• Nie Znaleziono Wyników

Salt precipitation due to supercritical gas injection: I. Capillary-driven flow in unimodal sandstone

N/A
N/A
Protected

Academic year: 2021

Share "Salt precipitation due to supercritical gas injection: I. Capillary-driven flow in unimodal sandstone"

Copied!
9
0
0

Pełen tekst

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Greenhouse

Gas

Control

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / i j g g c

Salt

precipitation

due

to

supercritical

gas

injection:

I.

Capillary-driven

flow

in

unimodal

sandstone

H.

Ott

a,∗

,

S.M.

Roels

b

,

K.

de

Kloe

a

aShellGlobalSolutionsInternationalB.V.,KesslerPark1,2288GSRijswijk,TheNetherlands bDepartmentofGeotechnology,DelftUniversityofTechnology,2628CNDelft,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4October2014

Receivedinrevisedform5December2014 Accepted6January2015 Availableonlinexxx Keywords: CO2storage Dry-out Precipitation Counter-currentflow Micro-CTimaging Sandstone

a

b

s

t

r

a

c

t

Dryingandsaltprecipitationingeologicalformationscanhaveseriousconsequencesforupstream oper-ationsintermsofinjectivityandproductivity.HereweinvestigatetheconsequencesofsupercriticalCO2

injectioninsandstones.ThereportedfindingsaredirectlyrelevantforCO2sequestrationandacid–gas

injectionoperations,butmightalsobeofinteresttoabroadercommunitydealingwithdryingand capillaryphenomena.

ByinjectingdrysupercriticalCO2intobrine-saturatedsandstone,weinvestigatethedryingprocess

andtheassociatedprecipitationofsaltsinacapillary-pressure-dominatedflowregime.Precipitation patternswererecordedduringthedryingprocessbymeansof␮CTscanning.Theexperimentalresultsand numericalsimulationsshowthatunderacriticalflowratesaltprecipitateswithaninhomogeneousspatial distributionbecauseofbrineandsolutesbeingtransportedincounter-currentflowupstreamwhere salteventuallyprecipitates.Asubstantialimpairmentoftheabsolutepermeabilityhasbeenfound,but despitehighlocalsaltaccumulation,theeffectiveCO2permeabilityincreasedduringallexperiments.This

phenomenonisaresultoftheobservedmicroscopicprecipitationpatternandeventuallytheresulting K()relationship.

Thefindingsinthispaperarerelatedtounimodalsandstone.Inacompanionpaper(Ottetal.,2014) wepresentdataonthedistinctlydifferentconsequencesofsaltprecipitationindual-ormulti-porosity rocks.

©2015TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Dryingofporousmediaisanimportanttopicinmany indus-trialprocesses,insoilscienceandforupstreamoperationssuch asgasinjectionandproductionintoandfromgeological forma-tion.Dryingofsalineformationswillcauseprecipitation ofsalt initiallydissolvedinthebrine.Thiscannegativelyaffectthe perfor-manceofinjectionandproductionwellsandcanevenleadtowell clogging,whichisaseriousriskforsuchoperations.Inthispaper weconsiderlarge-scalegeologicalstorageofCO2,originatingfrom anthropogenicsourceslikefossil-fueledpowerplantsor contami-natedgasproduction,inordertoreduceCO2emissions.Deepsaline aquifersanddepletedoilandgasfieldsarepotentialsubsurface depositsforthatpurpose(IPCC,2005;BachuandGunter,2004).

∗ correspondingauthor.Tel.:+31704473043. E-mailaddress:Holger.Ott@Shell.com(H.Ott).

Ifdryorunder-saturated,supercritical(SC)CO2isinjectedinto water-bearinggeologicalformationslikesalineaquifers,wateris removedeitherbyviscousdisplacementoftheaqueousphaseor byevaporation/dissolutionofwaterinCO2andsubsequent advec-tionintheinjectedCO2-richphase.Bothmechanismsactinparallel, butwhileadvectionoftheaqueousphasedecreaseswith increas-ing CO2 saturation(diminished mobility), evaporationbecomes increasinglyimportantastheaqueousphasebecomesimmobile. Belowresidualwatersaturation,onlyevaporationtakesplaceand theformationdriesoutifnoadditionalsourceofwaterisavailable. Ifwaterevaporates,thesaltsoriginallypresentinthewaterareleft behind.Inhighlysalineformations,theamountofsaltthat poten-tiallyprecipitatesperunitvolumecanbequitesubstantial.The volumesdependonbrinesalinity,andthetransportofsolutesand waterinthereservoir.Sincefluidsaturationsandflowratesclose tothewellborecoveralargerangeasfunctionsofspaceandtime, therearenoeasyanswerstothequestionswhether,whereandhow saltprecipitatesandhowprecipitationaffectsinjectivity.The ques-tionsthatneedtobeaddressedareaboutthemechanismsofsolute http://dx.doi.org/10.1016/j.ijggc.2015.01.005

(2)

ARTICLE IN PRESS

G Model

IJGGC-1398; No.ofPages9

2 H.Ottetal./InternationalJournalofGreenhouseGasControlxxx(2015)xxx–xxx

transportonamacroscopicscalethatdeterminethemacroscopic distributionofsalt,andthesaltdistributiononaporescalethat determineshowthepermeabilityisaffectedasfunctionofporosity reduction.

Eventhoughsaltprecipitationinthevicinityofgasproduction wellsaregenerallyconsideredasissue,therearenotmany stud-iespublishedreferringtowelldata.Thefrequentlycitedpaperis thatofKleinitzetal.(2001).Probablyduetothelimitednumberof industrial-scaleCO2sequestrationprojects,therearenowelldata availablereferringtosaltprecipitationduringCO2injection.

Thelackofwellstudiesrendersaproperproblemstatement difficultandwerelyonnumericalsimulationsandanalytical mod-elsthatareavailableinliterature.Here,weonlyaimtohighlight afewkeystudiesonprecipitationduetoCO2 injectionrelating totheproblemdiscussedinthispaper.Inaseriesofpublications, Pruessetal.presentednumericalsimulationsofCO2injectionin salineaquifers,investigatingthefundamentalaspectsofformation dry-outandsaltprecipitation(PruessandGarcía,2002;Pruessand Müller,2009).Thesimulationswereperformedwithasingle injec-tionwellinidealized1Dand2Dradialgeometries.Theauthors observedthatprecipitationoccursonlyinanarrowdry-outzone confinedtoafewmetersaroundtheinjectionwell.Thesolidsalt saturationin thiszone hasbeenfoundtobeconstant indepen-dentoftheinjectionrate.2Dradialsimulationswerecarriedout toexploregravity effects. Incontrast tothe1D-radialscenario, gravityin combination withcapillary-driven flow lead tomore heterogeneousprecipitation,withamaximumobservedsolid-salt saturationofmorethan20%.

