• Nie Znaleziono Wyników

Two-dimensional moonpool resonances for interface and surface-piercing twin bodies in a two-layer fluid

N/A
N/A
Protected

Academic year: 2021

Share "Two-dimensional moonpool resonances for interface and surface-piercing twin bodies in a two-layer fluid"

Copied!
15
0
0

Pełen tekst

(1)

Applied Ocean Research 47 (2014) 2 0 4 - 2 1 8

ELSEVIER

Contents lists available at ScienceDirect

Applied Ocean Research

joutnal honnepage: www.elsevier.com/locate/apor

Two-dimensional moonpool resonances for interface and

surface-piercing twin bodies in a two-layer fluid

Xinshu Zhang^'*, Piotr Bandyk'^

^ Department of Naval Architecture and Marine Engineering, University ofMicliigan, Ann Arbor, MI 4SW9, United States " DRS Technologies, Inc., Advanced Marine Technology Center, Stevensville, MD 21666, United States

CrossMark

A R T I C L E I N F O A B S T R A C T

Article history:

Received 22 November 2013 Received i n revised f o r m 18 May 2014 Accepted 18 M a y 2014 Available o n l i n e 2 July 2014 Keywords: Two-layer f l u i d Moonpool resonance Internal wave Hydrodynamic coefficients interface and surface-piercing

We study the moonpool resonances of two interface and surface-piercing rectangular bodies in a two-layer fluid due to forced harmonic heave morion. The problem is solved by employing a domain decomposition scheme with an eigenfuncrion matching approach. Heave added mass and damping coefficients, as well as inner and outer region (far-field) radiated wave elevations, are computed to exam-ine the hydrodynamic behavior ofthe twin floaring bodies. The numerical solutions have been compared with those for the case investigated by Zhang and Bandyk [1 ], where the floaring bodies remain in the upper layer fluid. The present analyses reveal that there exist both Helmholtz and higher-order, also called sloshing mode, resonances in the two-layer fluid. It is found that, for an interface and surface piercing twin bodies, the higher-order resonances are closely related with both the free surface and internal waves inside the moonpool gap. Moreover, it is also found that low frequency forced motion can excite higher-order resonances through forming standing internal waves inside the moonpool. Parametric studies have been performed to idenrify the dependence of hydrodynamic behavior and resonant chatacterisrics on geometry and density strarificarion.

© 2014 Elsevier Ltd. All rights reserved.

1. I n t r o d u c t i o n

This p a p e r a i m s t o s t u d y t h e m o o n p o o l w a v e r e s o n a n c e p h e -n o m e -n o -n i -n a t w o - l a y e r f l u i d s y s t e m d u e t o t h e o s c i l l a t i -n g heave m o t i o n o f t w o i d e n t i c a l r e c t a n g u l a r bodies (also c a l l e d t w i n b o d -ies). I n c o n t r a s t t o a p r e v i o u s p a p e r [ 1 ] , w h i c h addresses t h e case w h e r e the f l o a t i n g t w i n b o d i e s o n l y r e m a i n i n t h e u p p e r l a y e r f l u i d , t h e p r e s e n t s t u d y w i l l f o c u s o n t h e m o o n p o o l r e s o n a n c e d u e t o i n t e r f a c e a n d s u r f a c e p i e r c i n g bodies. The m o o n p o o l s t u d i e d i n t h e p r e s e n t p a p e r m o d e l s t h e o p e n i n g / g a p b e t w e e n t w o f l o a t i n g b o d -ies, s u c h as a l i q u i f i e d n a t u r a l gas ( L N G ) c a r r i e r a n d t e r m i n a l i n t h e case o f s i d e - b y - s i d e a r r a n g e m e n t s , o r b e t w e e n t h e i n d i v i d u a l h u l l s o f a m u l t i - h u l l vessel. I n o f f s h o r e o p e r a t i o n , t h e f l u i d m o t i o n i n s i d e t h e m o o n p o o l a n d t h e d y n a m i c b e h a v i o r o f t h e h u l l s are c r i t -ical t o t h e d e s i g n a n d analysis o f ships, a n d also v e r y i m p o r t a n t f o r t h e d e v e l o p m e n t o f a n e f f i c i e n t a n d r e l i a b l e p r o c e d u r e f o r o f f s h o r e o p e r a t i o n s s u c h as d r i l l i n g , p i p e l i n e l a y i n g , floatover i n s t a l l a t i o n , a n d cargo o r c r e w t r a n s f e r r i n g . I n a d d i t i o n , t h e m o t i o n d y n a m i c s o f t h e LNG s h i p d u r i n g o f f l o a d i n g is also c r u c i a l f o r t a n k s l o s h i n g analysis o f t h e l i q u i f i e d gas. * Corresponding a u t h o n Tel.: +1 281 721 2369.

E-mail addresses: x i n s h u z ® u m i c h . e d u (X. Zhang), pbandyk@drs.com (P. Bandyk). 0141-1187/$ - see f r o n t m a t t e r ® 2014 Elsevier Ltd. A l l rights reserved.

http://dx.doi.org/10.1016/J.apor.2014.05,005

M o l i n [ 2 ] a n d M c l v e r [ 3 ] d e m o n s t r a t e d a resonance i n s i d e t h e m o o n p o o l u s i n g l i n e a r i z e d w a t e r w a v e t h e o r y . Y e u n g a n d Seah [ 4 ] s t u d i e d m o o n p o o l resonance f o r t w o s y m m e t r i c r e c t a n g u -lar bodies i n finite w a t e r d e p t h u s i n g a n e i g e n f u n c t i o n m a t c h i n g m e t h o d . Faltinsen [ 5 ] s t u d i e d t h e t w o - d i m e n s i o n a l p i s t o n - l i k e w a v e s l o s h i n g i n s i d e a m o o n p o o l based o n a d o m a i n d e c o m p o s i -t i o n s c h e m e a n d -the G a l e r k i n m e -t h o d , c o m p a r i n g n u m e r i c a l resul-ts w i t h e x p e r i m e n t a l m e a s u r e m e n t s . Later, K r i s t i a n s e n a n d F a l t i n -sen [ 6 , 7 ] i n v e s t i g a t e d o n t h e s a m e p r o b l e m u s i n g a v o r t e x t r a c k i n g m e t h o d a n d CFD, a n d f o u n d t h e d a m p i n g o n t h e near r e s o n a n t w a v e is m a i n l y due t o t h e v o r t e x s h e d d i n g f r o m t h e s h a r p c o r n e r p o i n t s . M o l i n [ 8 , 9 ] also e x t e n s i v e l y r e s e a r c h e d o n t h e d a m p i n g e f f e c t s o n gap resonances b y e x p e r i m e n t s a n d n u m e r i c a l s t u d i e s . M o s t o f t h e p r e v i o u s m o o n p o o l h y d r o d y n a m i c s t u d i e s h a v e b e e n f o c u s e d o n a s i n g l e - l a y e r fluid; v e r y f e w h a v e b e e n c a r r i e d o u t f o r s t r a t i f i e d flow, w h i c h occurs i n t h e m a r i n e e n v i r o n m e n t [ 1 0 - 1 2 ] . I n s t r a t i f i e d flow, t h e d e n s i t y changes w i t h t h e v a r i a t i o n s i n s a l i n i t y o r t e m p e r a t u r e i n t h e v e r t i c a l d i r e c t i o n . For e x a m p l e , a p y c n o c l i n e is d e f i n e d as the l a y e r w h e r e d e n s i t y change s i g n i f i c a n t l y . The fluid d e n s i t y above a n d b e l o w t h e p y c n o c l i n e is a l m o s t c o n s t a n t . T h e r e f o r e , w e can m o d e l t h e s t r a t i f i e d fluid s y s t e m as a t w o l a y e r fluid a s s u m i n g the p y c n o c l i n e is i n f i n i t e l y s m a l l .

W h e n t h e w a v e s t r u c t u r e i n t e r a c t i o n is t r e a t e d u s i n g p o t e n -tial t h e o r y , t h e b o u n d a r y v a l u e p r o b l e m m a y h a v e a n e i g e n v a l u e t o s a t i s f y t h e c o n d i t i o n o f n o r a d i a t e d w a v e s at i n f i n i t y . The cor-r e s p o n d i n g e i g e n f u n c t i o n is c a l l e d a ' t cor-r a p p i n g s t cor-r u c t u cor-r e ' . A t the

(2)

X Zhang, P. Bandyk/Applied Ocean Research 47 (2014) 204-218

z W

205

ni

Fig. 1. Definition o f the p r o b l e m and coordinate systems.

