d i r e c t i -on, o r wave p e r i o d , m u l t i - p a r a m e t e r d e s c r i p t i o n s o f t h e environment a r e o b t a i n e d . I n the a u t h o r ' s o p i n i o n , c e r t a i n concepts which a r e m e a n i n g f u l o n l y i n t h e one-parameter case, a r e sometimes e r r o n e o u s l y used i n t h e m u l t i - p a r a m e t e r case. I t i s necessary t o be more c o n s i s t e n t l y aware o f t h e r e s t r i c t i o n s i n h e r e n t i n t h e one-parameter models. This w i l l be i l l u s t r a t e d f o r t h e n o t i o n o f r e t u r n p e r i o d o f i n d i v i d u a l wave h e i g h t s . Subsequently, l o n g - t e r m s t a t i s t i c s o f a s t r u c t u r a l response a r e d e a l t w i t h f o r t h e case of e n v i r o n m e n t a l c o n d i t i o n s d e s c r i b e d by a s e t o f p a r a m e t e r s . Both t h e l o n g - t e r m p a r e n t d i s t r i b u t i o n o f response peaks, and t h e l o n g - t e r m extreme v a l u e d i s t r i b u t i o n a r e con-s i d e r e d .

R e t u r n p e r i o d o f wave h e i g h t i n one-parameter and m u l t i - p a r a m e t e r d e s c r i p t i o n

I n t h e c o n t e x t o f d e t e r m i n i s t i c l i m i t - s t a t e d e s i g n o f o f f s h o r e s t r u c t u r e s , t h e n o t i o n of r e t u r n p e r i o d i s f r e q u e n t l y used. A d e f i n i t i o n o f r e t u r n p e r i o d f o r i n d i v i d u a l wave h e i g h t s can be g i v e n as f o l l o w s .

The r e t u r n p e r i o d o f an i n d i v i d u a l wave h e i g h t v a l u e H a t some l o c a l i t y i s s a i d t o be R y e a r s i f t h e r e i s a p r o b a b i l i t y 1/fl t h a t i n any 12-month i n t e r v a l , d r a w n a t random from t h e p o p u l a t i o n o f n o n - o v e r l a p p i n g ]2-month i n t e r v a l s , t h e r e s h a l l be a t l e a s t one. i n d i v i d u a l wave h e i g h t a t t h a t l o c a l i t y equal t o o r g r e a t e r t h a n H.

Through t h e use o f t h e c l a u s e " a t l e a s t " , t h e d e f i n i t i o n g i v e n above i n e f f e c t r e f e r s t o s e p a r a t e occasions o f heavy weather ( s t o r m s ) , w i t h o u t b e i n g a f f e c t e d by t h e number of h i g h waves i n each o f those. Other d e f i n i t i o n s a r e p o s s i b l e , e.g. those i n w h i c h i n d i v i d u a l wave h e i g h t s a r e c o n s i d e r e d i r r e s p e c t i v e o f t h e i r o c c u r r e n c e i n s t o r m s . The d i f f e r e n c e s between these d e f i n i t i o n s a r e n o t r e l e v a n t t o t h e f o l l o w i n g d i s c u s s i o n , which c e n t e r s on a c o m p l i c a t i o n a r i s i n g i n t h e t r a n s i t i o n from a one-parameter model, as r e f e r r e d t o above, t o a m u l t i - p a r a m e t e r model.

I n r e f . A, wave h e i g h t v a l u e s are g i v e n f o r a number o f l o c a t i o n s on t h e Norwegian C o n t i n e n t a l S h e l f , w i t h a r e t u r n p e r i o d o f (among o t h e r s ) 100 y e a r s , based on t h e second k i n d o f d e f i n i t i o n mentioned above. T h i s i s done n o t o n l y f o r t h e wave h e i g h t s i r r e s p e c t i v e o f t h e s h o r t - t e r m mean d i r e c t i o n , b u t a l s o p e r d i r e c t i o n a l s e c t o r JU ; For each d i r e c t i o n a l s e c t o r , t h e same procedure was used t o c a l c u l a t e t h e s o - c a l l e d

100-year wave h e i g h t f r o m t h e data p e r t a i n i n g t o t h a t s e c t o r as was used t o c a l c u l a t e the o v e r a l l 100-year wave h e i g h t from t h e d a t a summed over a l l d i r e c t i o n s . Thus, t h e

100-year wave h e i g h t v a l u e per s e c t o r i s o b t a i n e d as t h e wave h e i g h t w i t h a p r o b a b i l i t y of exceedence, g i v e n t h a t t h e wave d i r e c t i o n i s w i t h i n t h e s p e c i f i e d s e c t o r , e q u a l t o t h e r a t i o o f t h e mean wave p e r i o d t o a d u r a t i o n o f 100 y e a r s . T h i s p r o c e d u r e i g n o r e s the f a c t t h a t t h e wave d i r e c t i o n i s w i t h i n t h e s p e c i f i e d s e c t o r o n l y p a r t o f t h e t i m e . The r e s u l t i n g numbers a r e t h e r e f o r e n o t v e r y m e a n i n g f u l .