Giorgisetal.(2007)performedfield-scalesimulationinradial geometry. The authors found that the amount of precipitate dependsonbrinemobilityandcanbehighifthereisa capillary-gradientdrivenbrineflowinthedirectionofthewellbore.The authorshavefurthershownthattheinjectionrateisanimportant factorincontrollingprecipitationprocessandinavoidingor allow-ingcompletecloggingoftheformation.Intheirsimulations,solid saltsaturationsoflocallymorethan60%havebeenreached.

However,field-scalesimulationsrequireinputonflowphysics andthermodynamicssuchastheK()relationshipandthemass transferratesbetweenthefluidphases.Aswewillshowinthis paperandinOttetal.(2014),theseparametersareofmicroscopic originandneedtobedeterminedbylaboratoryexperiments.The qualityoftheinputiscriticalfor reliablesimulationsasseveral studiessuggestthata modestchangeinporosity mightleadto a seriousreduction in permeability. Therespectiveliterature is diverseinmechanismsandtherearenotmanystudiesdealingwith fluid-transportinducedporositychanges. Thediscussed mecha-nismsrangefromtheporosityvariationduetolithology/rocktype (Papeetal.,1999;EhrenbergandNadeau,2005)viamechanical compaction(Wyble,1958;Schutjensetal.,2004)tosilica disso-lution and precipitation in geothermalsystems in single-phase flow(Xuetal.,2004b)todryingprocesses,i.e.intwo-phaseflow asdiscussed inthe presentpaper. Evenifusually described by power laws, it cannot be expected that the K() relationships resultingfromdifferentmechanismsarecomparable–i.e. process-independent–andgenerallyapplicable.

Thereareonlyafewstudiesonflow-throughdryingavailable, which are relevant for CO2 storage.Zuluaga et al. investigated vaporizationandsaltprecipitationinsandpacksand sandstone forgasproductionwells (Zuluaga andMonsalve,2001; Zuluaga etal., 2001).AttheGHGT-10 in Amsterdam2010, two experi-mental studies ondry CO2 injectionhave been presented. The experimentshavebeenperformedinsandstoneinrealisticstorage conditionsaddressingcapillary-drivensolutetransport,the condi-tionofcountercurrentflow(Ottetal.,2011b),andapermeability porosityrelationship(Baccietal.,2011).Recently,Peyssonaetal. (2014)andAndreetal.(2014)investigatedthedryingprocessby

nitrogeninjectioninsandstone.Thedatahavebeenusedto bench-markanumericalsimulationtoolforfield-scalemodelingofCO2 injection.Ottetal.(2011b)pointedoutthatmodelingof vaporiza-tionbyanequilibriumapproachisnotsufficienttodescribecore floodexperiments.Roelsetal.(2014)performedcoreflood exper-imentsandsucceededinthedescriptionofthesaturationprofiles byakineticapproach.

Inthispaperweshowresultsofcore-floodexperimentsthat werepresentedattheSCAconferenceinHalifaxandattheGHGT10 inAmsterdamin2010(Ottetal.,2010,2011b).Theexperiments wereperformedtoinvestigatethedryingprocessandtheimpact ofsaltprecipitationonflow,i.e.thesaltdistributionandtheK() relationship.Forthis weinjecteddry SCCO2 in brine-saturated siliciclasticsandstone.Theexperimentswerecarriedoutatflow ratesrealisticfornear-well-boreflowandatrealistic thermody-namicconditions.Duringinjection,spatialandtimeevolutionof saturationchangesweremonitoredbymeansofmicrocomputed tomography(␮CT).Theresultsinthispaperarebasedona num-berofexperimentsshowingprecipitationprofileswithdifferent degreesofheterogeneityonamacroscopicscale.For quantifica-tionwediscusstwooftheseexperimentsshowingthelargestand thesmallestspatialvariationofsaltsaturationafterdry-out.We refertothecasesastheheterogeneousandthehomogeneouscase, respectively.Weexplainthemechanismsthatleadtotheobserved heterogeneousdistributionoftheprecipitatebymeansof numer-icalsimulations.

Inadditiontothesaturationprofiles,changesinabsolute per-meabilityandeffectiveCO2 permeabilityweremonitored.From thisdata,weextractthepermeability/porosityrelationship(K()). Weexplaintheobservedmildpermeabilityreductionbythe micro-scopicdistributionofthesaltwithrespecttotheobservedCO2flow channels.Furthermore,wediscusstheresultsintermsof precipi-tationinsingle-phaseandtwo-phaseflowsituations.

2. Materialsandmethods

Theexperimentswerecarriedoutinacorefloodsetupdesigned forfloodingwithvolatileandreactivefluidsassketchedinFig.1.A detaileddescriptionoftheunitcanbefoundelsewhere(Ottetal., 2012).Inthefollowing,onlyabriefdescriptionoftheelementswill begiventhatareofrelevancefortheexperimentsherepresented. Theflow experiments were performedin verticalgeometry, withfluidsbeinginjectedfromtoptobottom.Thesampleswere embeddedinpolycarbonateandplacedinacarbon-fiberbasedcore holder–botharematerialswithlowX-rayattenuationcoefficients. Thecoreholderisplacedina␮CTscannerforinsitu3Dimaging oftherock-fluidsystem.CTimagingallowstodeterminefluid sat-urationsandchangesoftherockmatrixduetosaltprecipitation. Theunitisequippedwithtwofeedsectionsforliquidsand lique-fiedgasinjection.TheCO2feedpumpwasheldat3◦Cduringthe experiments–liquidCO2wasinjectedandheatedto experimen-taltemperatureandtotherespectiveSCstateintheinjectionlines. Thedensitydifferencehasbeentakenintoaccountfortheindicated flowrates.Fromflowratesandthedifferentialpressure measure-ment(P),theabsolute(K)andeffective permeability(K×krel) werederivedonline.

TheexperimentswereperformedonBereasandstonewithan averagepermeabilityof 500mDand 22%porosity. Thesamples weredrilledfromthesame blockandwere smallin cross sec-tionandvolume(1cmøand5cmlength)toobtainrepresentative flowratesandtoreducetheexperimentaltimetocomplete dry-out.ThemineralogyofBereaisdominatedbyquartzwithsome K-feldspar,kaolinite,andminoramountsofotherclaymineralsas determinedbyeSEM/EDX.Therocksampleswerepre-saturated withNaCl-basedhigh-salinitybrine:20wt%NaCland2wt%CsCl.

(3)

Fig.1. Schematicoftheexperimentalsetup.MoredetailsareprovidedinOttetal. (2012).

TheCsClwasaddedasacontrastagentasitsX-rayabsorption coef-ficientishigh,leadingtoahighX-rayabsorptioncontrastin␮CT betweentheaqueousandtheCO2-richphase.Theinjected CO2 wasofhighpurityandessentiallydry(stronglyunder-saturated withrespecttowater),notleastbecauseofthestrongdifference betweenwatersaturationlimitsatconditionsinthelq.-CO2 cylin-derandatexperimentalconditionof100barpressureand45◦C temperature.