t r a p p e d m o d e f r e q u e n c y , t h e a d d e d mass c o e f f i c i e n t s can be i n f i -n i t e . E x t e -n s i v e r e s e a r c h has b e e -n c o -n d u c t e d t o i -n v e s t i g a t e o -n t h e p o s s i b i l i t y o f ' w a v e t r a p p i n g ' , a p h e n o m e n a f o r b o t h fixed a n d floaring bodies. The .so-called ' t r a p p e d m o d e ' has been r e s e a r c h e d by M c l v e r [ 1 3 - 1 5 ] a n d K u z n e t s o v [ 1 6 ] f o r t w o - d i m e n s i o n a l a n d t h r e e - d i m e n s i o n a l cases, r e s p e c t i v e l y . N e w m a n [ 1 7 ] also s t u d i e d t h e t r a p p e d w a v e r e s o n a n c e i n a floating t o r u s u s i n g W A M I T . K u z n e t s o v et a l . [ 1 8 ] i n v e s t i g a t e d the w a v e t r a p p i n g m o d e s f o r t w o -d i m e n s i o n a l bo-dies i n a t w o - l a y e r fliii-d. H o w e v e r , t h e e x i s t e n c e o f w a v e t r a p p i n g m a y be a r a r e e x c e p d o n f o r a c t u a l m o o n p o o l s , i n c l u d i n g t h e p r e s e n t l y s t u d i e d d u a l h e a v i n g r e c t a n g u l a r bodies. Nevertheless, i d e n t i f y i n g t h e t r a p p e d r e s o n a n t c h a r a c t e r i s t i c s f o r a g i v e n m o o n p o o l s t r u c t u r e is c r i t i c a l ; a n d a m o t i v a t i o n f o r t h e p r e s e n t s t u d y . L i n t o n a n d M c l v e r [ 1 9 ] s t u d i e d t h e w a v e r a d i a t i o n a n d scat-t e r i n g o f a h o r i z o n scat-t a l c y l i n d e r i n a scat-t w o - l a y e r fluid. Y e u n g a n d N g u y e n [ 2 0 , 2 1 ] d e r i v e d a G r e e n f u n c t i o n f o r a s t e a d i l y t r a n s l a t -i n g source a n d a t w o - d -i m e n s -i o n a l t r a n s -i e n t G r e e n f u n c t -i o n f o r a n o s c i l l a t i n g source. T h e l a t t e r can be used f o r t h e c o m p u t a t i o n o f w a v e - s t r u c t u r e i n t e r a c t i o n i n t h e time d o m a i n . A l a m et a l . [ 2 2 ] i n v e s t i g a t e d t h e t h r e e d i m e n s i o n a l G r e e n f u n c t i o n f o r a n o s c i l l a t -i n g source t r a n s l a t -i n g w -i t h s t e a d y s p e e d a n d c o m p a r e d t h e f a r - f -i e l d r a d i a t e d w a v e s w i t h t h e r e s u l t s u s i n g d i r e c t n u m e r i c a l s i m u l a t i o n . The m e t h o d d e v e l o p e d i n t h i s p a p e r is a p p l i c a b l e t o t w i n r e c t a n g u -lar bodies. I n o r d e r t o s t u d y t h e case f o r a g e n e r a l i z e d g e o m e t r i e s , a f r e e s u r f a c e Green's f u n c r i o n o r Rankine p a n e l m e t h o d m a y be e m p l o y e d . T e n a n d K a s h i w a g i [ 2 3 ] a n d K a s h i w a g i e t al. [ 2 4 ] s t u d i e d t h e w a v e r a d i a t i o n a n d d i f f r a c t i o n p r o b l e m s f o r a t w o - d i m e n s i o n a l b o d y o f a r b i t r a r y shape u s i n g G r e e n f u n c t i o n , a n d c o m p a r e d t h e i r n u m e r i c a l results w i t h e x p e r i m e n t s . A n e i g e n f u n c t i o n m a t c h i n g m e t h o d is d e v e l o p e d i n t h e p r e s e n t s t u d y t o solve t h e b o u n d a r y v a l u e p r o b l e m f o r a t w o - l a y e r fluid sys-t e m . T h e e i g e n f u n c sys-t i o n m a sys-t c h i n g m e sys-t h o d has b e e n w i d e l y u s e d sys-t o s t u d y w a v e - b o d y i n t e r a c t i o n p r o b l e m s ( Y e u n g [ 2 5 ] , S h i p w a y a n d Evans [ 2 6 ] ) f o r e i t h e r t w o - d i m e n s i o n a l o r t h r e e - d i m e n s i o n a l cases. M a v r a k o s [ 2 7 ] also a p p l i e d t h e m e t h o d to c o m p u t e t h e h y d r o -d y n a m i c c o e f f i c i e n t s f o r t w o c o n c e n t r i c s u r f a c e - p i e r c i n g t r u n c a t e -d c i r c u l a r c y l i n d e r s . M o r e r e c e n t i y , M a v r a k o s a n d C h a t j i g e o r g i o u [ 2 8 ] used t h e m e t h o d t o s t u d y t h e s e c o n d o r d e r w a v e d i f f r a c t i o n p r o b -l e m f o r t w o c o n c e n t r i c c i r c u -l a r c y -l i n d e r s . T h e p r i n c i p a l f o c u s o f t h e p r e s e n t p a p e r is t h e w a v e r a d i a t i o n due t o heave e x c i t a t i o n o f t h e t w i n bodies i n b o t h u p p e r a n d l o w e r fluid layers. W e first g i v e t h e m a t h e m a t i c a l f o r m u l a t i o n , f o l l o w e d b y a n u m e r i c a l s c h e m e t o s o l v e t h e d i s c r e t i z e d l i n e a r s y s t e m . T h e h y d r o d y n a m i c b e h a v i o r o f t h e floating t w i n bodies near H e l m h o l t z (also c a l l e d p i s t o n m o d e ) a n d h i g h e r - o r d e r (also called s l o s h i n g

m o d e s ) r e s o n a n t m o d e s is e x a m i n e d . The o u t e r r e g i o n ( f a r field) r a d i a t e d f r e e surface a n d i n t e r n a l w a v e s are c o m p u t e d a n d d i s -cussed. P a r a m e t r i c s t u d i e s are p e r f o r m e d t o e x a m i n e t h e e f f e c t s o f m o o n p o o l g e o m e t r y a n d d e n s i t y s t r a t i f i c a t i o n o n t h e r e s o n a n t fluid m o t i o n a n d h y d r o d y n a m i c c o e f f i c i e n t s . I t s h o u l d be n o t e d t h a t t h e a s s u m p t i o n o f p o t e n t i a l flow d u r i n g r e s o n a n t b e h a v i o r g e n e r -a l l y o v e r - p r e d i c t s w -a v e -a m p l i t u d e s , -a n d v i s c o u s e f f e c t s ( s u c h -as v o r t e x s h e d d i n g f r o m t h e c o r n e r s ) m u s t be c o n s i d e r e d . H o w e v e r , t h e m e t h o d p r o p o s e d h e r e is e f f e c t i v e i n q u i c k l y p r e d i c t i n g reso-n a reso-n t c h a r a c t e r i s t i c s g i v e reso-n a m o o reso-n p o o l c o reso-n f i g u r a t i o reso-n , w h i c h m a y be used i n d e s i g n a n d o p t i m i z a t i o n . 2. M a t h e m a t i c a l f o r m u l a t i o n The s u r f a c e a n d i n t e r n a l w a v e s caused b y f o r c e d s m a l l a m p l i -t u d e v e r -t i c a l (heave) m o -t i o n o f -t w o r e c -t a n g u l a r h u l l s w i -t h i d e n -t i c a l g e o m e t r y i n a t w o - l a y e r fluid are s t u d i e d . T h e p r o b l e m s k e t c h is s h o w n i n Fig. 1. The w i d t h o f e a c h r e c t a n g u l a r b o d y is 2B. The d i s -tance b e t w e e n t h e t w o centers o f t h e b o d i e s is 2 W . T h e d r a f t o f e a c h floating c y l i n d e r is d. The d e p t h o f u p p e r a n d l o w e r fluid is / i i a n d Ii2, r e s p e c t i v e l y , w i t h a t o t a l w a t e r d e p t h ft = h i + h2. The fluid is a s s u m e d t o be ideal a n d t h e flow i r r o t a t i o n a l . T h e fluid d e n s i t y f o r t h e u p p e r a n d l o w e r fluid are p i a n d P2. r e s p e c t i v e l y . Since o n l y heave m o t i o n is s t u d i e d here, t h e h y d r o d y n a m i c p r o b l e m is s y m -m e t r i c a b o u t x = 0 ; t h e r e f o r e o n l y t h e d o -m a i n x > 0 is c o n s i d e r e d . T h e p r e s e n t s t u d y c o n s i d e r s t h e case o f d > h i , w h i c h assumes t h e t w i n bodies p e n e t r a t e t h e i n t e r f a c i a l s u r f a c e at z = - h i .

Let t h e heave m o t i o n o f t h e t w o i d e n t i c a l b o d i e s be f cos(a)f), w h e r e a) is t h e a n g u l a r f r e q u e n c y a n d f is t h e m o t i o n a m p l i t u d e . W e assume f « ; 0 ( 1 ) . T h e v e l o c i t y p o t e n t i a l w i t h i n t h e t w o - l a y e r fluid can be w r i t t e n as $ ( ' " ' ( x , z, f ) = W [ - i w ? < ^ ( ' " ' ( x , z ) e - ' ' " f ] ( 1 ) w h e r e (p'-"'\x, z) is t h e s p a t i a l v e l o c i t y p o t e n t i a l , m = 1 r e p r e s e n t s t h e s o l u t i o n i n t h e u p p e r fluid a n d m = 2 r e p r e s e n t s t h e s o l u t i o n i n the l o w e r fluid. The g o v e r n i n g e q u a t i o n f o r ^ f " " ' is t h e Laplace e q u a t i o n

«

The l i n e a r i z e d f r e e s u r f a c e b o u n d a r y c o n d i t i o n is w r i t t e n as -Krp^'^'i = 0 at z = 0 " ( 3 ) w h e r e K=(a^jg, a n d g is t h e g r a v i t a t i o n a l a c c e l e r a t i o n a n d

<P^ = d(pldz.

(3)

2 0 6 X. Zhang. P. Bandyk/ Applied Ocean Research 47 (2014) 204-218 The b o u n d a r y c o n d i t i o n s at t h e i n t e r f a c i a l s u r f a c e can be w r i t t e n as (see [ 2 1 ] a n d [ 2 9 ] ) at z = - / i i y ( 4 i ^ - / C 0 n ) ) = 4 2 ) _ / f 0 ( 2 ) at 2 = - h i (4) (5) w h e r e y = p i / p 2 is t h e d e n s i t y r a t i o . Because o n l y s y n c h r o n i z e d p i s t o n t y p e m o d o n o f the t w i n b o d -ies is c o n s i d e r e d , t h e h y d r o d y n a m i c p r o b l e m is s y m m e t r i c a b o u t t h e x = 0, i m p l y i n g /)i'") = 0 o n x = 0 The b o u n d a r y c o n d i t i o n a t t h e seabed is g i v e n b y = 0 a t z = - / 7 , ~-h2 = -h (6) (7) I n a d d i t i o n , m u s t s a t i s f y t h e n o - f l u x c o n d i t i o n o n t h e s o l i d b o d y b o u n d a r i e s . L e v e r a g i n g t h e s y m m e t r y p r o p e r t y , t h e side face b o u n d a r y c o n d i t i o n s are 4 " ' ^ = 0 a t X = I V T B , - d < z < 0 A n d t h e b o t t o m face b o u n d a r y c o n d i t i o n (/>p^ = 1 at z = -d,W-B<x<W + B (8) (9)

2. J. Division of computational domain

T h e r i g h t side o f t h e f l u i d d o m a i n {x > 0 ) can b e d e c o m p o s e d i n t o t h r e e r e c t a n g u l a r s u b - d o m a i n s w h i c h i n c l u d e I , I I , a n d i l l , as s h o w n i n Fig. 1. T h e v e l o c i t y p o t e n t i a l s i n t h o s e r e g i o n s are d e n o t e d b y 0f{m)^ 0//(2) g j ^ j j 0m(m)^ r e s p e c t i v e l y . 0 " ( 2 ) is t h e v e l o c i t y p o t e n t i a l o f t h e s u b d o m a i n u n d e r n e a t h t h e b o d y . Hence, t h e f l u i d w i t h i n r e g i o n I I s h o u l d s a t i s f y t h e f o l l o w i n g g o v e r n i n g e q u a t i o n (10) ( 1 1 ) (12) 0 S . ^ ' + 0 ^ ( 2 ) = O w i t h t h e f o l l o w i n g b o u n d a r y c o n d i t i o n s fQj. W-B<x<W-i-B,z = -d 0"'^^ = O f o r W-B <x <W-\-B,z==-li T h e v e l o c i t y p o t e n t i a l (t)'M f o r r e g i o n s 1 s h o u l d s a t i s f y

<Axi'"' + 0 z ^ ' = O ( 1 3 )

w i t h t h e f o l l o w i n g b o u n d a r y c o n d i t i o n s (f,P-K4>'W^0 a t z = 0 ( 1 4 ) A'(2) . : 0 a t z = - / i (15)