The essence of t h e problems o f t h e k i n d n o t e d above ( o t h e r examples c o u l d be g i v e n ) i s t h e f a c t t h a t i t has n o t been s u f f i c i e n t l y noted t h a t t h e wave h e i g h t d i s t r i b u t i o n per d i r e c t i o n a l s e c t o r i s a c o n d i t i o n a l d i s t r i b u t i o n , as opposed t o t h e m a r g i n a l d i s

-t r i b u -t i o n o f a l l -t h e wave h e i g h -t s , i r r e s p e c -t i v e o f d i r e c -t i o n . When -t r a n s f o r m i n g con-d i t i o n a l p r o b a b i l i t i e s i n t o time con-d u r a t i o n s , t h e f r a c t i o n o f t i m e con-d u r i n g w h i c h t h e

assumed c o n d i t i o n s o c c u r must he taken i n t o account i n o r d e r t o g e t ' " ^ ^ " ^ ^ S f u l r e s u t s . For example, take a wave c l i m a t e i n which wave h e i g h t and d i r e c t i o n a r e s t o c h a s t i c a l l y independent. The 100year wave h e i g h t s f o r t h e d i f f e r e n t d i r e c t i o n a l s e c t o r s , c a l c u l a -ted w i t h t h e method used i n r e f . A, would a l l be e q u a l , even i f t h e waves would come from one such 30°-sector f o r o n l y 1% o f t h e t i m e , say.

The m o r a l o f t h e above i s t h a t concepts and methods which a r e v a l i d i n t h e °^e-para-meter case (wave h e i g h t s o n l y ) should n o t be used w i t h o u t p r o p e r e x t e n s i o n and g e n e r a l

(3)

i z a t i o n s i n a m u l t i - p a r a m e t e r case (wave h e i g h t and d i r e c t i o n ) . The q u e s t i o n whether and how a r e t u r n p e r i o d f o r m u l t i - p a r a m e t e r l o n g - t e r m e n v i r o n m e n t a l s t a t i s t i c s can be used i n d e s i g n procedures i s c o n s i d e r e d i n t h e f o l l o w i n g s e c t i o n .

I s r e t u r n p e r i o d o f e n v i r o n m e n t a l c o n d i t i o n s u s e f u l i n design?

I t i s common i n d e t e r m i n i s t i c l i m i t - s t a t e d e s i g n procedures f o r o f f s h o r e s t r u c t u r e s t o s e l e c t a v a l u e o f an e n v i r o n m e n t a l parameter, u s u a l l y wind speed o r wave h e i g h t , such t h a t i t s o c c u r r e n c e o r exceedence has a s u i t a b l y l o n g r e t u r n p e r i o d , e.g. 50 o r 100 y e a r s .

Two p o i n t s a r e noted w i t h r e s p e c t t h i s approach.

F i r s t , t h e procedure o f u s i n g a d e s i g n c o n d i t i o n o f which t h e r e t u r n p e r i o d i s chosen a p r i o r i can be c o n s i d e r e d as a s h o r t - c u t i n l i e u o f a more e l a b o r a t e , p r o b a b i l i s t i c approach, c o n s i s t i n g o f some o p t i m i z a t i o n p r o c e d u r e , i n which i n i t i a l i n v e s t m e n t s are c o n s i d e r e d , expected damages, down-time l o s s e s , human and e n v i r o n m e n t a l s a f e t y , and so f o r t h . The m e r i t s and shortcomings o f t h i s s h o r t - c u t , compared w i t h t h e more e l a b o r a t e p r o c e d u r e s , w i l l n o t be d i s c u s s e d here.

Second, t h e procedure o f u s i n g an e n v i r o n m e n t a l parameter t o c h a r a c t e r i z e a d e s i g n cond i t i o n i s i n some sense n o t l o g i c a l , s i n c e t h e cond e s i g n i s u l t i m a t e l y basecond on o t h e r c r i -t e r i a , r e l a -t e d -t o -t h e s -t r u c -t u r a l i n -t e g r i -t y and -t h e a b i l i -t y -t o c a r r y o u -t -t h e necessary o p e r a t i o n s . I n o t h e r words, i t i s n o t so much t h e e n v i r o n m e n t a l c o n d i t i o n s themselves w h i c h a r e o f u l t i m a t e c o n c e r n , b u t t h e s t r u c t u r e ' s response t o them. I f - w i t h i n t h e c o n t e x t o f a d e t e r m i n i s t i c d e s i g n p r o c e d u r e - a r e t u r n p e r i o d i s chosen then t h i s s h o u l d l o g i c a l l y r e f e r t o a r e l e v a n t response parameter, r a t h e r t h a n t o a c a u s a t i v e f a c t o r such as wind speed o r wave h e i g h t .