We observe the spatial distribution of the precipitated-salt phasebymeansof␮CTimaging.Computertomographyisbased onX-rayabsorptiondeterminedbymaterial-specificlinear atten-uation coefficients (), which are directly represented as gray valuesofthevoxelsinthereconstructedimage(Wellingtonand Vinegar,1987;VinegarandWellington,1987).Forsaturation cal-culationswemadeuseoftabulatedmass-absorptioncoefficients /(Hubbell,1969),fluiddensities(PruessandSpycher,2007; SpanandWagner,1996),andthedensityofthesolid-saltphase (Lide,2003)./fortheinjectedandproducedfluidsandtheir con-stituentsareshowninFig.2andphasedensitiesarelistedinTable1. Becauseofthesensitivityofsaturationcalculationstothe X-ray-contrastagent,wemeasuredrelativeabsorptioncoefficientsofCsCl solutionsasafunctionofCsClconcentration.Thecurveisshown inthelowerpanelofFig.2;at2wt%CsCl, themass-absorption coefficientisabout1.6timeslargerthanthatofpurewater.The CsClcalibrationcurve wasalsousedtodeterminetheeffective photonenergyofthe␮CTphotonsource(heff=63keV)inorder toderivethemassabsorptioncoefficientsusedforthesaturation

Fig.2. Top:X-raymass-absorptioncoefficientsoftherelevantfluidsandsaltsas functionofphotonenergy.Theverticallineindicatesthecalibratedeffectivephoton energythathasbeenusedtocalculatethesaltsaturationbyEq.(2).Bottom:relative absorptioncoefficientsofthebrinephaseasfunctionofCsClconcentration.Thedata hasbeenusedtodeterminetheeffectivephotonenergyh=63keV.

calculations.Thederivedeffectivemassabsorptioncoefficientsare listedinTable1.

DuetothehighersolubilitylimitofCsCl,weexpectthatsalt pre-cipitatesinaratiodifferentfromtheinitialratiomNaCl/mCsCl=10, becauseCsClmightstaylongerinsolutionandmightbe prefer-entiallyremovedbythedisplacementprocess.ToestimateCsCl depletion,weperformedsimulations(notshown)withthe exper-imental brine composition.The simulations wereperformedas outlinedinSection4,butusingToughReact(Xuetal.,2004a)as simulation tool. NaCl and CsCl precipitations were handled in equilibriumusingtheToughReactdatabaseforNaClandthe CsCl-solubilitydatareportedinLide(2003).Thesimulationsresultin mNaCl/mCsCl=12.3and arespectively correctedscalingfactorfor saturationconversionaccordingtoEq.(2).

3. Longitudinalprecipitationprofile

Foreachexperimentadryandcleanrocksamplewasmounted into the core holder and subsequently pressurized and heated under N2 flow to 45(±1)◦C/100bar (downstream side), corre-spondingtothethermodynamicconditionsofasalineaquiferat adepthofabout1000m.Toquantitativelydeterminesaturations, referencescansat100%CO2saturationand100%brinesaturation wererecorded.Forthatpurpose,nitrogenwasdisplacedbySCCO2 (miscibledisplacement)until100%CO2 saturationwasreached, ascheckedbythedensityoftheproducedfluid.Subsequently,the corewasslowlydepressurizedandevacuatedtoallowbrine satura-tionwithouttrappingCO2.Thecorewasthensaturatedwithbrine andsubsequentlypressurized.Allthereferencescansweretaken atexperimentaltemperatureandpressure.Duringtheexperiment, drySCCO2wasinjectedataconstantrateintothebrine-saturated core.Theinjectionrateatexperimentalconditionwas2.2ml/min

(4)

ARTICLE IN PRESS

G Model

IJGGC-1398; No.ofPages9

4 H.Ottetal./InternationalJournalofGreenhouseGasControlxxx(2015)xxx–xxx Table1

Densitiesat100barand45◦Candmass-attenuationcoefficientsforconvertingsaturationprofilesaccordingtoEq.(2);*=dry,**=watersaturated,=with,and††=without CsCl,=inthepresenceofCO2‡‡=beforeCO2-breakthrough.§:thedeviationfromtheliteraturevaluecanbeexplainedbya≈2Klowertemperatureintheexternaldensity meter. CO2(kg/m 3)  brine(kg/m3) salt(kg/m3) Measured 585**565*, 1140†,‡‡(±2) Literature 499*,517*,** 1140††,1172††,‡ 2170(NaCl),3988(CsCl), (SpycherandPruess,2005) (SpycherandPruess,2005) (Lide,2003)

2264(mNaCl/mCsCl=10)

Usedforsaturationconversion 500 1140 2247(mNaCl/mCsCl=12.3)

(/)CO2(cm

2/g) (/)

brine(cm2/g) (/)salt(cm2/g)

0.85(mNaCl/mCsCl=10)

Usedforsaturationconversion 0.185 0.33 0.75(mNaCl/mCsCl=12.3)

(later4.4ml/min)correspondingtorealisticnear-well-bore flow rates.Duringthefirst40minbrineandCO2wereproducedand,in thefollowingperiod,onlyaCO2-richphasewithnofurtherbrine production.Atthatpoint,substantialdryingbyevaporationstarted, withadifferentialfluidpressureofabout600mbar,decreasingto alowerfinalvalueof460mbarafterabout8.5hofCO2floodingas laterdiscussedinFig.8.

Fig.3 showsthe integrated ␮CT-response profilesalong the flowdirectionatdifferentexperimentaltimesteps.Theprofiles arealreadyconvertedtosaturationsbyeliminatingtherockmatrix. TheCO2saturationisrepresentedwithascalerangingfrom100% brinesaturation(SCO2=0)to100%CO2saturation(SCO2=1).The

saturationshavebeencalculatedfromintegratedCTprofilesI(t)by: SCO2 =

Ibrine−I(t) Ibrine−ICO2

(1)

whereas Ibrine and ICO2 represent thedensity profiles of the

referencescansat100%brineand100% CO2 saturation, respec-tively.ThefirstCTscanwasstartedafter0.4hofCO2flooding.The

Fig.3.␮CTdatarecordedduringtheexperiment.Top:Timeseriesofnormalized differenceimagesprojectedontotheverticalsampleaxisinflowdirection.The profilesrepresentchangesofathree-phasesystem:brine/CO2/salt.Thesaturation scalesontheleftandrightcorrespondtotherespectivetwo-phasesystematthe beginningoftheexperimentandattheend:CO2/brineandCO2/salt,respectively.

saturationprofileisflat,withanaverageCO2saturationofabout0.5 (bluesymbols).Thedisplacementwasstilladvection-dominated. Saltprecipitationdue toevaporationcanbeignored andsothe systemwasinatwo-phaseregime(CO2-brine),forwhichSCO2isa

goodscale.