T h e t h r e e c o n d i t i o n s above, Eqs. ( 1 3 ) - ( 1 5 ) , are t r u e i n r e g i o n III ( s u b s t i t u t e ( / ) " ' f o r </>'). O n t h e a d j o i n i n g b o u n d a r y x = W - B 0 ' ( 2 ) = </,"(2) at j ; ^ V V - B , -]i<z<-d ( 1 6 ) 0 i < 2 ) ^ 0 / / ( 2 ) a t x = W - B , -\i<z<-d ( 1 7 ) (/>i^"" = 0 a t x = M / - B , ~ d < z < 0 ( 1 8 ) O n t h e a d j o i n i n g b o u n d a r y x = W + B, 0 " ' ( 2 ) = 0 " ( 2 ) a t x = W + B, - / ! < z < - d ( 1 9 ) 0 f 2 ) = 0j;'(2) at x = W + B, - / t < z < - d ( 2 0 ) = O a t x = W + B, - d < z < 0 (21) Eqs. ( 1 6 ) , ( 1 7 ) , ( 1 9 ) a n d ( 2 0 ) , are n e e d e d t o e n s u r e t h e c o n t i n u i t y o f t h e f l u i d v e l o c i t y a n d p o t e n t i a l a t t h e c o m m o n b o u n d a r y o f t h e n e i g h b o r i n g r e g i o n s . T h e s y m m e t r y c o n d i t i o n a b o u t t h e z-axis a t x = 0 f o r r e g i o n I gives 0 f o r X = 0, - / i < z < 0 (22) I n r e g i o n 111, t h e r a d i a t i o n c o n d i t i o n f o r t h e w a v e e l e v a t i o n i m p l i e s t h a t

y{x,t) = r){x)e-'""t as x^co ( 2 3 ) w h e r e Y{x, t) is t h e o u t g o i n g f r e e surface w a v e e l e v a t i o n . T h e s o l u -tions i n a l l t h e t h r e e regions h a v e t o be m a t c h e d a t t h e a d j o i n i n g b o u n d a r i e s . 2.2. Solution in subdomain I The v e l o c i t y p o t e n t i a l i n r e g i o n I c a n b e w r i t t e n as, oo 0'(™)(x, z ) = ^ B ] A ' ( / < j " , x ) z ( " " ( / < j ^ ' , z ) J=0 • ^ B f A ' { l f \ x ) Z ^ " ' \ l j ,(2) (24) j=o w h e r e A ' a n d Z^'"' are t h e e i g e n f u n c t i o n s i n t h e h o r i z o n t a l a n d v e r t i c a l d i r e c t i o n s , r e s p e c t i v e l y . Bl a n d B? are c o e f f i c i e n t s w h i c h w i l l b e d e t e r m i n e d b y m a t c h i n g f l u i d v e l o c i t y a n d p o t e n t i a l a t t h e j u n c t u r e b o u n d a r y b e t w e e n r e g i o n s I a n d I L / < | " \ j = 0 , 1 , . . . , ooare t h e e i g e n v a l u e s w h i c h c a n be c a l c u l a t e d b y s o l v i n g t h e d i s p e r s i o n r e l a t i o n s ( 2 5 ) a n d ( 2 9 ) . For j = 0, t h e d i s p e r s i o n r e l a t i o n can b e s h o w n t o be

fc

2 ( l + ) t , t 2 ) f l + t 2 + ( - ! ) " - , + t 2 r - 4 « l t 2 ( l + )/t,t2) (25) w h e r e n = 1 r e p r e s e n t s t h e d i s p e r s i o n r e l a t i o n f o r t h e s u r f a c e w a v e a n d n = 2 r e p r e s e n t s t h e i n t e r n a l w a v e . Y e u n g [ 2 1 ] d e r i v e d t h e d i s -p e r s i o n r e l a t i o n s h o w n i n ( 2 5 ) f o r o u t g o i n g w a v e s u s i n g t h e m e t h o d o f s e p a r a t i o n o f variables, w i t h t h e f o l l o w i n g d e f i n i t i o n s e = l - y t l = tanh(;<:/ii) t2 = t a n h ( W i 2 ) For j > 1, t h e d i s p e r s i o n r e l a t i o n is 0)2 -k g 2 ( l - ) / t i t 2 ) w i t h f l = t a n ( W i i ) f2 = tan(/i/72) t i + t 2 + ( - i r + t 2 r - 4 e t , t 2 C l - y t i t 2 ) (26) (27) (28) (29) (30) (31) T h e d i s p e r s i o n r e l a t i o n ( 2 5 ) is i l l u s t r a t e d i n Fig. 2. As s h o w n i n t h e flgure, i n c o n t r a s t t o f r e e surface w a v e m o d e , t h e i n t e r n a l w a v e n u m b e r s h o w s m o r e sensitive t o t h e d e n s i t y r a t i o y. By s e l e c t i n g y = 1, t h e t w o l a y e r fluid s y s t e m b e c o m e s a s i n g l e -l a y e r f-luid, a n d t h e d i s p e r s i o n r e -l a t i o n ( 2 5 ) r e d u c e s t o ^ = /<tanh(/</i), OJI=0; W h i l e t h e o t h e r d i s p e r s i o n r e l a t i o n ( 2 9 ) r e d u c e s t o - / c t a n ( / d j ) , ft)? = 0; (32) (33) w h i c h are c o n s i s t e n t w i t h t h e d i s p e r s i o n r e l a t i o n s f o r s i n g l e - l a y e r fluid s y s t e m (see Y e u n g [ 4 ] a n d W e h a u s e n [ 3 0 ] ) .

(4)

X. Zhang, P. Bandyk /AppUed Ocean Research 47 (2014) 204-218 207

UJ

Fig. 2. Dispersion relation of a two-layer f l u i d system, K is wave number, a) is wave frequency, and y is the density ratio.

The e i g e n f u n c t i o n i n t h e v e r t i c a l d i r e c t i o n Z^""' is w r i t t e n as (Ü;2

'^Vg/<[,"))sinh;<f,'"z-hcosh/4"'z

2 0 ) ( ; f , z ) = {co'^/gkf'>)smlf^z + c o s l f h « 2 c o s h / 4 " ' ( z - ^ l i )

for j = 0

f o r j > l ( 3 4 ) g;c[,"'sinh/4"'h2 c t ) 2 c o s ; < j " ' ( z - f h ) t g f c f s i n f c f h 2 f o r i = 0 f o r j > l ( 3 5 ) w h e r e a'(fcj"') is t h e a m p l i t u d e r a d o d e f i n e d b y ; ) / , , ) [ 1 _ ^ t a n h 1 f o r j = 0 cosh(/<; in) ( 3 6 ) cos(/<"Jh,) - 1 i ^ t a n ; < " J / i i f o r j > l The e i g e n f u n c t i o n i n t h e h o r i z o n t a l d i r e c t i o n A ' f o r r e g i o n I is w r i t t e n as c o s ( ; 4 " ' x ) A ' ( k ( ' " , x ) = c o s ( / < [ | " ' ( W - B ) ) cosh(;<]"'x) c o s h ( / < j " ' ( W - B ) )

for J = 0

f o r j > l ( 3 7 ) 2.3. Solution in subdomain UI The s o l u t i o n i n r e g i o n 111 can be w r i t t e n as w h e r e A j a n d A? are c o e f f i c i e n t s w h i c h w i l l be d e t e r m i n e d b y m a t c h i n g t h e b o u n d a r y c o n d i t i o n at t h e j u n c t u r e b o u n d a r y b e t w e e n regions 11 a n d I I I . A ' " is t h e e i g e n f u n c t i o n i n t h e h o r i z o n t a l d i r e c t i o n f o r r e g i o n 111 A ' " ( / < f ' , x ) = ( 3 9 ) 2.4. Solution in subdomain II The s o l u t i o n i n r e g i o n 11 can be d e c o m p o s e d i n t o a h o m o g e n e o u s s o l u t i o n 4>"^ a n d a p a r t i c u l a r s o l u t i o n </)'*, w h i c h is c o n s t r u c t e d t o s a t i s f y t h e i n h o m o g e n e o u s b o u n d a r y c o n d i t i o n d e s c r i b e d i n Eq. ( 9 ) . Thus t h e t o t a l s o l u t i o n ó" is w r i t t e n as 6 " = ^()'"'-h0"P The h o m o g e n e o u s s o l u t i o n c a n be e x p r e s s e d as è " ' ' ( x , z ) = £ ^ H ( A , . , x ) y ( X j , z ) ( 4 0 ) ( 4 1 ) 1=0 w i t h H ( A , - , x ) : Co + Do x-W B f o r ! = 0 c o s h A K x W ) s i n h A , < x - W ) . ^ ^ ' c o s h X j B ' s m h A f B

w h e r e A.,- are t h e eigenvalues w h i c h can be c o m p u t e d u s i n g

in f o r 1 = 0 , 1 , . . . , , ( 4 2 ) ( 4 3 ) 0"'('")(x,z) = ^ / \ ; A ' " ( / < j ' \ ; ( ) Z ( ' " ' ( k ] ' ^ z ) + ^ / l / A ' ' ' ( ; ^ ^ ^ ^ ^ ( 3 8 ) y ( X j , z ) = ƒ ^ i-o 1-0 " ' • - / t - d The e i g e n f u n c t i o n i n t h e v e r t i c a l d i r e c t i o n Y(Xi, z ) is w r i t t e n as f o r 1 = 0 V 2 c o s A ( ( z - f / i ) f o r ! > 1 ( 4 4 )

(5)

208 X. Zhang, P. Bandyk/Applied Ocean Research 47(2014) 204-218 -O—Added mass, KB =0.09001 —0— Added mass, KB =• 0.13108 —Dampitig, KB = 0.0Ü0Ü1 - a - Dwnpino. KB = 0.13108

10'

log(iVO

Fig. 3. Convergence tests for h y d r o d y n a m i c coefficients (heave added mass and damping), W = 5.0, B = 1.0, hi =2.0, hi =2.0, d = 2 . 5 , ^ " O . ? , K=cü^lg, N, is number o f terms for A|, N j is n u m b e r o f terms f o r A:j"', Nj = 20.