The p r a c t i c e o f u s i n g some a p r i o r i chosen v a l u e f o r a d e s i g n wind speed o r wave h e i g h t i s a t most j u s t i f i a b l e t o t h e e x t e n t t h a t t h e r e i s a one-to-one correspondence between such e n v i r o n m e n t a l parameter and t h e reponse c o n s i d e r e d . I t goes w i t h o u t s a y i n g t h a t such one-to-one correspondence i s p o s s i b l e o n l y as l o n g as t h e e n v i r o n m e n t a l con-d i t i o n s r e l e v a n t t o t h e con-d e s i g n a r e con-d e s c r i b e con-d t h r o u g h a s i n g l e incon-depencon-dent parameter. (There i s no r e s t r i c t i o n on t h e number o f dependent e n v i r o n m e n t a l p a r a m e t e r s , such as wave p e r i o d as a f u n c t i o n o f wave h e i g h t . ) However, when t h e e n v i r o n m e n t a l c o n d i t i o n s a r e d e s c r i b e d w i t h m u l t i p l e independent p a r a m e t e r s , such as wind speed and d i r e c t i o n , or wave h e i g h t and p e r i o d , t h e n t h e r e a r e s e v e r a l c o m b i n a t i o n s o f them w h i c h w i l l g i v e the same v a l u e o f t h e c o n s i d e r e d s t r u c t u r a l response ( e . g . , s t r e s s i n a j o i n t ) . I t i s then no l o n g e r p o s s i b l e t o t r a n s l a t e a d e s i g n v a l u e o f such response i n t o a s i n g l e en-v i r o n m e n t a l c o n d i t i o n . The r e t u r n p e r i o d o f any one o f t h e e n en-v i r o n m e n t a l parameters has l o s t i t s u s e f u l n e s s . The n a t u r a l approach would t h e n seem t o be t o work n o t w i t h v a l u e s o f e n v i r o n m e n t a l parameters a t a p r o b a b i l i t y l e v e l chosen a p r i o r i , b u t w i t h a range o f them, c o n t r i b u t i n g t o t h e p r o b a b i l i t i e s o f exceedence o f t h e response b e i n g c o n s i d e r e d . Such approach i s c a l l e d f o r e.g. i n case o f n o n - n e g l i g i b l e dynamic response of t h e s t r u c t u r e , w h i c h v a r i e s s i g n i f i c a n t l y b o t h w i t h wave h e i g h t and wave p e r i o d . I n t h e f o l l o w i n g , a few methods a r e d e s c r i b e d f o r t h e c a l c u l a t i o n o f l o n g - t e r m respon-se d i s t r i b u t i o n s f r o m a m u l t i - p a r a m e t e r model o f t h e environment.

Long-term d i s t r i b u t i o n o f response peaks

I n t h i s s e c t i o n , t h e l o n g - t e r m d i s t r i b u t i o n o f i n d i v i d u a l peak v a l u e s o f a response w i l l be c o n s i d e r e d , r e g a r d l e s s o f t h e sequence i n w h i c h they o c c u r . T h e i r l o n g - t e r m

ex-treme v a l u e d i s t r i b u t i o n i s d e a l t w i t h i n t h e f o l l o w i n g s e c t i o n .

Consider a g i v e n s t r u c t u r e , o r a g i v e n d e s i g n t h e r e o f , i n a g i v e n e n v i r o n m e n t a l c o n d i -t i o n , as d e s c r i b e d by a s e -t o f parame-ters f o r e.g. w i n d , waves, c u r r e n -t , sea l e v e l , and so on. For b r e v i t y , and w i t h o u t l o s s o f g e n e r a l i t y , we s h a l l i n t h e f o l l o w i n g r e f e r t o sea s t a t e parameters o n l y .

(4)

Let us assume f o r d e f i n i t i v e n e s s t h a t each sea s t a t e i s d e s c r i b e d by t h r e e p a r a m e t e r s , a c h a r a c t e r i s t i c wave h e i g h t ( e . g . , t h e s i g n i f i c a n t wave h e i g h t ) , a c h a r a c t e r i s t i c wave p e r i o d T , and a c h a r a c t e r i s t i c wave d i r e c t i o n 0^. I n t h e l o n g t e r m , these are^

random v a r i a b l e s , which i s denoted w i t h an u n d e r s c o r e . T h e i r j o i n t p r o b a b i l i t y d e n s i t y f u n c t i o n i s w r i t t e n as p(H,T,9).