SubsequentlytheX-rayabsorptiondecreaseswithtime,inline withanincreaseinCO2 saturation.Ifsaltdidnotprecipitate,flat densityprofileswouldbeexpected,determinedbytheadvection andevaporationofthebrinephase.However,whilethelightest componentinthisexperiment(CO2)wasinjected,adipoccurred atapositionofabout2.5mm,correspondingtoadensityincrease– saltprecipitates!Thedipgrewforabout9.5h.After10h(red sym-bols)theshapeoftheprofile,includingallfeatures,didnotchange furtherforanother6hofCO2flooding.Thisisaclearindication thatthesampleisdry–nowaterevaporatesandnosaltis precip-itatinganymore.Weassumethatatthatpointintime,therock samplecontainedsolidsaltandCO2,whichagainisatwo-phase system.ThisallowstheCTresponsefortheredprofile(drystate) toberescaledtosolidsaltsaturationby:

Ssalt=(1−SCO2)·

brine−CO2

salt−CO2

, (2)

where the s denote the respective attenuation coefficients, derived from the mass-attenuation coefficients (/) and the respectivephasedensities,listedinTable1,by=(/).

The mean value of solid-salt saturation was determined as 4.1(±0.2)%.1However,locallythesaturationisashighas18%.The

meanvalueof4.1%correspondstoevaporationof41(±2)%ofthe totalwater−theimmobilewaterfraction.Fromthis,theaverage degreeof water saturationin theproduced CO2 hasbeen esti-matedtobeabout35(±2)%usingthesaturationlimitofwaterin CO2(≈0.00145wt.%,(PruessandSpycher,2007;SpanandWagner, 1996)),theinjectionrateandtheexperimentaltimetodry-out. Fromthisweestimatethelengthscaleoftheevaporationzoneto beintheorderof0.3–1m,whichevidentlyiscontrolledby evapo-rationkineticsandtheflowrateoftheCO2-richphase.Anumerical estimationofthelengthoftheevaporationzonewillbegivenin Section5.

Theobservedsaltaccumulation,whichislocallymuchhigher thanthesaltoriginallypresentinthebrineinthesamerespective volume,isexplainedbyacapillary-drivencounter-currentflow, asdiscussedfurtherinthenextsection.However,afterdoubling theflowrateto4.4ml/min,ahomogeneousprecipitationpattern hasbeenobserved.Bothprecipitationpatternsareshowninthe lowerpanelofFig.3.Anexplanationofthiseffectwillbegivenby

1Thesaturationdeterminationismainlysensitivetotheuncertaintyinthedopant concentration,whichmightbeaffectedbydepletionasdiscussedinSection2.The givenerrorsresultformtheestimatederroroftheNaCl/CsClratioof(12.3)±1.

(5)

numericalsimulationsinthenextsection.Thereitturnsoutthat thereisacriticalflowrateabovewhichsaltprecipitates homoge-neously.Itneedstobementioned,thatwedidnotobserveawell definedcriticalflowrate,whichis–aswebelieve–aresultofthe (relativelysmall)sampletosamplevariationofcapillary proper-ties.Whatwecanstateatthispointisthatthecriticalvelocityfor thegivenrocktypeandthermodynamicconditionisintherange oftheflowratesreportedhere.

4. Numericalmodelingofthelongitudinalprofile

Foranunderstandingofthefundamentalmechanismbehind theobservedprecipitationpatterns,weperformednumerical sim-ulations with TOUGH2 (Pruess and Spycher, 2007), which is a multiphase/multi-componentreservoirsimulator.Incombination withthefluidproperty moduleECO2Nthatdescribesthe ther-modynamicsofH2O/NaCl/CO2systems,TOUGH2hasbeenusedto modelCO2injectioninsalineaquifers(PruessandSpycher,2007). Thepresent experimentsweremodeledin asimple vertical1D geometryusingtheexperimentaldimensions.Thefirstgridblock wasassignedastheinjectionpointataconstantCO2-injectionrate. Theconstantpressureboundaryconditionwasrealizedbysetting thevolumefactorofthelastgridblocktoinfinite.Therock-fluid propertiesK,krelandpCwerederivedfromexperimentsperformed onthesamerocktypewiththesamefluidconfiguration(Perrinand Benson,2010;Bergetal.,2013).2

Theupperpanelof Fig.4shows longitudinalCO2-saturation profilesprofile(inthedirectionofinjection)simulatedwithaCO2 -injectionrateof3×10−5kg/sforseveraltimesteps(blacklines). Atthegiveninjectionrate,theshockfrontpassesthecorewithin seconds,followedbyacontinuoussaturationchangeafter break-through.Afterabout0.3h,adipintheCO2saturationclosetothe injectionpointoccurs.Thisisattributedtoasaturationchangedue tosaltprecipitationasdisplayedinthelowerpanel.With advanc-ingtime,aprecipitationfrontslowlymovesfromtheinjectionpoint downstream,accumulatingsaltonitsway.After3.3hofCO2 flood-ing,thesolid-saltsaturationexceeds0.9andthesimulationstops; inthenexttimestepthesaltsaturationwouldreach1. Permeabil-itychangesarenottakenintoaccount,butablockageofporespace willobviouslyleadtoclogging.Atthatpointmoresaltis precipi-tatedthanwasoriginallypresentintherespectivebrinevolume, whichrequirestransportofsaltintheupstreamdirectiontothe pointofdry-out,asalsoobservedexperimentally.

InthesamepanelsinFig.4,simulationsathigherandlower injectionratesaredisplayedintheirrespectivefinalstatesafter dry-out.Athigherinjectionratesthelocationofprecipitationshifts awayfromtheinjectionpointtowardalargersaturationgradient (asaresultofthecapillaryendeffect).Apparently,iftheviscose forceincreases,astrongersaturationgradientisneededtoreach theconditionthatleadstolocalprecipitation.Atlowerflowrates, backflowseemstobeevenstronger,withthesaltprecipitating directlyattheinletwiththetimetillcloggingbeinglonger.

Moreinsightisprovidedbythefluidtransportasdisplayedin Fig.5.Theeffectivewaterfluxesinindividualcellsatthepointof localprecipitation(closedsymbols)andattheoutlet(open sym-bols)are plottedagainst time. Thestreams aresplitinto water fluxintheCO2-richphase(bluecircles)andintheaqueousphase

2Experimentalcapillary pressure (p

C(SW)) andrelativepermeability satura-tionfunctions(kr(SW))wereapproximatedbythevanGenuchtenmodels(van Genuchten,1980)availableinTOUGH2.Weperformedthesimulationsusingthe followingparameterset:=0.48,Slr=0.079,Sls=1,1/P0=3.5×10−4andPmax=109 forpC(SW)and=0.7,Slr=0.15, Sls=1andSgr=10−3)forkr(SW). Furthermore, K=500mD,Pin=100bar,T=45◦C(isothermal)andXNaCl=0.24(initialbrinesalinity inwt%)wereused.