T l i e p a r t i c u l a r s o l u t i o n 0'*, s u b j e c t t o b o u n d a r y c o n d i t i o n s ( 7 ) a n d (9), is g i v e n by

( 4 5 )

By m a t c h i n g the v e l o c i t y p o t e n t i a l a t x = W - B a n d x = W+B, a n d u s i n g t h e o r t h o g o n a l i t y c o n d i t i o n f o r 7,, w e o b t a i n

Q-Di = ^l<(p',Yi> ~ <4>"P,Yi>] it x = W - B ( 4 6 )

Q + = ] ^ [ < 0'". ^ i > - < 0'*, y,- > ] a t X = M/ + B ( 4 7 ) w h e r e W, = / w ( z ) y 2 ( A i , z ) d z = ; 7 - d w ( z ) w i t h t h e w e i g h t f u n c t i o n w ( z ) d e f i n e d b y K - ' l l £ z < 0 ^^ 1 - / i < z < - / i ] M a t c h i n g the f l u i d v e l o c i t y at x = W - B y i e l d s Y^BjA''il<f\ x)Z('"\kf\ z)-i-Y,BfA''{kp, x)Z«^\lf\ z ) k=0 j=0 oo = Y^H'iki,x)Y{ki,z) + <l)'iPix,z) i=0 By u s i n g the o r t h o g o n a l i t y o f Z ( ' " ' ( / c j ^ ' , z), w e o b t a i n ( 4 8 ) ( 4 9 ) (50) BjA''(l<f\x)hé.^'' = / w ( z ) V H ' ( A i , x ) n A , - , z ) Z ( " ' ) ( / < ] ^ ' , z ) d z + / w(z)0j;'P(x,z)Z(""(k('',z)d, ' h 1=0 B^?A''(/<j^',x)JW|i^ = ^ H ' ( A i , x ) L | ^ ^ ^ + / w(z)0i"'(x,z)Z('")(/<(i',z)d 1=0 (51) 1=0 - d B 2 A''(/<t2), = ^ H ' ( A , - , X)L|,^' + ƒ w ( z ) 0 f ( X , z)Z("')(/<]2), z)dz w h e r e i , [ j ' ' a n d i w j " ' are g i v e n i n A p p e n d i c e s B a n d C, respectively. w h e r e ' d e n o t e s t h e d e r i v a t i v e o f the f u n c t i o n s S i m i l a r l y , b y u s i n g the o r t h o g o n a l i t y c o n d i t i o n f o r Z'-'^\lj^\ z), Eq. ( 5 0 ) y i e l d s (52) BfA>\kf\x)M^'^^= / t v ( z ) £ ] H ' ( A i , x ) n A , , z ) Z ( " " ( / < ] 2 ) , z ) d z + / w ( z ) 0 f ( x , z)Z('"'(/<:]2), z ) d J^h J-h

(6)

r

M a t c h i n g the v e l o c i t y a t x = W + B

0 0 0 0

X. Zhang, P. Bandyk/AppUed Ocean Research 47 (2014) 204-218

3. N u m e r i c a l details a n d c o n v e r g e n c e 209 ;<=o ^ H ' ( A ( , x ) y ( X , - , z ) + 0 i " ' ( x , z ) (=0 T a i d n g advantage o f the o r t h o g o n a l i t y o f Z ( ' " ) ( / < j ' \ z ) The i n h o m o g e n e o u s s y s t e m o f t h e six i n t e g r a l e q u a t i o n s i n c l u d -i n g ( 4 6 ) , ( 4 7 ) , ( 5 1 ) , ( 5 2 ) , (54), a n d ( 5 6 ) c o u p l e t h e s -i x g r o u p s o f c o e f f i c i e n t s Q, D,, A j B j , a n d B?. The associated e i g e n v a l u e series ^g^-) is t r u n c a t e d u s i n g N j t e r m s , w h i l e / < ! " ' ( f o r n = 1 , 2 ) is t r u n c a t e d u s i n g Nj t e r m s . Hence, t h e s i x i n t e g r a l e q u a t i o n s are d i s c r e t i z e d i n t o a l i n e a r s y s t e m o f r a n k 2Ni + 4Nj. The l i n e a r s y s t e m is s o l v e d AjA"''(kf\x)My' = j I - h z ) ^ H ' ( A , - , x)Y{Xi, z)Z^"%if\ z)dz + / i ; A ' " ' ( / f U ) M ] " = Y ^ H ' i X t , x ) f + f wiz)<p''''{x,z)ZOnKlj'\z)dz w i t h . f i / < W f o r j = 0 ( 5 5 ) w(z)4>?(x,z)Z^'"\kf\z)dz A " ' \ k f , W + B) = ( 5 4 ) - / < ! " ' f o r j > l S i m i l a r l y , b y u s i n g the o r t h o g o n a l i t y o f Z('"'(;<ï^', z ) u s i n g LU d e c o m p o s i t i o n f o r each f o r c e d m o t i o n f r e q u e n c y . Once t h e six g r o u p s o f c o e f f i c i e n t s are d e t e r m i n e d , t h e h y d r o d y n a m i c c o e f f i c i e n t s a n d b o t h t h e f r e e surface a n d i n t e r f a c i a l surface w a v e e l e v a t i o n s c a n be c o m p u t e d u s i n g Eqs. ( 5 7 ) , ( 5 8 ) a n d ( 6 0 ) . Convergence tests h a v e b e e n c a r r i e d o u t f o r a t y p i c a l m o o n -p o o l c o n f i g u r a t i o n . T w o f o r c i n g f r e q u e n c i e s w i t h n o n - d i m e n s i o n a l

AfA<"\kf\x)M]^^= I "w{z)J2H'{Xi,x)Y{Xi,z)Z^"'\kf\z)dz+ f " wiz)(p'^{x, z)Z('"\kfKz)dz

J-h J-h

AjA"''{k'f\x)M]^^ = Y,^^'(Xi,x)L[ (2) i=0

-d ( 5 6 )

w ( z ) 0 f ( x , z ) Z ( ' " ) ( / < ] 2 ' , z ) d z

2.5. Evaluation of wave elevations and liydrodynamic coefficients The f o r m o f t h e f r e e surface w a v e e l e v a t i o n ( p e r u n i t f o r c e d m o t i o n a m p l i t u d e f ) a t z = 0 can be w r i t t e n as if{x} = K4>('\x,0) ( 5 7 ) w h e r e K=co'^lg T h e i n t e r n a l w a v e e l e v a t i o n (per u n i t f o r c e d m o t i o n a m p l i t u d e f ) a t z = - / i i is d e f i n e d b y „ / r „ ^ _ - / i i ) - K 0 ( " ( x , - f t , ) ]

V ( x )

= 1 - K ( 5 8 ) T h e r e f o r e , all t h e p r e s e n t e d ) f a n d n' are n o n - d i m e n s i o n a l t h r o u g h o u t this paper. T h e n o n - d i m e n s i o n a l heave a d d e d mass a n d d a m p i n g c o e f f i c i e n t s o f t h e t w i n bodies are c o m p u t e d u s i n g t h e v e l o c i t y p o t e n t i a l o n t h e w e t t e d b o d y surface t h r o u g h 033 + iÖ33 B2 W+B <p"{x, - d ) d x w W+B /CB = 0 . 0 9 0 0 1 a n d / f B = 0.13108 are selected. /fB = 0 . 0 9 0 0 1 c o r r e -s p o n d -s t o a n o r m a l w a v e f r e q u e n c y a n d 1CB = 0.13108 i-s clo-se t o t h e first h i g h e r - o r d e r r e s o n a n t f r e q u e n c y . The 'Error' s h o w n i n Figs. 3 a n d 4 is d e f i n e d as (Vjv, - VNmax)/{VNmaxl w h e r e N j ( o r Nj) are t h e n u m b e r o f t e r m s f o r i ( o r j ) a n d ' V r e p r e s e n t s a d d e d mass o r d a m p i n g . I n these studies, Nmax = 5 0 has b e e n selected as t h e u p p e r l i m i t . As i l l u s t r a t e d i n t h e l o g l o g p l o t s , t h e p r e d i c t i o n o f t h e h y d r o -d y n a m i c c o e f f i c i e n t s has a c h i e v e -d g o o -d convergence, e v e n a r o u n -d t h e r e s o n a n t f r e q u e n c y . T h e r e f o r e , N( = N j = 4 0 has b e e n used f o r c o m p u t a t i o n s t h r o u g h o u t t h i s paper, unless o t h e r w i s e s p e c i f i e d . It s h o u l d be n o t e d t h e l o c a l convergence o f the v e l o c i t y a t t h e s h a r p c o r n e r p o i n t s is s l o w d u e t o t h e s i n g u l a r i t y i n f r a m e o f p o t e n t i a l flow t h e o r y , b u t i t does n o t i m p a c t t h e c o n v e r g e n c e o f t h e g l o b a l h y d r o d y n a m i c b e h a v i o r . The c o n t i n u i t y o f fluid v e l o c i t y at t h e i n t e r f a c i a l b o u n d a r y is i l l u s t r a t e d a n d v e r i f i e d i n Figs. 5(a) a n d ( b ) f o r t w o d i f f e r e n t f o r c -i n g f r e q u e n c -i e s . B o t h t h e real a n d -i m a g -i n a r y parts o f v e l o c -i t y d u e t o u p p e r l a y e r fluid 0 ^ ' ' m a t c h t h e v e l o c i t y o f t h e l o w e r l a y e r fluid ^f' at t h e i n t e r f a c i a l s u r f a c e . The s y m m e t r y c o n d i t i o n a b o u t x = 0 is a u t o m a t i c a l l y e n s u r e d b y a p p l y i n g t h e s y m m e t r i c h o r i z o n t a l f u n c -tion g i v e n i n Eq. ( 3 7 ) . 2 rVV+B = • 5 2 / l<P"''{x,-d) + <p"P{x,-d)]dx ( 5 9 ) 4. P r e d i c t i o n o f l i y d r o d y n a m i c c o e f f i c i e n t s ° Jw-B w h e r e 033 a n d Ö33 r e p r e s e n t t h e h e a v e a d d e d mass a n d d a m p i n g c o e f f i c i e n t s o f t h e bodies, r e s p e c t i v e l y . By s u b s t i t u t i n g ( 4 1 ) and ( 4 5 ) i n t o Eq. ( 5 9 ) a n d i n t e g r a t i n g , i t y i e l d s

«33 + itl33 = •

E

H{k,, x)Y{X,, -d)dx + Bih - d) - B3

3 ( / ] - d ) ( 6 0 )

It s h o u l d be n o t e d t h a t t h e d i m e n s i o n a l a d d e d mass a n d d a m p -i n g c o e f f -i c -i e n t s are n o n - d -i m e n s -i o n a l -i z e d b y p2B'^ a n d p2o:>B^, r e s p e c t i v e l y .

I n o r d e r t o v a l i d a t e t h e p r e s e n t c o m p u t a t i o n a l m o d e l , a l i m i t i n g case is selected t o c o m p a r e w i t h t h e results f o r a s i n g l e - l a y e r fluid b y Y e u n g a n d Seah [ 4 ] . The d e p t h s o f t h e u p p e r a n d l o w e r l a y -ers are ft, = 0 . 2 a n d ft2=20.0, r e s p e c t i v e l y . The d r a f t o f t h e t w i n bodies is d = 1 . 0 a n d d e n s i t y r a t i o is y = 0.9. Since ft2/fti = 1 0 0 , t h e p r e s e n t results are e x p e c t e d t o r e d u c e t o t h e s o l u t i o n f o r a s i n g l e -l a y e r f-luid w i t h w a t e r d e p t h ft = 2 0 . As i -l -l u s t r a t e d i n Fig. 6, t h e p r e s e n t c o m p u t a t i o n a l results agree w e l l w i t h t h e s o l u t i o n s f o r t h e s i n g l e - l a y e r fluid case. There are t h r e e b o u n d e d spikes o n t h e c u r v e o f b o t h a d d e d mass a n d d a m p i n g i n t h e l o w f r e q u e n c y r e g i o n b e t w e e n KB=0.02 a n d 0.15. These spikes are r e l a t e d t o h i g h e r - o r d e r

(7)

210 X Zhang, P. Bandyk/Applied Ocean Research 47(2014) 204-218 Added mass, / f S = 0.09001 Added mass, /-STS = 0.1.3108 —•Xr— Damping, KB = 0.09001 -a-. Damping, JfJ? = 0.13108 10 10 10 l o g ( A r , )

Fig. 4 . Convergence tests f o r h y d r o d y n a m i c coefficients (heave added mass and d a m p i n g ) , W = 5 . 0 , B = 1.0, h i =2.0, /12 =2.0, d = 2.5, y = 0.7, K=(o^lg, Nt is n u m b e r of terms f o r Xl, N] is n u m b e r o f terms f o r k j " ' , N, = 20.

resonances o r c a l l e d s l o s h i n g m o d e resonances due t o i n t e r n a l weaves, w h i c h w i l l be f u r t h e r e x p l o r e d i n t h e n e x t s e c t i o n .