We c o n s i d e r t h e maxima rj,, o f some response £(t) o f a g i v e n s t r u c t u r e i n a g i v e n sea s t a t e . We s h a l l assume t h a t r ^ t h e n i s R a y l e i g h - d i s t r i b u t e d , w i t h mean square v a l u e equal t o 2a^, and t h a t t h e average number of maxima p e r u n i t t i m e i s X^., Both Oj. and Xr a r e f u n c t i o n s of t h e sea s t a t e parameters, f o r a g i v e n s t r u c t u r e . I n t h e p r e s e n t c o n t e x t they a r e supposed t o be known, e.g. through t h e a p p l i c a t i o n o f s p e c t r a l t r a n s -f e r -f u n c t i o n s .

Under t h e assumptions s t a t e d , t h e c o n d i t i o n a l d i s t r i b u t i o n o f r ^ , f o r g i v e n v a l u e s

(H,T,e)

o f (Hc,Tc,Sc)j can be w r i t t e n as

P r ( r > r|H,T,6) = exp( — ^ )

20^(H,T,e)

The f r a c t i o n o f t i m e d u r i n g w h i c h H^, T^ and 6^ s i m u l t a n e o u s l y a r e i n t h e ranges (H, H + dH), ( T , T + dT) and ( 6 , 6 + dS) r e s p e c t i v e l y , i s g i v e n by p(H,T,e)dHdTde, as f o l l o w s f r o m t h e d e f i n i t i o n o f

p(H,T,e).

The expected number o f maxima o f r ( t ) t under t h e s e c o n d i t i o n s i s

Xj.(H,T,e),

o f which a f r a c t i o n givèn by ( I ) exceeds t h e l e v e l r . I t f o l l o w s t h a t t h e expected number o f events ( r ^ > r ) p e r u n i t t i m e , i r r e s p e c t i v e of t h e v a l u e s o f He, Tc and £c. equals ^ ^^-^

fff P r ( r j i i > r|H,T,e)Xr(H,T,e)p(H,T,e)dHdTde , (2)

i n which t h e i n t e g r a t i o n i s c a r r i e d o u t over a l l p o s s i b l e v a l u e s o f

(H,T,e).

The f r a c t i o n o f a l l t h e maxima o f r ( t ) exceeding r i s t h e n o b t a i n e d as t h e r a t i o o f ( 2 ) to t h e expected number o f maxima o f £(t) per u n i t time ( l o n g - t e r m ) , w h i c h i s g i v e n by

fff Xr(H,T,e)p(H,T,e)dHdTde . "^3)

Said r a t i o equals t h e m a r g i n a l ( l o n g - t e r m ) p r o b a b i l i t y t h a t r m s h a l l e x c e e d t h e l e v e l r . I f r i s a s t r e s s t h e n t h i s r e s u l t can be used i n e v a l u a t i n g f a t i g u e a c c o r d i n g t o t h e Palmgren-Miner r u l e .

I t may be n o t e d t h a t t h e r e c i p r o c a l o f ( 2 ) equals t h e average d u r a t i o n between succes-s i v e eventsucces-s ( r ^ > r ) . Asucces-s succes-such i t r e p r e succes-s e n t succes-s t h e r e t u r n p e r i o d o f t h a t e v e n t . However, one s h o u l d be c a r e f u l i n i t s i n t e r p r e t a t i o n , and n o t l o s e s i g h t o f t h e f a c t t h a t i t i s based on t h e f r a c t i o n o f a l l t h e maxima o f r ( t ) exceeding r , no m a t t e r i n w h i c h s e quence they o c c u r . High v a l u e s o f r ^ tend t o occur o n l y i n i s o l a t e d , rough p e r i o d s , i n each o f which s e v e r a l may exceed r . Thus, t h e r e t u r n p e r i o d o f t h e event (tm > _ r ) i s i n g e n e r a l n o t equal t o t h e average time i n t e r v a l between s u c c e s s i v e rough p e r i o d s i n w h i c h t h e event ( r j ^ > r ) occurs ( a t l e a s t o n c e ) , b u t s h o r t e r than t h a t . The e s t i m a -t i o n o f -t h e l a -t -t e r w i l l be c o n s i d e r e d i n -t h e f o l l o w i n g s e c -t i o n .

Encounter p r o b a b i l i t y o f extreme response peak

The problem t o be c o n s i d e r e d here i s t h e e s t i m a t i o n of t h e p r o b a b i l i t y t h a t a t l e a s t one response peak ( r j ^ ) s h a l l exceed an extreme l e v e l r , i n a t i m e i n t e r v a l o f ( l o n g term) d u r a t i o n L.