Fig. 4. TOUGH2 simulations of core-flood experiments. Upper panel: CO2 -saturationprofilesduringCO2injectionintoabrine-saturatedrocksampleatarate of3×10−5kg/sandatdifferenttimesteps(linesandfilledsquares).Alsoshown arethefinalstatesofsimulationsathigherinjectionratesasindicatedinthe fig-ure(opensymbols).Themiddleandlowerpanelsshowtherespectivebrineand solid-saltsaturationprofiles.

(blacksquares).Theredlinemarksthetotalwaterfluxattheoutlet. ThewaterfluxintheCO2-richphaseisdeterminedbythewater content andthe flow rate.It stays constant over a longperiod oftime,accordingtothesaturationlimit.Thewatertransportin theaqueousphaseisverystrongduringthefirstfewsecondsbut

Fig.5.H2Ofluxesinselectedgridblocks(gb)asafunctionoftime.Squaresrepresent theH2OfluxintheaqueousphaseandcirclesrepresenttheH2OfluxintheCO2-rich phaseduetoevaporationandsubsequentadvection.Notethattheaqueousphase changestheflowdirectionasindicatedbythearrows.(Forinterpretationofthe referencestocolorintext,thereaderisreferredtothewebversionofthearticle.)

(6)

ARTICLE IN PRESS

G Model

IJGGC-1398; No.ofPages9

6 H.Ottetal./InternationalJournalofGreenhouseGasControlxxx(2015)xxx–xxx

declinesrapidlyaccordingtothemobilityratioofthefluidphases. Theaqueousphasebecomesimmobileandthewatertransportis determinedbyevaporationandsubsequentadvectionintheCO2 -richphase.Afteracertaintime,capillarypressuredominatesthe aqueous-phasetransport,leadingtoacapillary-drivenbackflow intothezoneofevaporation–countercurrenttotheinjectedCO2. Backflow,however,allowslocalaccumulationofsaltbeyondthe brine’soriginallocalsaltcontent.Thepointatwhichthemajorpart ofthesaltprecipitatesisthepointatwhichthe‘evaporationfront’ nolongermoves.Here,thenegativewaterfluxinthebrinephase compensatesforthepositivewaterfluxintheCO2-richphase(see Fig.5)andwecanformulateaconditionforlocalprecipitationto occurif:

qSC·SC·XH2O,SC=qaq·aq·XH2O,aq, (3)

whereqSCandqaqarethevolumetricfluxesoftheCO2-richphase andtheaqueousphase,SCandaq arethephasedensities,and XH2O,SCandXH2O,aqarethemassfractionsofwaterinbothphases,

respectively.

Thesimulationsdemonstrateandexplaintheeffectobserved in the experiment. However, there are substantial differences betweenexperimentsandsimulationsrelatedtosaturation gradi-ents.Inthesimulation,thegradientisdominatedbythecapillary end-effectandisthereforeageometricalproperty.Inthe experi-ment,however,theendeffectissuppressed(asobservedintheCT profiles)bycapillarybackflow,i.e.capillaryredistribution;in con-trasttothesimulation,waterevaporatesovertheentirecorelength and,hence,theinducedbackflowequalizesthebrinesaturation, suppressingtheendeffect.Thisisaresultofevaporationkinetics, whichisnotaccountedforinthesimulationswithTOUGH2(orin anyothersimulatorwhichdoesnottakeevaporationkineticsinto account).Hencethesaturationgradientthatleadstolocal precip-itationisnotquantitativelymodeled.Second,thereisonlyafinite brinevolumeintheexperiment,duetothefinitesamplesize.This leadspotentiallytoanunderestimationofsaltsaturationasaresult ofdepletioneffectsinexperimentswithafinitevolume,whichcan beshownbysimulationswithafinitesamplevolumes(datanot shownhere).

Thecriticalflowrate,abovewhichahomogeneousprecipitation patternisobservedintheexperiment(i.e.atwhichtheadvective fluxpreventscapillary-drivenbackflow),isequivalenttotheratein thesimulationsatwhichtheprecipitationpeakmovesawayform theinlettothenextpointwithahighersaturationgradientwerethe downstreamfluxofwaterinCO2isagaincompensatedby counter-currentflowoftheaqueousphase.Suchashiftisnotobservedfor theflatsaturationprofilesintheexperiments,sincetheconstant saturationgradientcannotcounteracttheadvectiveforceatflow ratesabovethecritical.Aflatsaturationprofileisexpectedinthe field.However,inradialflowgeometry,wheretheadvectiveforce decreaseswithdistance,theconditionoflocalprecipitationcanbe reachedatacertaindistanceevenwithaflowrateabovethecritical closetotheinjectionpoint.

5. Thezoneofattraction:kineticmodel

InthesimulationspresentedsofartheproducedCO2wasfully water-saturatedasresultoftheequilibriumapproachofthe evap-orationmodel.However, fromtheexperimentsin Section3 we determined theaverage water saturation of the produced CO2 streamtobeabout35%ofthesolubilitylimitfortherespective experimentalconditions.Thereasonforthepartialsaturationis thefinitecontactareabetweentheinjectedCO2streamandthe brine in therock and the finite evaporationrate,which is not takenintoaccount(overestimated)intheequilibriummodel.On thebasisoftheaveragewatercontentoftheproducedCO2,we

Fig.6.Zoneofpotentialattraction.Upperpanel:WatersaturationintheCO2-rich phaseasfunctionofdistancefromtheinjectionpoint.Theprofilesfordifferent injectionratesareshownsimulatedinalinearflowgeometry.Lowerpanel:The zoneofattractionasafunctionofinjectionrate.Thefilledsymbolsareobtained fromexperiments.

estimatedthezoneinwhichevaporationtakesplacetobeinthe orderof0.3–1minlineargeometry–inanycaselongerthanthe experimentallengthscale.Inthiszone,thewatersaturation gradi-ent(dSW/dx)ismodifiedfromthegradientexpectedfromviscous displacementonlyandcapillary-drivenbackflowcanoccur.The evaporationzoneisthereforethezoneoverwhichcountercurrent solutetransportcanpotentiallyoccur–wethereforecallitzoneof attraction.

Inthis sectionwepresentan estimationofthezone dimen-sion in linear geometry by numerical simulations. We use a kinetic approach as reported byRoels et al. (2014) and model thezoneofattractionfor differentinjectionratesbetween0.01 and 100ml/min/cm2 (2×10−6 and 0.1m/s). We use rock-fluid parameters–relativepermeabilityandcapillarypressure satura-tionfunctions–obtainedforCO2-brinedisplacementinthesame rocktype(Bereasandstone:Ottetal.,2011a;Bergetal.,2013),for thesamefluidcombinationandthermodynamiccondition.