Fig. 7 s h o w s t h e h e a v e a d d e d mass a n d d a m p i n g c o e f f i c i e n t s o f t h e t w i n b o d i e s as a f u n c r i o n o f KB f o r a t y p i c a l m o o n p o o l c o n f i g u -r a U o n . The h y d -r o d y n a m i c c o e f f i c i e n t s a-re also l i s t e d i n Table 1. W e seek t h e c r i r i c a l f r e q u e n c i e s w h e r e t h e r e is m i n i m a l w a v e r a d i a -t i o n i n -t h e o u -t e r r e g i o n . As can be seen i n Fig. 7, c r i -t i c a l f r e q u e n c i e s are f o u n d at /CB= 0.102, 0 . 1 3 1 , 0.278, a n d 0.785. The H e l m h o l t z m o d e can be i d e n t i f i e d a r o u n d /CB = 0.102, w h e r e t h e a d d e d mass changes s i g n a n d d a m p i n g a p p r o a c h e s zero. A t t h e o t h e r r e s o -n a -n t f r e q u e -n c i e s , t h u s c a l l e d h i g h e r - o r d e r reso-na-nces, t h e a d d e d mass a n d d a m p i n g b o t h s h o w b o u n d e d spikes. T h e a d d e d mass changes s i g n n e a r t h o s e r e g i o n s a n d t h e d a m p i n g c o e f f i c i e n t s s u d -d e n l y increases a n -d t h e n -d r o p , a p p r o a c h i n g zero. The spikes s h o w n i n Fig. 7 are a l l b o u n d e d since t h e c o m p l e x d e t e r m i n a n t associated

w i t h t h e u n k n o w n c o e f f i c i e n t s Q, D,-, A j , A?, Bj, a n d B?, c o u p l e d b y ( 4 6 ) , ( 4 7 ) , ( 5 1 ) , ( 5 2 ) , ( 5 4 ) , a n d ( 5 6 ) , r e m a i n s n o n - z e r o . 5. F r e e s u r f a c e a n d i n t e r f a c i a l s u r f a c e e l e v a t i o n s B o t h f r e e s u r f a c e a n d i n t e r n a l w a v e e l e v a t i o n s h a v e b e e n c o m p u t e d u s i n g Eqs. ( 5 7 ) a n d ( 5 8 ) , r e s p e c t i v e l y . T h e m o o n p o o l c o n -figuration a n d s t r a t i f i c a t i o n p a r a m e t e r s are t h e s a m e as t h o s e f o r Fig. 7. Fig. 8 s h o w s t h e r e a l a n d i m a g i n a r y c o m p o n e n t s o f t h e c o m -p l e x m o o n -p o o l f r e e s u r f a c e w a v e e l e v a t i o n r]^ a n d i n t e r n a l w a v e e l e v a t i o n rj' i n s i d e the m o o n p o o l n e a r t h e H e l m h o l t z r e s o n a n t f r e q u e n c y l f B = 0.102. As o b s e r v e d i n these figures, t h e i m a g i n a r y c o m p o n e n t changes s i g n n e a r t h e r e s o n a n t f r e q u e n c y , c o n s i s t e n t w i t h t h e a d d e d mass a n d d a m p i n g c h a r a c t e r i s t i c s i l l u s t r a t e d i n ( a ) - - -ffe(0l") - 0 fle(,/,(-)) • • ƒ ? ) ) . ( < / ; ' ! " ) ( b ) ' Re.{(l>{^^) - 0 fle(0p)) Im{<!>{^>) X / m ( 0 ( 2 ' ) l l l l 0.0 o.e - - -ffe(0l") - 0 fle(,/,(-)) • • ƒ ? ) ) . ( < / ; ' ! " ) 0 8 0.6 Re.{(l>{^^) - 0 fle(0p)) Im{<!>{^>) X / m ( 0 ( 2 ' ) 0.4 0.4 - -0.2 02' -1 0 To c > -0.2 ' 1 ° s ^ 0 -1 0 To c > -0.2

-

-0.2 3., -0.4 - -0.4 ~ ~ 0 - — 0 0 Q — 0 S — ^ -0.6 - -0.6

-

-- 0 . 8 - i

-

-0 8 -1 1 1 1 1 L _ -0.1 0.2 0.3 0.4 0.5 0.6 0.7 .x/(W-B) 0 4 0.5 x/(W-B)

(8)

C O

C O

CO C3

10

X. Zhang. P. Bandyk/ AppUed Ocean Research 47 (2014) 204-218 111

2 0 f 15 • A d d e d m a s s - p r e s e n t results D a m p i n g - p r e s e n t results A d d e d m a s s ( Y e u n g a n d S e a h 2 0 0 6 ) D a m p i n g ( Y e u n g a n d S e a h 2 0 0 6 ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

K B

Fig. 6. H y d r o d y n a m i c coefficients o f ttie t w i n floating bodies i n heave m o t i o n , 033 and 633, w i t h W = 5 . 0 , B = 1.0, hi =0.2, hi =20.0, d = 1.0, y = 0 . 9 , K=co^lg

Fig. 7. As can b e i d e n d f i e d f r o m t h e p l o t o f Re{7f}, t h e r e is a n o n z e r o m e a n f r e e s u r f a c e w a v e e l e v a t i o n (?j^) near /fB = 0.102.

Fig. 9 s h o w s t h e r e a l a n d i m a g i n a r y parts o f b o t h f r e e s u r f a c e a n d i n t e r n a l w a v e e l e v a t i o n s near the f i r s t h i g h e r - o r d e r r e s o n a n t f r e q u e n c y , / f B = 0 . 1 3 1 . The r e a l c o m p o n e n t o f t h e i n t e r n a l w a v e changes s i g n a r o u n d /CB = 0 . 1 3 1 , w h i l e the i m a g i n a r y p a r t changes sign a l i t d e b e y o n d KB = 0.132. Fig. 10 s h o w s t h e s a m e set o f r e s u l t s f o r t h e second h i g h e r - o r d e r r e s o n a n t f r e q u e n c y , /CB = 0,278. I t is i n t e r e s t i n g t o f i n d t h a t t h e b e h a v i o r o f the f i r s t t w o h i g h e r - o r d e r resonances are c h a r a c t e r i z e d b y s t a n d i n g i n t e r n a l w a v e s e x i s t i n g i n t h e m o o n p o o l gap, as can be i d e n d f i e d i n b o t h Figs. 9 a n d 10. This i n d i c a t e s t h a t , f o r t h e p r e s e n t m o o n p o o l c o n f i g u r a d o n , t h e f i r s t t w o h i g h e r - o r d e r r e s o n a n t f r e q u e n c i e s are d i r e c t l y associ-a t e d w i t h t h e r associ-a d i associ-a t e d i n t e r n associ-a l w associ-a v e s i n s t e associ-a d o f f r e e s u r f associ-a c e w a v e s . Fig. 11 s h o w s t h e r e a l a n d i m a g i n a r y p a r t s o f b o t h f r e e s u r f a c e a n d i n t e r n a l w a v e e l e v a t i o n s n e a r t h e s i x t h h i g h e r - o r d e r r e s o n a n t f r e q u e n c y /<:B = 0.785. Based o n t h e f r e e s u r f a c e w a v e e l e v a d o n i n t h e m o o n p o o l gap, t h e r e s o n a n c e c a n be c o r r e l a t e d w i t h t h e s t a n d -i n g f r e e surface w a v e -i n t h e m o o n p o o l . T h -i s p h e n o m e n o n w a s n o t f o u n d i n t h e p r e v i o u s s t u d i e s [ 1 ] . F u r t h e r , t h e f o r m o f t h e s t a n d i n g f r e e surface w a v e suggests t h i s r e s o n a n c e m o d e is t h e f i r s t r e l a t e d t o t h e f r e e s u r f a c e . The f i r s t f i v e h i g h e r - o r d e r r e s o n a n t f r e q u e n c i e s are all associated w i t h i n t e r n a l w a v e s .

It s h o u l d be n o t e d t h a t t h e r e s o n a n t w a v e e l e v a t i o n s s h o w n i n Figs. 9 1 1 m a y be o v e r p r e d i c t e d due t o t h e a s s u m p t i o n o f p o t e n -tial flow, w i t h o u t c o n s i d e r i n g t h e v i s c o u s e f f e c t s s u c h as t h e v o r t e x s h e d d i n g f r o m t h e s h a r p c o r n e r o f t h e b o d y . These d a m p i n g e f f e c t s m a y increase w i t h t h e f o r c e d m o t i o n f r e q u e n c i e s , s i m i l a r t o t h e r o l l d a m p i n g c h a r a c t e r i s t i c s f o r a b a r g e - t y p e d m o n o - h u l l . 40 3 0 20 10 0 - 1 0 - 2 0 - 3 0 h ^33

' , . - . - 6 ,

'\

\ I'. - 4 0 0,2 0 , 4 ' 0 , 6

K B

0 , 8

(9)

212 X. Zhang, P. Bandyk/Applied Ocean Research 47(2014) 204-218 0.6 0.4 0.2 CO Q 0^ - 0 . 2 - 0 . 4 - 0 . 6 0 2 r 1.5 1 • 0.5 • 0 " ID -0.5 • - 1 • -1.5 • 2 -• KB = O.WO,real KB = 0.W2,real • KB = 0.105, real 0,2 0.4 0.6

x / ( W - B )

-KB = 0.100,real KB = 0.102,real KB = 0.W5,real 0.2 0.4 0.6

x / ( W - B )

0.8 0.8 0.2 0.15 0.1 0.05 0

£

0 - 0 , 0 5 -0,1 -0,15 - 0 . 2 -0.25 0.15 0.1 0.05 0 -0.05 - 0 . 1 -0.15 - KB = 0.100, imag KB = 0.102, i m a ^ . KB = 0.105,imag 0.2 0.4 0.6

x / ( W - B )

0,8 - KB = 0.100, imag KB = 0,102, imag • KB = 0.105, imag J 0.2 0,4 0.6

x / ( W - B )

Fig. 8. Real and d = 2 . 5 , y = 0 , 7 .

imaginary components of free surface if and internal w a v e elevation r)' across the H e l m h o l t z resonant frequency KB=0,102, W= 5,0, B = 1,0, hi = 2,0, hz = 2,0,

0,5 -0.5 I 6 4 Cc; - KB = 0.128, real KB = 0.131,real KB = 0.135,real 0.2 0.4 0.6

x / ( W - B )

- M = 0.123, real KB = 0.m,real • KB = 0.i3b,real O.e 0.2 0.4 0.6 0.8

x / ( W - B )

-0.5 -KB = 0.128,imag KB = 0.131,imag KB = 0.135,imag 0.4 0.6

x / ( W - B )

0.8 KB =0.123,imaff . .-^ . - KB = QA3i,imag • ' 0.2 0.4 0.6 0.8

x / ( W - B )

Fig. 9. Real and i maginary components of free s u r f a c e a n d i n t e r n a l w a v e e l e v a t i o n ; / across the higher-order resonant frequency KB = 0.131, I V = 5.0, B = 1.0, h i = 2,0, h2 =2.0, d = 2 . 5 , / = 0 . 7 .