Since t h e exceedence l e v e l r i s g i v e n t o be extreme, i t i s f o r a l l p r a c t i c a l p u r p o s e s ^ c e r t a i n t h a t r w i l l o n l y be exceeded d u r i n g i s o l a t e d , rough p e r i o d s ( s t o r m s ) . T h i s im p l i e s t h a t t h e r e q u i r e d p r o b a b i l i t y i s v i r t u a l l y equal t o t h e p r o b a b i l i t y o f o c c u r r e n c e .

(5)

i n a time i n t e r v a l o f d u r a t i o n L, o f a t l e a s t one storm i n which a t l e a s t one v a l u e o f r j ^ exceeds r .

L e t N = N ( r ; L ) denote t h e number o f storms i n t h e d u r a t i o n L i n w h i c h a t l e a s t one r e s -ponse peak exceeds t h e l e v e l r . The r e q u i r e d p r o b a b i l i t y can then be w r i t t e n as

] - Pr(N = 0 ) .

L e t p denote the l o n g t e r m average f r e q u e n c y o f occurrence o f storms; pL then r e p r e -sents t h e expected number o f storms i n t h e d u r a t i o n L. F u r t h e r m o r e , l e t Q ( r ) be t h e p r o b a b i l i t y t h a t i n an a r b i t r a r y s t o r m a t l e a s t one response peak s h a l l exceed r :

Q ( r ) = 1 - Pr(max r j ^ <^ r | a r b i t r a r y s t o r m ) . ( 4 )

The expected v a l u e o f N i s then g i v e n by

E(N) = E { N ( r ; L ) } = y L Q ( r ) .

C o n s i d e r i n g encounter p r o b a b i l i t i e s o f extreme v a l u e s i n a l i f e t i m e o f a s t r u c t u r e , we have y L » 1 and Q ( r ) « 1. T r e a t i n g t h e storms as independendent e v e n t s , N i s t h e n v e r y n e a r l y P o i s s o n d i s t r i b u t e d , i n which case t h e r e q u i r e d p r o b a b i l i t y can be e s t i m a -ted as

1 - P r ( N = 0) = 1 - exp {-E(N)} .

E v a l u a t i o n o f t h i s r e q u i r e s knowledge o f L, which i s g i v e n , and o f y and Q ( r ) , which must be e s t i m a t e d f r o m h i s t o r i c a l d a t a and t h e s t r u c t u r a l p r o p e r t i e s . Regarding Q ( r ) , we s h a l l f i r s t c o n s i d e r a g i v e n , s i n g l e storm.

A s i n g l e s t o r m i s supposed t o be d e s c r i b e d by t h e time h i s t o r y o f t h e s h o r t - t e r m sea s t a t e parameters

(H,T,e).

As b e f o r e , we c o n s i d e r response maxima r j ^ w h i c h f o r a g i v e ^ sea s t a t e a r e assumed t o be R a y l e i g h - d i s t r i b u t e d , w i t h mean square v a l u e e q u a l t o 2ar and w i t h mean f r e q u e n c y Aj., b o t h o f w h i c h v a r y w i t h t h e parameters

(H,T,e).

C o n s i d e r i n g a s t o r m l a s t i n g f r o m t = t ] t o t = t 2 , t h e expected number o f maxima r^n which exceed r

i s ~

m ( r ) = ƒ A r( t ) exp { - i r^ / a j c t ) } d t ,

•^1

where i t should be understood t h a t and Oj. v a r y w i t h t i m p l i c i t l y , t h r o u g h t h e i r de-pendence on t h e t i m e - v a r y i n g v a l u e s

(H,T,e).

On the b a s i s o f t h e Poisson d i s t r i b u t i o n f o r t h e number o f exceedences o f t h e l e v e l r by r j ^ , t h e p r o b a b i l i t y t h a t i n t h e g i v e n storm no r j ^ - v a l u e s h a l l exceed r i s e s t i m a t e d as

R(r) = Pr(max r j ^ <_ r | g i v e n storm) = exp {- m ( r ) } . ( 8 )

The p r o b a b i l i t y (8) i s c o n d i t i o n a l i n t h a t i t i s g i v e n t h a t a storm occurs w i t h a g i v e n t i m e h i s t o r y o f

(H,T,e).

I n t h e l o n g - t e r m v i e w , t h e s t o r m may o r may n o t o c c u r , and i t s parameters a r e random v a r i a b l e s , w i t h an a s s o c i a t e d m u l t i d i m e n s i o n a l p r o b a b i -l i t y d i s t r i b u t i o n . Moreover, t h e v a r i a b -l e p a t t e r n o f t h e i r v a r i a t i o n w i t h t i m e d u r i n g a s t o r m s h o u l d be t a k e n i n t o account. A l l o f t h i s g r e a t l y c o m p l i c a t e s t h e t r a n s i t i o n from t h e c o n d i t i o n a l p r o b a b i l i t y ( 8 ) t o t h e n o n - c o n d i t i o n a l p r o b a b i l i t y ( 4 ) , which i s r e q u i r e d .