We model evaporation and flow only and we do not take thefeedbackofprecipitationonpermeabilityandcapillarityinto account.Wedeterminetheoverallevaporationrate–A×revap,with AbeingtheCO2-brinecontactareaandrevaptheevaporationrate –bymatchingtheaveragewaterconcentrationintheproduced CO2streamtotheexperimentallyobtainedvalueattherespective distance.Subsequently,simulationswereperformedwith experi-mentalinputdataonasemi-infinitesimulationdomain.Fromthe simulationdatawedeterminedthedistance,levap,overwhich evap-orationtakesplace–i.e.thedistancethatisneededtoreachwater saturationlimitinCO2undertherespectiveconditions.

Fig.6showsthewatersaturationprofilesintheCO2streamfor differentinjectionrates.Eachsimulationshowsthetypicalincrease ofthewatersaturationintheCO2phase(XH2O,SC)withdistance

(7)

Fig.7. ␮CTdatarecordedwithpseudopore-scaleresolutionduringCO2flooding.Toprow:cross-sectionaldifferenceimagesshowingthesolidsaltsaturationintheregion oflocalprecipitationbetween0and0.5cmfromtheinlet(imagecatmaximumsaltsaturation).Lowerimage:3Drepresentationofthesaltdistributionat0.25cmfromthe inlet(orange-red).TheinitialCO2percolationpattern(after0.4h)isaddedattherightfrontcornerofthe3Dvolume.

Thedatashowanincreasingextendofthezoneofattractionwith increasinginjectionrate.Thelowerpanelshowsthederivedlevap asafunctionofCO2injectionrate.Theexperimentallyestimated dataareincludedin theplot.Forthedefinedrange ofinjection rates,evaporationzonesintheorderoflevap=3×10−3toabove10m werefoundwithalineardependenceontheinjectionrate.Forthe conditionsatwhichtheexperimentswerecarriedout,thezoneof attractionhasbeensimulatedtobe0.4m.

The presented kineticsimulations give valuable information aboutthesizeofthezoneaffectedbysalt precipitationandthe distancesoverwhichsolutescanbetransportedcountercurrentin directionoftheinjector.Thisservedthereservoirengineerasinput fore.g.griddingofreservoirmodelsaroundgasinjectorsand pro-ducers.Thesaltvolumethatpotentiallycanbetransportedtothe pointofdry-outcanbeestimatedfromtheimmobilebrinefraction intherespectivelyaffectedvolume.

6. Effectsonpermeability:K()relationship

Up to this point we have discussed the longitudinal solute transport and theresulting precipitationprofiles. However,the importantquestionisrelatedtotheeffectofprecipitation–i.e. porosityreduction–onpermeabilityandeventuallyoninjectivity. Whileporosityreductionismeasuredby␮CT,changesof perme-abilityarereflectedinthepressuredropP.

TheupperpanelofFig.8showsthepressuredropoverthecore lengthduringflooding(blackline).Pessentiallydecreases dur-ingtheexperiment.Theonsetofcapillarybackflowisvisibleasa smalldip,withasubsequentPincreaseduetosubstantiallocal precipitation.Butdespitethisporosityreduction,theeffective per-meabilityoftheCO2-richphaseincreasedduringtheexperiment, whichmeansthatrelativepermeabilityeffectscompensateforthe absolutepermeability (K)reduction. A Pcurve ofa compara-bleexperimentthatshowedahomogeneousprecipitationpattern withaboutthesameaverageporosityreductionisshowninthe sameplot(redline).Theexperimentwasterminatedafterabout 7handshowsasmallerfinalreductionofKasintheheterogeneous case.Fromthefinalporosityprofilesofbothexperimentsasshown inFig.3andtherespectivepressuredrop,wedetermineaK()

relationshipforthedrystatebyusingthecorrelationproposedby VermaandPruess(1988):

K−KC K0−KC =



C 1−C



, (4)

withKCbeingthelowestvaluetowhichKcanbereducedby pre-cipitation.WhileKC isarobustoutcome,theexponent andthe criticalporosityCarenotuniquelydefinedbythedatasetalone. However,thetwoextremes,C=0andC=0.8,givesimilarresults

Fig.8.Top:PressuredropPoverthecoreduringCO2injection.Twocasesare shown:(1)thelocalprecipitationcaseasdiscussedinthetext(blackline),and (2)Precordedduringhomogeneousprecipitationforcomparison(redline).The opensymbolsrepresentthedevelopmentofthelocalprecipitate(saltsaturationin arbitraryunits)inFig.3.Bottom:K()relationshipsdescribingtheexperimental observations.

(8)

ARTICLE IN PRESS

G Model

IJGGC-1398; No.ofPages9

8 H.Ottetal./InternationalJournalofGreenhouseGasControlxxx(2015)xxx–xxx

Fig.9. Schematicviewonthedry-outandprecipitationprocess.(a)Retractionofthebrinephase(menisci)duetoevaporationleadingtoanincreaseofCO2relative permeability.(b)Theprecipitateisessentiallylocatedinthevolumeformerlyoccupiedbythebrinephase.

(withtheexponentfittedtothedata)asshowninthelowerpanel ofFig.8 suchthateitherresultcanbeusedforapractical pur-poseintherelevantporosityrange=/0=1to0.8.Aswewill arguebelow,themaximumsaltsaturationisequaltotheresidual brinesaturation(Ssalt,max=SW,res)andthereforeC=1−SW,res=0.8. Withthisweareabletodeterminetheremainingfitting parame-ter ,resultingintheparameterset:KC/K0=3.5×10−3,C=0.8and =10.1.

KCislikelytobearesultoftheobservedprecipitationpatternas showninFig.7a–e.Theimagesshows␮CTcrosssections(toprow) anda3DimageofthedataalreadypresentedinFig.3andwere recordedwith24␮m voxelsize (pseudopore-scale resolution), whichisacompromisebetweenspatialresolutionandaproper fieldofviewwithanimprovedtimeresolution(shortertotal scan-ningtime).Theimagesrangefromclosetotheinlet(a)toabout 0.5cmintothesample(e)andshowthesolid-saltcontributionof thedrysample.Conspicuously,thesaltprecipitatesinspotson dif-ferentlengthscales,rangingfromamm-scaletoasub-mmoreven amicrometer-scale.A3Drepresentationofthesolidsalt distribu-tionisshowninthelowerpartofFig.7inorange,whiletheearly CO2 percolationpatternisgiven intherightfrontcornerofthe 3Dgraphinblue.Bothpatternsoccupycomplementaryspaceand overlapbylessthan5%ofthecommoncrosssection.Thisindicates thatsaltprecipitatesinthevicinityoftheinitiallyCO2occupied volume,leavingtheinitialCO2-pathwaysessentiallyopen.

Thedatapresentedsofartogetherwithacoupleofsimple argu-mentsallowustoconstructamindmodel–illustratedinFig.9– thatsupportsandsummarizesthefindingsofthiswork:

1.Viscousbrinedisplacementandwaterevaporationactin par-allel,butwerefoundtobedominantondifferenttimescales. Whileresidualbrinesaturationisusuallyreachedafter injec-tionofafewporevolumes,completedry-outwasreachedafter hundredsofporevolumesofinjectedCO2.Thereisessentially noviscousbrinedisplacementduringdry-out.