(10)

X. Zhang, P. Bandyk/AppUed Ocean Research 47 (20U) 204-218 213 2,5 2 1.5 1 ^ 0,5 ^ -0.5 - 1 -1.5 -2 -2.6 60 -/<-5 = 0.2780, real A'iJ = 0.2785,rea/ • /f7J = 0.2790, rea/ 0.4 0.6

x / ( W - B )

- A " i J = 0.27aO,r A'J3 = 0.2785, r ' i i ' B = 0.2T90,r 0,2 0,4 o.e

x / ( W - B )

2.5 2 1 5 0.5 V 0 -0.5 -1.5 -2 -2,5 0 s /s'B = 0.2780,irnas -. KB = 0-.2785,imag KB = 0.2790,imag 0.4 0.6

x / ( W - B )

x / ( W - B )

100 80 KB = 0.2rM, i m o s . . - . / f B -0.2755, imarj KB-0.2m.im<ig • 60 • 40 •

¥

20 0 -20 / -40 ... -60 -80 • -100 ( -100 ( 0.2 0.4 0.6 0.8 1

Fig. 10. Real and imaginary components o f free surface rf and i n t e r n a l w a v e elevation across the higher-order resonant frequency

/ l 2 = 2 . 0 , d = 2 , 5 , K = 0,7, KB = 0,278, W = 5 , 0 , B = 1,0, ; i , =2,0, 500 - 5 0 0 150 100 50 ^ 0 - 5 0 -100 -KB = 0.784:, real KB = 0.785,real KB = 0.787,real 0,2 0,4 0,6

x / ( W - B )

0.2 0.4 0.6

x / ( W - B )

0.8 KB = 0.784,real . . . K B = 0.785,real K B = 0.787,real 0.8 150 100 50 0 - 5 0 -100 -150 0 l - l 30 20 10 0 - 1 0 - 2 0 - 3 0 0 -KB = 0.784,imag KB = 0.785, imag KB = 0.787, imag 0.4 0.6

x / ( W - B )

0.8 - K B = 0.784,imag KB = 0.785,imag • KB = 0.787, imag 0.2 0.4 0.6

x / ( W - B )

Fig. 11. Real and imaginary components o f free surface rj' and i n t e r n a l w a v e elevation tf across the higher-order resonant frequency KB = 0.785, I V = 5 . 0 , B = 1.0, hi =2.0,

(11)

214 X. Zhang, P. Bandyk/Apphed Ocean Research 47 (2014) 204-218 0.5 -0.5 0,6 Real c o m p o i K i i t I m a g i n a i T component 4 5 6 x / ( W + B ) -0.4 1 2 3 4 5 6 7 8 9 x / ( W + B )

Fig. 12. Radiated wave elevation at the free surface and interfacial surface, W = 5.0, B = 1.0, / i i = 2.0, /12 = 2.0, d = 2.5, y = 0.7, KB = 0.20.

The r a d i a t e d w a v e e l e v a t i o n s at t h e f r e e s u r f a c e a n d i n t e r f a -c i a l s u r f a -c e , o u t s i d e t h e m o o n p o o l i n r e g i o n III, are i l l u s t r a t e d i n Fig. 1 2 f o r f o r c e d m o d o n f r e q u e n c y KB = 0.20, i n c l u d i n g b o t h t h e real a n d i m a g i n a r y c o m p o n e n t s . The d e p e n d e n c e o f o u t e r r a d i -a t e d w -a v e -a m p l i t u d e o n w -a v e f r e q u e n c y is i l l u s t r -a t e d i n Fig. 13. N e a r t h e H e l m h o l t z r e s o n a n t f r e q u e n c y , t h e s u r f a c e w a v e a m p l i -t u d e decreases -t o n e a r l y zero. This is c o n s i s -t e n -t w i -t h -t h e l o w w a v e d a m p i n g values near t h e H e l m h o l t z r e s o n a n t f r e q u e n c y , as i l l u s -t r a -t e d i n Fig. 7. A -t -t h e h i g h e r - o r d e r r e s o n a n -t f r e q u e n c i e s , b o -t h t h e f r e e surface a n d i n t e r n a l w a v e s s h o w r e s o n a n c e c h a r a c t e r i s -tics. I n o r d e r t o e x a m i n e t h e case w h e r e t h e b o t t o m o f t h e t w i n b o d i e s is close t o t h e i n t e r f a c i a l surface, w e p r e s e n t t h e r a d i a t e d w a v e a m p l i t u d e s f o r a ' s h a l l o w - d r a f t b o d y ' ( d r a f t o f t h e b o d y d does n o t exceed d e p t h o f t h e u p p e r f l u i d l a y e r s i g n i f i c a n t i y , i.e., 0 < ( d - / i i ) / f t i « 1 . 0 ) i n Fig. 14. As i l l u s t r a t e d , b o t h r a d i a t e d i n t e r n a l a n d f r e e s u r f a c e w a v e a m p l i t u d e s decrease a r o u n d t h e r e s o n a n t Table 1 H y d r o d y n a m i c coefficients of t w i n bodies i n a t w o - l a y e r f l u i d , W = 5 . 0 , B = 1,0, ; i i = 2 , 0 , / i 2 = 2 , 0 , d = 2 , 5 , y = 0,7. KB 033 0,2 0.004 - 7 . 2 2 3 77,268 0,4 0.016 - 8 , 1 6 5 37,249 0,6 0.037 - 9 , 7 9 6 21,896 0,8 0.065 - 1 0 , 2 2 1 9,397 1,0 0.102 - 0 . 4 1 8 0,001 1,2 0,147 - 5 . 2 7 2 1,513 1,4 0,199 2.167 0,616 1,6 0,261 3,733 1,244 1,8 0.331 3,559 0,851 2,0 0,408 4.275 0,710 2.2 0,494 4,396 0.441 2.4 0,588 4.745 0.270 2.6 0,689 5.225 0.159 2.8 0,799 3.905 0.050 3.0 0,918 5.273 0.036 3.2 1,044 5,509 0,017 m o d e s . I n t e r e s t i n g l y , i t is f o u n d t h a t t h e r a d i a t e d i n t e r n a l w a v e does n o t decay as i n t h e case i l l u s t r a t e d i n Fig. 13.

6. P a r a m e t r i c s t u d i e s

P a r a m e t r i c s t u d i e s have b e e n p e r f o r m e d t o e x a m i n e t h e d e p e n d e n c e o f r e s o n a n c e o n m o o n p o o l g e o m e t r y a n d fluid s t r a t i -fication, i n c l u d i n g t h e d e p t h s o f t h e fluid layers, d e n s i t y r a t i o , a n d b o d y spacing. The r e s o n a n t f r e q u e n c i e s are e x a m i n e d i n p a r t i c u -lar. T w o d i f f e r e n t cases haVe b e e n s t u d i e d i n c l u d i n g i n t e r m e d i a t e d r a f t (Case I ) a n d s h a l l o w d r a f t (Case II) c o n d i t i o n s . T h e i n t e r m e -d i a t e -d r a f t case is c a t e g o r i z e -d b y a s s u m i n g t h e -d r a f t o f t h e t w i n b o d i e s s i g n i f i c a n t l y exceeds t h e d e p t h o f t h e u p p e r - l a y e r fluid, i.e..

B

2

o

1 : 1

Surface wave amplitude

. Internal wave amplitude

--

j

1_ , ' 0.5 1,5 KB

Fig. 13. Outer r e g i o n ( l l l ) radiated wave amplitudes on f r e e surface and interfacial surface, intermediate d r a f t body, W = 5 . 0 , B = 1.0, / i , = 2.0, /12 = 2.0, d = 2.5, y = 0.7.

(12)

X. Zhang, P. Bandyk/Apphed Ocean Research 47(2014) 204-218 215

I

o

I

'tk O

— Surface wave amplitude

- Internal wave aiiii)litude

K B

Fig. T4. Outer region(III) radiated wave amplitudes on free surface and interfacial surface, s h a l l o w - d r a f t body, W = 5 . 0 , B = 1.0,/ii =0.2,/l2 = 1.0, d = 0 . 2 2 , y = 0.7.

d > f l ] . The s h a l l o w d r a f t case is d e f i n e d b y a s s u m i n g t h e d r a f t is n o t s i g n i f i c a n t l y larger t h a n h], i.e., ( d - / i i « 1 . 0 .

6.1. Case I

First, w e select t w i n bodies w i t h a d r a f t d s i g n i f i c a n d y l a r g e r t h a n t h e d e p t h o f u p p e r f l u i d h-i. The d e p t h o f t h e u p p e r f l u i d is f i x e d at hi = 2 . 0 a n d t h e d e p t h o f t h e l o w e r l a y e r fluid hj is v a r i e d f r o m 2.0 t o 20.0. Fig. 15 s h o w s t h e h y d r o d y n a m i c c o e f f i c i e n t s o f t h e t w i n b o d i e s f o r d i f f e r e n t d e p t h s o f t h e l o w e r fluid. The d e n -s i t y r a d o y i-s c h o -s e n a-s 0.7 a n d t h e d r a f t d = 2.5. T o e x a m i n e t h e e f f e c t o f ;i2, the s o l u t i o n s w i t h d i f f e r e n t values are c o m p a r e d . As i l l u s t r a t e d i n Fig. 15, t h e h y d r o d y n a m i c c o e f f i c i e n t s s h o w s i g n i f i -c a n t d i f f e r e n -c e s i n t h e l o w f r e q u e n -c y range f o r d i f f e r e n t d e p t h s o f l o w e r fluid. The H e l m h o l t z r e s o n a n t f r e q u e n c y has b e e n s h i f t e d d u e t o d i f f e r e n t d e p t h s o f t h e l o w e r fluid layer. I n c o n t r a s t , t h e h i g h e r -o r d e r r e s -o n a n t f r e q u e n c i e s have c h a n g e d n e g l i g i b l y . I n a d d i t i -o n , as t h e d e p t h o f the l o w e r l a y e r fluid increases, t h e H e l m h o l t z r e s o n a n t f r e q u e n c i e s also increase. Fig. 16 s h o w s t h e v a r i a t i o n o f t h e a d d e d m a s s a n d d a m p i n g c o e f f i c i e n t s w i t h t h e o s c i l l a t i o n f r e q u e n c i e s f o r d i f f e r e n t d e n s i t y r a t i o s y = 0 . 1 , 0.4, 0.7, a n d 0.9. As i l l u s t r a t e d i n these figures, t h o u g h t h e d e n s i t y r a t i o a f f e c t s t h e H e l m h o l t z m o d e s l i g h t l y , t h e "Su 6 ^2=2.0 /i.2=4.0 : /i.>=10.0 - - - ft2=20.0

-\ 1

i

i

1 i -j

-i

-0 -0.1 -0.2 -0.3 0.5 0.6 0.7 0.8 0,9 1 K B

Fig. 15. Added mass and d a m p i n g coefficients of the t w i n bodies i n heave m o t i o n w i t h d i f f e r e n t depths of the l o w e r layer fluid hi, W = 5,0,6 = 1.0, hi =2.0, d = 2 , 5 , y = 0 , 7 .