(6)

A f i r s t s t e p i n g e t t i n g around t h i s d i f f i c u l t y i s t o r e c o g n i z e t h a t t h e e n v i r o n m e n t a l (sea s t a t e ) parameters have an e f f e c t on m o n l y t h r o u g h Xj- and 0^ and t h e i r v a r i a t i o n w i t h t i m e . (Needless t o say, t h i s i s a r e d u c t i o n i n c o m p l e x i t y o n l y i f t h e number of e n v i r o n m e n t a l parameters was more than two.) F u r t h e r m o r e , f o r l a r g e r o n l y a r e l a t i v e l y s m a l l time i n t e r v a l around t h e peak o f t h e response i n t e n s i t y Oj c o n t r i b u t e s s i g n i f i -c a n t l y t o m. (The a -c t u a l v a l u e s o f t j and t2 i n (7) are then i m m a t e r i a l , p r o v i d e d they are s u f f i c i e n t l y f a r away f r o m t h e t i m e o f the maximum response i n t e n s i t y . ) T h i s im-p l i e s t h a t m i s m a i n l y determined by t h e storm's maximum a ^ - v a l u e , and by t h e number of r u - v a l u e s around t h a t maximum w h i c h c o n t r i b u t e s i g n i f i c a n t l y t o m. Borgman ( r e f s . 2 and 3) has shown t h a t f o r the p r e d i c t i o n o f extreme v a l u e s t h e a c t u a l t i m e h i s t o r y of X].(t) and a j . ( t ) can be r e p l a c e d by one of c o n s t a n t i n t e n s i t y (a) and an e f f e c t i v e t o t a l number o f c y c l e s ( n ) , such t h a t the f o l l o w i n g a p p r o x i m a t i o n h o l d s f o r n o t t o o s m a l l v a l u e s o f r :

m ( r ) E ƒ Xy.(t) exp {- ir^/a^MJdt =n exp (- k ^ / a ^ ) . (9)

Borgman a l s o g i v e s methods f o r e s t i m a t i n g t h e v a l u e s o f O and n f r o m t h e t i m e h i s t o r i e s o f X j . ( t ) and aj.(.t). (Borgman a c t u a l l y d e a l s w i t h wave h e i g h t s i n s t e a d o f response peaks b u t t h a t does n o t a f f e c t h i s method.)

A s i m p l i f y i n g a p p r o x i m a t i o n , on t h e c o n s e r v a t i v e s i d e , c o n s i s t s o f e q u a t i n g a, t h e e f f e c t i v e v a l u e o f Oj., t o the maximum a^-value o c c u r r i n g d u r i n g a s t o r m . The use -of t h i s a p p r o x i m a t i o n o b v i a t e s t h e need o f c o m p l e t e l y f o l l o w i n g t h e procedure f o r a more p r e c i s e e s t i m a t e of a.

Using ( 9 ) , the response's t i m e h i s t o r y d u r i n g the s t o r m i s d e s c r i b e d by j u s t two con-s t a n t con-s , a t l e a con-s t i n con-s o f a r acon-s i t a f f e c t con-s m ( r ) and R ( r ) . We can w r i t e t h e r e f o r e

m = m ( r ; n , a ) C^)

and i n t e r p r e t R as a p r o b a b i l i t y which i s c o n d i t i o n a l on t h e o c c u r r e n c e of s p e c i f i c v a l u e s (n,a) of t h e l o n g - t e r m random v a r i a b l e s ( n , o ) :

R = R ( r | n , a ) = Pr(max r^^^ <_ r | n = n, £ = a) . ( ' 0

For each s t o r m , one p a i r of v a l u e s ( n , ^ ) can be c a l c u l a t e d . I n p r i n c i p l e , t h e j o i n t p r o b a b i l i t y d e n s i t y p ( n , a ) of (n,a) can t h e r e f o r e be e s t i m a t e d f r o m p a s t s t o r m s . Com-pounding t h i s w i t h t h e c o n d i t i o n a l p r o b a b i l i t y R ( r | n , a ) , t h e p r o b a b i l i t y t h a t a t l e a s t one response peak s h a l l exceed r i n a storm p i c k e d a t random f r o m t h e p o p u l a t i o n o f storms becomes

Q(r) = 1 - ƒƒ R ( r l n , a ) p ( n , 0 ) d n d a

= 1 - ƒƒ e""'^'''"'°^(n.0)dnda . ('2)

Together w i t h (5) and ( 6 ) , t h i s i s a s o l u t i o n t o the problem which was posed. I n most p r a c t i c a l cases, the v a r i a b i l i t y o f n has much l e s s e f f e c t on Q ( r ) t h a n t h e v a r i a b i l i t y o f a. A f u r t h e r a p p r o x i m a t i o n can t h e n be made by a s s i g n i n g some mean v a l u e t o n, which may ( b u t need n o t ) v a r y w i t h o. I t i s then s u f f i c i e n t t o w o r k w i t h t h e p r o b a b i l i t y d e n s i t y o f a o n l y , i n s t e a d of the j o i n t d e n s i t y of n and o. I n t h i s case, we have

(7)

m = m { r ; n ( a ) , a } , R = R { r | n ( a ) , a } (13)

and

Q ( r ) = ] - ƒ R { r | n ( 0 ) , a } p ( a ) d a

= 1 - ƒ e-'°^^5^(^>''^>p(a)do.