2.Thestructureoftheresiduallytrappedbrinephaseisdetermined bycapillaryforces.

3.Afterreachingthesolubilitylimit,saltprecipitatesinthebrine phase,andhenceinthevolumeoccupiedbytheresidualbrine, SW,res.

4.Thebrine-saturatedvolumeretractsduringevaporation,leaving theprecipitatedsaltbehind.

5.Thereisnotransportmechanismofliquidwatervaporacross theCO2–brineinterfaceandhencenotransportmechanismof saltintotheintotheCO2flowchannels–theflowchannelsserve forwatervaportransport,butstayopensincesaltprecipitates intheresidualbrinephase.

brine

CO2

q

q

SC

>

cr

q

SC

~

q

cr

q

SC

<

q

cr

uniform prec. local prec. prec. at inj. point

capillary-driven

back flow

evaporation

flow

channels

Fig.10. Toprow:schematicviewofthedifferentflowregimesthatdeterminethe precipitationpatternandarecharacterizedbytheflowratewithrespecttoacritical flowrateqcr.Bottomrow:schematiccross-sectionalcapillary-drivenbrinetransport asdescribedinthetext.

6.Becauseofthewellseparatedtimescalesofviscous displace-mentandevaporation,themaximumporevolumethatcanbe filledbyprecipitateisthevolumecorrespondingtotheresidual brinesaturation,SW,res.We conclude:Ssalt,max=SW,res.InBerea sandstonewetypicallyfindSW,res≈0.2,whichcorrespondsto themaximumobservedsaltaccumulationinthepresentstudy.

7. Summaryandconclusions

Insummary,weinvestigatedconsequencesofdry-zone forma-tioninthevicinityofgasinjectionandproductionwells.Incore flood experimentswe injected dry SCCO2 into brine-saturated sandstone samples and reached complete dry-out. During the floodswemeasuredeffectivepermeabilityandfluidandsalt satu-rations.

Wefoundthattimescalesofviscousdisplacementanddrying arepracticallywellseparates.Twomechanismsturnedouttobeof importance:(1)macroscopicsolutetransportduetocapillary pres-suregradients,whichdeterminesthemacroscopicsaltdistribution, and(2)thepore-scalearrangementoffluidphasesduringviscous displacementandthedryingprocess.Suchlocaleffectsdetermine effectivepermeability,theporosity–permeabilityrelationshipand probablythemaximumpossiblesaturationofsaltintheporespace. Theprincipalmechanismofsolutetransportandthecondition underwhichlocalprecipitationoccurshavebeeninvestigatedby experimentsandnumericalsimulations.Theresultsare schemati-callydisplayedinFig.10.Weidentifiedtheoriginofacriticalflow rateabove whichsalt precipitateshomogeneously ona macro-scopicscale.Below thecritical flowrate,capillary-induced back

(9)

flowoftheremainingbrinephasetransportssolutesinthe direc-tionoftheinjectionpoint,wheresalteventuallyprecipitates.We furtheridentifiedthelengthscaleoverwhichsolutescan poten-tiallybetransported asafunctionofinjectionrate.Thezoneof attractionhasbeenfoundtobe0.4mforthedescribed experimen-talsituationandcanreachseveralmetersdependingontheflow rate.Duetocountercurrentflow,theamountofprecipitateper unitvolumecanexceedthevolumeofsaltoriginallydissolvedin thebrineintherespectivevolume.

From the presented experiments we calculated the permeability–porosity relationship, K(), describing the effect ofprecipitationinsandstoneundertherespectiveflowconditions. Despitetheobservedstrongreductionsofabsolutepermeability, theeffectiveCO2permeabilityincreasedduringtheexperimentin allcases.Thisrelativelymildimpactofprecipitationonthesample permeabilitycanbeattributedtotheobservedlocalprecipitation pattern;saltprecipitatesinthebrinephaseandhenceinthe vicin-ityofCO2-conductingchannels,leavingthesechannelsessentially open.

Theresultsofthestudyareofdirectrelevancefortherisk assess-mentofinjectionoperations,andareofpracticalusedforinjectivity modeling.Forthepredictionofmacroscopicsalttransportandthe resultingporosityreductions,injectionratesandeffective evapo-rationratesneedtobetakenintoaccount.Thedimensionofthe affectedzone hasbeen estimatedto bein theorder of several centimeterstometers,whichisvaluableinputforanadequate grid-dingaroundgasinjectorsandproducersinreservoirmodeling.For similarrocktypes,therespectivepermeabilityreduction canbe modeledbytheobtainedK()relationship.

Saltprecipitationinsimilarrocktypeswillleadtoan absolute-permeabilityreduction,buttoanimprovingeffectivepermeability duringtheinjectionprocess.Forthatreason,weexpectarelatively mildimpactofsaltprecipitationoninjectivitycomparedtothecase ofmulti-modalcarbonatesasinvestigatedinacompanionpaperby Ottetal.(2014).

Acknowledgments

The authorsthank Steffen Bergand JeroenSnippe for fruit-fuldiscussionsand forreviewingthemanuscript.Fons Marcelis isacknowledgedforsamplecharacterizationandpreparationand PacelliZithaforcontinuoussupportanddiscussions.

References

Andre,L.,Peyssona,Y.,Azaroual,M.,2014.WellinjectivityduringCO2storage

oper-ationsindeepsalineaquifers:Part2.Numericalsimulationsofdrying,salt depositmechanismsandroleofcapillaryforces.Int.J.Greenh.GasControl22, 301–312.

Bacci, G., Korre, A., Durucan, S., 2011. Experimental investigation into salt precipitation during CO2 injection in saline aquifers. Energy Procedia 4,

4450–4456.

Bachu,S.,Gunter,W.D.,2004.Overviewofacid–gasinjectionoperationsinWestern Canada.In:Proceedingsofthe7thInternationalConferenceonGreenhouseGas ControlTechnologies,Vancouver,Canada,5–9September,2004,vol.1.

Berg,S.,Oedai,S.,Ott,H.,2013.Displacementandmasstransferbetweensaturated andunsaturatedCO2–brinesystemsinsandstone.Int.J.Greenh.GasControl12,

478–492.

Ehrenberg,S.N.,Nadeau,P.H.,2005.Sandstonevs.carbonatepetroleumreservoirs:a globalperspectiveonporosity-depthandporosity–permeabilityrelationships. AAPGBull.89(4),435–445.

Giorgis,T.,Carpita,M.,Battistelli,A.,2007.2Dmodelingofsaltprecipitationduring theinjectionofdryCO2inadepletedgasreservoir.EnergyConvers.Manag.48,

1816–1826.

Hubbell,J.H.,1969.PhotonCrossSections,AttenuationCoefficients,andEnergy AbsorptionCoefficientsFrom10keVto100GeV.Tech.Rep.NSRDS-NBS29.U.S. DepartmentofCommerce,NationalBureauofStandards.