0,1 02 0,3 0

(13)

216 X. Zhang, P. Bandyk/Applied Ocean Research 47 (2014) 204-218

W/B =

1.0

- WjB

= 1.1

" WjB

= 2.0

---WjB = -0.0 .5

1 1 1 !• i • I ; - t ! J ^ ;

!

1 1 > ! ' 1 'ƒ

' 1 ' • \ •• •

. / ./ . •

I i \ 1 1 ; 1 i ' ; i ! \ _ l l l l t 1 1 1 CO Q 0 5 OS K B 1

W/B =

1.0 ' t ' ' ' 1 - V ! V B = l. i

W/B

= 2.0 i ' | - - - 1' I 7 0 = 5.O il ji

1

tl 1

\

li ,1 ij s il ] i; ii - \\- il

j

. H

fl 1 t i 1

j

i l l >

l l l l

_ L

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.B 0.9 1 K B

Fig. 17. Added mass and d a m p i n g coefficients of the t w i n bodies i n heave m o t i o n w i t h d i f f e r e n t body spacings W, B = 1.0, hi = 2.0, h2 = 2.0, d = 2.5, y = 0.7.

40h'

&

7 7 7 • - 7 : 0 . 1 . 0 . 4 : 0 . 7 0.9

11'

' ll \! 0 1 0,2 0 3 0,5 0 6 0 7 0 8 0 9 K B

(14)

X Zhang. P. Bandyk/AppUed Ocean Research 47 (2014) 204-218 217 h i g h e r - o r d e r r e s o n a n t f r e q u e n c i e s are s i g n i f i c a n t l y a f f e c t e d . T h e h i g h e r o r d e r r e s o n a n c e d u e t o i n t e r n a l w a v e m o d e s s h o w s d r a -m a t i c d i f f e r e n c e s f o r v a r y i n g d e n s i t y ratios, t h o u g h t h e s u r f a c e w a v e m o d e is n o t a f f e c t e d n o t i c e a b l y . T h i s o b s e r v e d p h e n o m e n o n can b e e x p l a i n e d b y t h e d i s p e r s i o n r e l a t i o n i l l u s t r a t e d i n Fig. 2. I n o r d e r to i d e n t i f y t h e d e p e n d e n c e o f t h e r e s o n a n c e o n t h e w i d t h o f the m o o n p o o l . Fig. 17 p r e s e n t s the a d d e d mass a n d d a m p -i n g c o e f f -i c -i e n t s versus f r e q u e n c y f o r d -i f f e r e n t m o o n p o o l w -i d t h ratios WjB. As s h o w n , b o t h t h e H e l m h o l t z a n d h i g h e r - o r d e r res-o n a n t m res-o d e s have b e e n l a r g e l y a f f e c t e d as the w i d t h res-o f m res-o res-o n p res-o res-o l varies. I n p a r t i c u l a r , f o r the case o f W / B = 1.0, t h e r e is n o resonance, w h i c h is e x p e c t e d f o r a s i n g l e b o d y case. F u r t h e r , a l l t h e r e s o n a n t f r e q u e n c i e s decrease w i t h i n c r e a s i n g W / B .

6.2. Casell

A d d i t i o n a l analysis has b e e n p e r f o r m e d f o r s h a l l o w - d r a f t case, w h e r e t h e d r a f t o f t h e t w i n b o d i e s d does n o t e x c e e d the d e p t h o f the u p p e r f l u i d layer h i s i g n i f i c a n t l y , i.e. ( d - / i i ) / f ! i «1.0. The d e p t h o f t h e u p p e r layer f l u i d is h-[ = 0 . 2 . T h e b o d y d r a f t is d = 0.22. The d e n s i t y r a t i o is y = 0.7. The b o d y s p a c i n g is W= 5.0 w h i l e t h e w i d t h of t h e b o d y B = 1.0. Fig. 18 s h o w s t h e d e p e n d e n c e o f h y d r o d y n a m i c c o e f f i c i e n t s o n t h e o s c i l l a t i o n f r e q u e n c y f o r d i f f e r e n t d e p t h s o f t h e l o w e r layer f l u i d ^2- As can b e seen i n these f i g u r e s , t h e d e p t h o f the l o w e r layer f l u i d n o t o n l y a f f e c t s t h e H e l m h o l t z r e s o n a n t f r e -q u e n c y , b u t also alters t h e h i g h e r - o r d e r r e s o n a n t f r e -q u e n c i e s d u e to s t a n d i n g surface w a v e s i n t h e m o o n p o o l . H o w e v e r , t h e h i g h e r -o r d e r res-onances ass-ociated w i t h i n t e r n a l w a v e m -o d e s are a f f e c t e d m a r g i n a l l y .

Fig. 19 i l l u s t r a t e s t h e h y d r o d y n a m i c c o e f f i c i e n t s as a f u n c t i o n o f o s c i l l a t i o n f r e q u e n c y f o r d i f f e r e n t d e n s i t y ratios y. T h e o t h e r p h y s i -cal p a r a m e t e r s are t h e s a m e as t h o s e s h o w n i n Fig. 18, e x c e p t a fixed h2 = 2.0 a n d v a r y i n g y. The c o m p a r i s o n o f results w i t h d i f f e r e n t d e n -s i t y r a t i o y -sugge-st-s t h a t d e n -s i t y -s t r a t i f i c a t i o n a f f e c t -s h i g h e r - o r d e r r e s o n a n t m o d e s e i t h e r a s s o c i a t e d w i t h t h e f r e e s u r f a c e or i n t e r -nal w a v e s f o r t h e s h a l l o w - d r a f t case. A g a i n , t h e H e l m h o l t z m o d e is i m p a c t e d l i t t i e b y d e n s i t y s t r a t i f i c a t i o n as the i n t e r m e d i a t e d r a f t case. 7. C o n c l u s i o n s I n t h i s paper, t h e w a v e r a d i a t i o n p r o b l e m o f i n t e r f a c e a n d s u r -face p i e r c i n g t w i n b o d i e s i n a t w o - l a y e r fluid has b e e n i n v e s t i g a t e d . The h e a v e added mass, d a m p i n g , r a d i a t e d f r e e s u r f a c e a n d i n t e r n a l w a v e s have been c o m p u t e d f o r d i f f e r e n t m o o n p o o l c o n f i g u r a t i o n s . By e x a m i n i n g the n u m e r i c a l r e s u l t s , i t is f o u n d t h a t t h e r e e x i s t b o t h H e l m h o l t z a n d h i g h e r - o r d e r r e s o n a n c e s . The h i g h e r - o r d e r r e s o n a n t m o d e s can be e i t h e r c h a r a c t e r i z e d b y s t a n d i n g w a v e s , o n t h e f r e e s u r f a c e or i n t e r f a c i a l s u r f a c e , w i t h i n t h e m o o n p o o l gap. This b e h a v -i o r -is f u n d a m e n t a l l y d -i f f e r e n t w -i t h t h e case s t u d -i e d -i n t h e p r e v -i o u s p a p e r [ 1 ] . P a r a m e t r i c studies f o r a n i n t e r m e d i a t e d r a f t b o d y (Case I) i n d i -cate t h a t t h e r e are s i g n i f i c a n t d i f f e r e n c e s i n t h e c h a r a c t e r i s t i c s o f t h e H e l m h o l t z r e s o n a n t m o d e b e t w e e n t w o l a y e r a n d s i n g l e -l a y e r f-luid cases due t o d i f f e r e n t -l o w e r f-luid -l a y e r d e p t h s . H o w e v e r , t h e h i g h e r - o r d e r r e s o n a n t m o d e s are l i t d e a f f e c t e d b y t h e r e l a t i v e d e p t h o f u p p e r a n d l o w e r l a y e r s . T h e h i g h e r - o r d e r r e s o n a n t m o d e s are a f f e c t e d b y t h e d e n s i t y rarios, e s p e c i a l l y f o r t h e i n t e r n a l w a v e .

R e g a r d i n g s h a l l o w - d r a f t t w i n b o d i e s w i t h a d r a f t (Case II) close t o t h e d e p t h o f u p p e r l a y e r fluid, t h e d e p t h o f l o w e r l a y e r fluid can a f f e c t b o t h t h e H e l m h o l t z a n d h i g h e r - o r d e r m o d e s associated w i t h t h e f r e e surface w a v e . T h e d e n s i t y s t r a t i f i c a t i o n s h o w s i m p a c t o n b o t h h i g h e r - o r d e r resonances f r o m t h e f r e e s u r f a c e w a v e a n d the i n t e r n a l w a v e m o d e s .

T h e h y d r o d y n a m i c resonances also a p p e a r i n t h e o u t e r r e g i o n 111 ( f a r field) r a d i a t e d f r e e surface a n d i n t e r n a l s u r f a c e w a v e eleva-t i o n s , f o r b o eleva-t h i n eleva-t e r m e d i a eleva-t e - d r a f eleva-t a n d s h a l l o w - d r a f eleva-t b o d i e s . For eleva-t h e i n t e r m e d i a t e - d r a f t b o d y case, b o t h f r e e s u r f a c e a n d i n t e r n a l w a v e a m p l i t u d e s decay w i t h i n c r e a s i n g f o r c e d m o t i o n f r e q u e n c i e s . H o w -ever, f o r t h e s h a l l o w - d r a f t b o d y case, b o t h t h e o u t e r r e g i o n I I I ( f a r field) r a d i a t e d surface a n d i n t e r n a l w a v e s s h o w d i f f e r e n t t r e n d s . T h e p r e s e n t e d n u m e r i c a l m o d e l is based o n p o t e n t i a l flow t h e -ory, a n d t h e r e s o n a n t w a v e a m p l i t u d e s are l i k e l y o v e r - p r e d i c t e d . P r o p e r p r e d i c t i o n o f t h e w a v e a m p l i t u d e r e q u i r e s m o d e l i n g o f v i s c o u s e f f e c t s , s u c h as v o r t e x s h e d d i n g f r o m t h e c o r n e r s o f t h e m o o n p o o l . T h e i n t e r f a c i a l w a v e m a y b e m o r e d a m p e d t h a n t h e s u r -face w a v e , d u e t o t h e s h o r t e r r e s o n a n t w a v e l e n g t h s . T h e r e s o n a n t f r e q u e n c i e s f o r b o t h f r e e s u r f a c e a n d i n t e r f a c i a l w a v e s are accu-r a t e l y p accu-r e d i c t e d u s i n g t h e a p p accu-r o a c h p accu-r e s e n t e d , a n d m a y be q u i t e u s e f u l i n m o o n p o o l p e r f o r m a n c e assessment, d e s i g n , a n d o p t i m i z a -tion. T h e p r e s e n t s t u d y also o f f e r s clues o n d e s i g n a n d m o d e l i n g o f r e l a t e d w a v e e n e r g y c o n v e r t e r s ( W E C ) i n a t w o - l a y e r fluid. For e x a m p l e , t h e m o o n p o o l g e o m e t r y can be o p t i m i z e d based o n t h e r e s o n a n t m o t i o n o f t h e floater a n d o p e r a t i n g w a v e c o n d i t i o n s .