Another method o f e s t i m a t i n g Q ( r ) , i n which a l s o a r e d u c t i o n i s o b t a i n e d t o o n l y one l o n g - t e r m random v a r i a b l e , b u t w i t h o u t t h e a p p r o x i m a t i o n s i n h e r e n t i n (9) and i n t h e n e g l e c t o f t h e v a r i a b i l i t y o f n f o r g i v e n a, has been p r e s e n t e d by B a t t j e s ( r e f . Ï ) . I n t h i s approach, m ( r ) i t s e l f i s t r e a t e d as t h e b a s i c random v a r i a b l e . For a g i v e n v a l u e o f t h e l e v e l r , one v a l u e o f m ( r ) can be c a l c u l a t e d p e r s t o r m , u s i n g ( 7 ) . I n p r i n c i p l e , t h e l o n g - t e r m p r o b a b i l i t y d e n s i t y o f m c a n t h e r e f o r e be e s t i m a t e d f r o m p a s t storms, w i t h r as a parameter; i t i s w r i t t e n as p ( m ; r ) . I n t h i s approach, t h e p r o -b a -b i l i t y R i s c o n d i t i o n a l on t h e occurrence o f a s p e c i f i c v a l u e o f m ( r ) :

R = R(m) = Pr(max r j ^ < r | m ( r ) = m) = e~™ . (15)

Note t h a t t h e dependence on r i s absent i n t h i s c o n d i t i o n a l p r o b a b i l i t y . I t r e - e n t e r s the problem t h r o u g h t h e l i k e l i h o o d o f t h e event m ( r ) = m, o r , r a t h e r , o f t h e event (m < m ( r ) < m + dm), w h i c h i s used i n t h e c a l c u l a t i o n o f t h e n o n - c o n d i t i o n a l p r o b a b i l i t y Q ( r ) :

Q ( r ) = I - ƒ R(m)p(ra;r)dm

= 1 - ƒ e '"p(m;r)dm, ( j g )

An advantage o f t h i s approach i s t h a t one deals t h r o u g h o u t w i t h o n l y one l o n g - t e r m random v a r i a b l e , w h i l e s t i l l t a k i n g account o f t h e e f f e c t s o f t h e j o i n t v a r i a b i l i t y of a l l t h e e n v i r o n m e n t a l parameters which a r e needed i n t h e problem.

I t i s p o i n t e d o u t t h a t t h e methods sketched above, l e a d i n g t o eqs. 12, 14 and 16 r e s -p e c t i v e l y , d i f f e r o n l y i n t h e e s t i m a t i o n o f Q ( r ) , i . e . t h e -p r o b a b i l i t y t h a t i n a s t o r m p i c k e d a t random a t l e a s t one response peak s h a l l exceed r . The subsequent c a l c u l a t i o n o f t h e l o n g - t e r m encounter p r o b a b i l i t y i s t h e same (eqs. 5 and 6 ) .

The c a l c u l a t i o n s o f Q ( r ) can be c a r r i e d o u t f o r d i f f e r e n t v a l u e s o f t h e l e v e l r . Thus, u s i n g ( 5 ) , ^ t h e f u n c t i o n E { N ( r ; L ) } can be e v a l u a t e d . The v a l u e o f r f o r which

E { N ( r ; L ) } - 1, w r i t t e n as r ( L ) , i s t h e response v a l u e w i t h t h e r e t u r n p e r i o d L, i n t h e sense t h a t storms, i n w h i c h a t l e a s t one response peak exceeds f ( L ) , occur on t h e average once m a d u r a t i o n L. The v a l u e f ( L ) i s a p p r o x i m a t e l y equal t o t h e most proba-b l e v a l u e o f t h e l a r g e s t r^^ i n a d u r a t i o n L, and t h e p r o proba-b a proba-b i l i t y t h a t i n a d u r a t i o n L a t l e a s t one storm occurs i n w h i c h a t l e a s t response peak r„ exceeds r ( L ) , i s

1 - exp (-1) 0.63 ( r e f . 5 ) . ^ -m

Throughout t h e developments g i v e n above, storms have been t r e a t e d as independent events w i t h r e s p e c t t o t h e times o f t h e i r occurrence and w i t h r e s p e c t t o t h e i r parameters. A l -though t h i s may n o t be c o r r e c t i n t h e s t r i c t sense, i t has so f a r been g e n e r a l l y

(8)

accepted as a b a s i s f o r a n a l y s i s and p r e d i c t i o n . A t any r a t e , t h e r e i s a t p r e s e n t i n s u f f i -c i e n t knowledge about p o s s i b l e dependen-cies between storms t o i n -c o r p o r a t e t h a t i n a model. Moreover, i f i n f a c t some dependence i s p r e s e n t t h e n t h e independence assumption i s c o n s e r v a t i v e , i n t h e sense t h a t i t then o v e r p r e d i c t s t h e encounter p r o b a b i l i t i e s o f

Concluding remark

I n t h i s paper, some g e n e r a l aspects have been c o n s i d e r e d o f l o n g - t e r m s t a t i s t i c s o f e n v i r o n m e n t a l f a c t o r s and t h e i r use i n the d e s i g n o f o f f s h o r e s t r u c t u r e s . A p p l i c a t i o n s t o s p e c i f i c cases have n o t been presented h e r e i n ; i n s t e a d , the p h i l o s o p h y o f approach and f o r m a l i s m s f o r c a l c u l a t i o n s have been emphasized because i n the a u t h o r ' s o p i n i o n these o f t e n r e c e i v e i n s u f f i c i e n t a t t e n t i o n .

References

1 B a t t j e s , J.A.; " P r o b a b i l i s t i c aspects o f ocean waves". Proc. Seminar on S a f e t y o f s t r u c t u r e s under dynamic l o a d i n g , o r g a n i s e d by U n i v e r s i t y o f Norway, Trondheim.

(June 23 - J u l y 1, 1977). ( A l s o a v a i l a b l e as Communications on H y d r a u l i c s , Report no. 77 - 2, L a b o r a t o r y o f F l u i d Mechanics, Department o f C i v i l E n g i n e e r i n g , D e l f t U n i v e r s i t y o f Technology.)

2 Borgman, L.: "Maximum wave h e i g h t p r o b a b i l i t i e s f o r a random number o f random i n t e n ¬ s i t y storms". Proc. I 2 t h I n t . Conf. on C o a s t a l Eng., o r g a n i s e d by ASCE, Washington, D.C., V o l . 1 , p. 53-64. ( 1 9 7 0 ) .

orgman, L.: " P r o b a b i l i t i e s f o r h i g h e s t wave i n a h u r r i c a n e " . Proc. ASCE, 99, WW2, . 185-207. (May 1973). g i a n I n s t i t u t e o f Technology, Norwegian M e t e o r o l o g i c a l 3 Bor P 4 Det Norske V e r i t a s No I n s t i t u t e ; " E n v i r o n m e n t a l c o n d i t i o n s o f t h e Norwegian C o n t i n e n t a l S h e l f w i t h s p e c i a l emphasis on e n g i n e e r i n g a p p l i c a t i o n s " . Report p r e p a r e d f o r t h e Norwegian P e t r o l e u m D i r e c t o r a t e , Stavanger. (1975?).

5 Gumbel, E.J.: " S t a t i s t i c s o f extremes". Columbia U n i v e r s i t y P r e s s , New Y o r k , N.Y.

Cytaty

Powiązane dokumenty

Experimental economics has provided ambiguous estimates of ε (see Levitt &amp; List 2007, for a broader discussion). Beckman et al. 19) noted that the apparent

Przykładem pozytywnego wpływu sztuki na poziom akceptacji śmierci może być fakt, że ludzie u których wzbudzano negatywne emocje dotyczące własnej śmiertelności

When p grows, the val- ue of c for which the bias is equal to zero is shifting towards higher values (see.. Figure 7), although it remains below one (even for much larger p’s such as

Matryca fotodetektorów na powierzchni implantu odbiera obraz siatkówkowy powstający na dnie oka i zamienia go na impulsy elektryczne, które następnie przedostają

Teksty odwołują się do mistyki męki, polegającej na łączności z cierpiącym Jezusem, szczególnie powstałej w kręgu zakonnym: Mechtyldy z Magdeburga, kon- templującej

Мета, якої прагнуть; те, що хочуть здійснити (Академічний тлумачний словник української мови, 1980). Таким чином, поняття «завдання» може

Wydaje się, że niepo­ trzebnie odwołuje się do ujęć słownikowych, wzpada jednak podkreślić, że sprawnie referuje zasadnicze myśli o formie eseju, zawarte w pracach

Osobiennosti poczwy как sredy obitanija i jej zna­ czenie w ew olucji niesiekom ych.. К charakteristikie metodow ucze- ta czislienności i massy poczwiennoj