A p p e n d i x A . I n n e r p r o d u c t i n E q s . (46) a n d (47)

T h e first i n n e r p r o d u c t at t h e right side o f Eqs. ( 4 6 ) a n d ( 4 7 ) are c a l c u l a t e d b y

<<p',Yi>= / w(z)(p'(W-B,z)Yi{X,,z]dz

,',Yt > = '^BjA'ikfKw-B)l<:p + Y^B]A'ikfKw-B)Lf j = 0 J=0

< <p"',Yi > = J w(z)<p"'(W + B,z]Y,{k,,z)dz

•.4>"',Yi> = ' ^ A ] K ' \ k f \ W + B)ip + 'Yj']/^'''i.i<f\VJ + B)lf ( A l ) (A.2) w h e r e t h e c o e f f i c i e n t s 4 " ' (see A p p e n d i x B f o r d e t a i l s ) are w r i t -t e n as r('i) - d vj{z)Z^"'\kY\z)Y{ki,z)(iz 11 = 1 , 2 (A.3) A p p e n d i x B . E x p r e s s i o n of l ! " ' ' c a n be w r i t t e n as f o l l o w s , f o r f o u r d i f f e r e n t c o m b i n a t i o n s o f i a n d j : F o r i = 0 , j = 0 (n) _ or sinh/s:(/i - d ) 00 ~ g/<2 s i n h ; < f i 2 F o r i = 0 , j > l

(n) _ o)^s\nk{h-d)

Oj g/<2sin/<f!2 F o r ! > l , j = 0 ( B . l ) (B.2) , ( n ) g;<(A2 + k2)sinhkfi F o r i > l , j > l , ^/26)2 gk(A.2-;<2)sinkfi

[X cosh k(h - d) sin A(/i - d) + /< sinh k(/] - d) cos A ( h - d ) ]

(B.3)

[A cos kih - d) sin X{h - d ) - k sin k(h - d) cos A(h - d)l

(15)

218 X. Zhang. P. Bandyk/Apphed Ocean Research 47(2014)204-218 w h e r e X a n d k r e p r e s e n t A, and,;<j"', r e s p e c t i v e l y . A p p e n d i x C . E x p r e s s i o n o f M ] " ' The M j " ' i n Eqs. ( 5 1 ) a n d ( 5 2 ) is d e f i n e d b y M j " ' = / w ( , z ) 0 " ' \ k f \ z ) f d z ( C l ) a n d can be c a l c u l a t e d b y s u b s t i t u t i n g ( 3 4 ) a n d ( 3 5 ) i n t o ( C l ) , F o r j = 0 M : ( n ) _ 1 2(g/<)^ (sinhWi2)^ /12 + sinh2Wi2 2k co'^ / / l l s i n h 2 k / i i a2 [ V 2 4k

4

sin_h2/</i 4k 2gk-,-(1 - c o s h 2 W i i ) ( C 2 ) F o r j > l 1 2(g;0'(sin/</i2)" L 6 J ' /12 + sin2Wi2 / l l 2 I T 2 k s i n 2 k / i i 4/< h-i s i n 2 / d i i T 4k •2g/c2 ( 1 - C 0 S 2 W 7 i ) ( C 3 ) R e f e r e n c e s

111 Z h a n g X , Bandyk P. On t w o - d i m e n s i o n a l m o o n p o o l resonance for t w i n bodies

i n a t w o - l a y e r f l u i d . A p p l Ocean Res 2 0 1 3 ; 4 0 : 1 - 1 3 .

12] IVlolin B. On the piston sloshing modes i n moonpools. J Fluid Mech 2001;430:27-50.

P l M c l v e r P. Complex resonances i n the w a t e r - w a v e p r o b l e m for a floating struc-ture. J Fluid Mech 2005;536:423-43.

[4] Yeung RW, Seah RKM. On H e l m h o l t z and higherorder resonance of t w i n f l o a t -i n g bod-ies.] Eng M a t h 2 0 0 6 ; 5 8 ( l - 4 ) : 2 5 1 - 6 5 .

[51 Faltinsen OM, Rognebaldce OF, T i m o k h a A N . T w o d i m e n s i o n a l resonant p i s t o n -like sloshing i n a moonpool. J Fluid M e c h 2007;575:359-97.

Kristiansen T, Faltinsen O M . Application o f a v o r t e x t r a c k i n g m e t h o d to the piston-lil<e behaviour i n a semi-entrained vertical gap. A p p l Ocean Res 2 0 0 8 ; 3 0 ( 1 ) : 1 - 1 8 .

Kristiansen T, Faltinsen O M . Gap resonance analyzed b y a n e w d o m a i n decom-p o s i t i o n m e t h o d c o m b i n i n g decom-potential and viscous f l o w . A decom-p decom-p l Ocean Res 2 0 1 2 ; 3 2 ( 2 ) : 1 9 8 - 2 0 8 .

M o l i n B, Remy F, K i m m o u n 0, Stassen Y. Experimental study o f the wave propagation and decay i n a channel t h r o u g h a rigid ice-sheet. A p p l Ocean Res 2 0 0 2 ; 2 4 ( 5 ) : 2 4 7 - 6 0 .

M o l i n B, Remy F. Expenmental and numerical study o f the gap resonances i n -between t w o rectangular barges. I n : 1 3 t h congress o f i n t e r n a t i o n a l m a r i t i m e association of mediterranean. 2009.

Osborne AR, B r o w n JR. The influence of internal waves o n deepwater d r i l l i n g operations. I n : Offshore technology conference. 1977.

Simmons H, Chang M H , Chang YT, Chao SY, Fringer 0 , Jackson CR, et al. M o d -eling and p r e d i c t i o n o f internal waves i n the South China Sea. Oceanography 2 0 1 1 ; 2 4 ( 4 ) : 8 8 - 9 9 .

X u W , Li Y, Voogt A. Internal wave soliton passage s i m u l a t i o n d u r i n g offloading. In: 3 2 n d international conference on ocean, offshore and arctic engineering. 2 0 1 3 .

M c l v e r M . A n example of non-uniqueness i n the t w o - d i m e n s i o n a l linear water w a v e problem. J Fluid Mech 1996;315:165-78.

M c l v e r P, M c l v e r M , Zhang J. Exciting o f trapped w a t e r waves b y the forced m o t i o n o f structures. J Fluid Mech 2003;494:141-62.

M c l v e r P, M c l v e r M. M o t i o n trapping structures i n the three-dimensional w a t e r - w a v e p r o b l e m . J Eng M a t h 2007;58:67-75.

Kuznetsov N , M c l v e r P, L i n t o n CM. On the uniqueness and trapped modes i n the w a t e r - w a v e problem for vertical barriers. Wave M o t i o n 2001 ;33:283-307. N e w m a n JN. Radiation and d i f f r a c t i o n analysis o f the M c l v e r t o r o i d . J Eng M a t h 1999;35:135-47.

Kuznetsov N, M c l v e r M , M c l v e r P. Wave interaction w i t h t w o - d i m e n s i o n a l bod-ies f l o a t i n g i n a two-layer f l u i d : uniqueness and trapped modes. J Fluid Mech 2 0 0 5 ; 5 3 6 : 4 2 3 - 4 3 .

L i n t o n CM, M c l v e r M . The interaction of waves w i t h h o r i z o n t a l cylinders i n t w o - l a y e r f l u i d . J Fluid Mech 1995;304:213-29.

Yeung RW, Nguyen T. Waves generated by a m o v i n g source i n a t w o - l a y e r ocean of finite depth. J Eng M a t h 1999;35( 1 - 2 ) : 8 5 - 1 0 7 .

Yeung RW, Nguyen T. Radiation and d i f f r a c t i o n of waves i n a t w o - l a y e r fluid. In: Proceedings of t h e 22nd symposium o n naval hydrodynamics. 1999. p. 8 7 5 - 8 7 . A l a m MR, Liu Y, Yue DKP. Waves due to oscilladng and translating disturbance i n a t w o - l a y e r density-stratified fluid. J Eng M a t h 2 0 0 9 ; 6 5 : 1 7 9 - 2 0 0 . Ten 1, Kashiwagi M . Hydrodynamics o f a body floating i n a t w o - l a y e r fluid of finite depth (part 1: radiation problem). J M a r Sci Technol 2 0 0 4 ; 9 ( 3 ) : 1 2 7 - 4 1 . Kashiwagi M , Ten I, Makoto Yasunaga. Hydrodynamics o f a body floating i n a t w o - l a y e r fluid o f finite d e p t h (part 2: d i f f r a c t i o n p r o b l e m and wave-induced m o d o n s ) . J Mar Sci Technol 2006;11(3):150-64.

Yeung RW. Added mass and damping o f a vertical cylinder i n finite-depth waters. Appl Ocean Res 1981;3:119-33.

Shipway BJ, Evans DV. Wave t r a p p i n g b y a x i s y m m e t r y concentric cylinders. J Offshore Mech Arctic Eng 2 0 0 3 ; 1 2 5 : 5 9 - 6 4 .

Mavrakos SA. H y d r o d y n a m i c coefficients i n heave o f t w o concentric surface-p i e r c i n g truncated circular cylinders. A surface-p surface-p l Ocean Res 2 0 0 4 ; 2 6 : 8 4 - 9 7 . Mavrakos SA, Chatjigeorgiou IK. Second-order d i f f r a c t i o n by t w o concentric truncated cylinders. I n : 21 st international w o r k s h o p o f w a t e r waves and float-i n g bodfloat-ies. 2006.

W h i t h a m GB. Linear and nonlinear waves. New York: W i l e y ; 1974. Wehausen JV, U i t o n e EV. Surface waves, Handbuch der Physik, v o l . IX. Springer Verlag; 1960. p. 4 4 6 - 7 7 8 .

Cytaty

Powiązane dokumenty

Większość użytkowników forów dyskusyjnych wypowiada się na nich bardzo rzadko, w dużej części ogranicza się do czytania wypowiedzi innych (50,9%).. 30,9%

Sukces adwokatury austriackiej w walce o pełną odpłatność za usługi adwokackie świadczone na rzecz osób uznanych za ubogie. Palestra

W obec tego, że przepisy kodeksu cyw ilnego o zastaw ie pośw ięcają reg u la cji cesji w ierzytelności zabezpieczonej zastaw em je ­ dynie dw a przepisy (art...

Kluczowym elementem strategii w  większości państw członkowskich jest rozwijanie kompetencji informatycznych, zaraz po nim – kształcenie w zakresie innowacyjności oraz

Miasta Poznania, Statut Młodzieżowej Rady Krakowa, Statut Młodzie- żowej Rady m.st. Warszawy, Statut Młodzieżowej Rady Miasta Gorzowa Wielkopolskiego, Statut Młodzieżowej

de Vaux, and had the most experience of work on the new manuscripts, he received the lion’s share of them for publication: apocryphal works including Tobit, pseudepigrapha like

Na program sympozjum złożyły się różne prelekcje, które wygłoszono podczas 8 tem-

W swym kształcie tw orzył bowiem zde­ cydow aną opozycję wobec tendencji zachowawczych, przeciw staw iał się o p o rtu ­ nizm ow i, odcinał od przeciętności.. Sam