IPCC,2005.IPCCSpecialReportonCarbonDioxideCaptureandStorage.Cambridge UniversityPress,UK.

Kleinitz,W.,Koehler,M.,Dietzsch,G.,2001.Theprecipitationofsaltingasproducing wells.SocietyofPetroleumEngineersSPE68953,1–7.

Lide,D.R.,2003.HandbookofChemistryandPhysics.CRCPress.

Ott,H.,Berg,S.,Oedai,S.,2011a.DisplacementandmasstransferofCO2/brinein

sandstone.In:SocietyofCoreAnalysisConferencePaperSCA2011-05.

Ott,H.,deKloe,K.,Marcelis,F.,Makurat,A.,2011b.InjectionofsupercriticalCO2in

brinesaturatedsandstone:patternformationduringsaltprecipitation.Energy Procedia4,4425–4432.

Ott,H.,deKloe,K.,Taberner,C.,Marcelis,F.,Wang,Y.,Makurat,A.,2010.Rock/fluid interactionbyinjectionofsupercriticalCO2/H2S:investigationofdry-zone

for-mationneartheinjectionwell.In:SocietyofCoreAnalysisConferencePaper SCA2010-20.

Ott,H.,deKloe,K.,vanBakel,M.,Vos,F.,vanPelt,A.,Legerstee,P.,Bauer,A.,Eide, K.,vanderLinden,A.,Berg,S.A.M.,2012.Core-floodexperimentfortransportof reactivefluidsinrocks.Rev.Sci.Instrum.83(084501-1-084501-16).

Ott,H.,Snippe,J.,deKloe,K.,Husain,H.,Abri,A.,Makurat,A.,2014.Saltprecipitation duetosupercriticalgasinjection:II.Singlevs.multiporosityrocks.Int.J.Greenh. GasControl(submittedforpublication).

Pape,H.,Clauser,C.,Iffland,J.,1999.Permeabilitypredictionbasedonfractal pore-spacegeometry.Geophysics64(5),1447–1460.

Perrin,J.-C.,Benson,S.,2010.Anexperimentalstudyontheinfluenceofsub-core scaleheterogeneitiesonCO2distributioninreservoirrocks.Trans.PorousMedia

82,93–109.

Peyssona,Y.,Andre,L.,Azaroual,M.,2014.WellinjectivityduringCO2storage

opera-tionsindeepsalineaquifers:Part1.Experimentalinvestigationofdryingeffects, saltprecipitationandcapillaryforces.Int.J.Greenh.GasControl22,291–300.

Pruess,K.,García,J.,2002.MultiphaseflowdynamicsduringCO2injectionintosaline

aquifers.Environ.Geol.42,282–295.

Pruess,K.,Müller,N.,2009. Formationdry-outfrom CO2 injectioninto saline

aquifers:1.Effectsofsolidsprecipitationandtheirmitigation.WaterResour. Res.45,W03402.

Pruess,K.,Spycher,N.,2007.ECO2N–afluidpropertymodulefortheTOUGH2 codeforstudiesofCO2storageinsalineaquifers.EnergyConvers.Manag.48,

1761–1767.

Roels,S.M.,Ott,H.,Zitha,P.L.J.,2014.␮-CTanalysisandnumericalsimulationof dryingeffectsofCO2injectionintobrine-saturatedporousmedia.Int.J.Greenh.

GasControl27,146–154.

Schutjens,P.M.T.M.,Hanssen,T.H.,Hettema,M.H.H.,Merour,J.,deBree,P., Core-mans,J.W.A.G.H.,2004.Compaction-inducedporosity/permeabilityreduction insandstonereservoirs:dataandmodelforelasticity-dominateddeformation. SPEReserv.Eval.Eng.7(3),202–216.

Span,R.,Wagner,W.,1996.Anewequationofstateforcarbondioxidecovering thefluidregionfromthetriple-pointtemperatureto1100katpressuresupto 800mPa.J.Phys.Chem.Ref.Data25(6),1509–1596.

Spycher,N.,Pruess,K.,2005.CO2–H2Omixturesinthegeologicalsequestrationof

CO2:II.Partitioninginchloridebrinesat12–100◦Candupto600bar.Geochim.

Cosmochim.Acta69(13),3309–3320.

vanGenuchten,M.T.,1980.Aclosed-formequationforpredictingthehydraulic conductivityofunsaturatedsoils.SoilSci.Soc.Am.J.44,892–898.

Verma,A.,Pruess,K.,1988.Thermohydrologicalconditionsandsilicaredistribution nearhigh-levelnuclearwastesemplacedinsaturatedgeologicalformations.J. Geophys.Res.93,1159–1173.

Vinegar,H.J.,Wellington,S.L.,1987.Tomographicimagingofthree-phaseflow experiments.Rev.Sci.Instrum.58(1),96–107.

Wellington,S.I.,Vinegar,H.J.,1987.J.Petrol.Technol.SPE16983,885–898.

Wyble,D.O.,1958.Permeabilitypredictionbasedonfractalpore-spacegeometry. Trans.Soc.Pet.Eng.AIME213,430–432.

Xu,T.,Apps,J.A.,Pruess,K.,2004a.NumericalsimulationofCO2disposalbymineral

trappingindeepaquifers.Appl.Geochem.19,917–936.

Xu,T.,Ontoy,Y.,Molling,P.N.S.,Parini,M.,Pruess,K.,2004b.Reactivetransport modeling ofinjectionwellscalingandacidizing atTiwifield,Philippines. Geothermics33,477–491.

Zuluaga,E.,Monsalve,J.C.,2001.Watervaporizationingasreservoirs.Soc.Petrol. Eng.SPE84829,1–4.

Zuluaga,E.,Mu ˜noz,N.I.,Obando,G.A.,2001.Anexperimentalstudytoevaluatewater vaporisationandformationdamagecausedbydrygasflowthroughporous media.Soc.Petrol.Eng.SPE68335,1–7.

Cytaty

Powiązane dokumenty

Keeping the type of option constant, in-the-money options experience the largest absolute change in value and out-of-the-money options the smallest absolute change in

For general engineering purposes (i.e., without undue precautions to eliminate such disturbances), the following values are appropriate: The flow in a round pipe is laminar if

(1 point) The sides of a rectangle has been measured to be 40cm and 50cm correct to the nearest 10cmA. The lower bound for the area of the rectangle is (select all

With the help of Theorem 7 and the Lemma, we can easily prove Theorem 9.. , be some sequences of complex numbers. .) be an asymptotic sequence. .)... By using the previous Lemma, we

We prove that the exponent is a rational number, that it is attained on a meromorphic curve (Prop. 1), and we give a condition equivalent to the properness of regular mappings (Cor..

and [9]. Generally, if X is an algebraic set of pure dimension n ≥ 1, X is said to be uniruled if every component of X is uniruled. Points at which a polynomial map is not proper.

Uzupełnij luki 1–3, wybierając jedną z podanych możliwości a, b lub c, tak aby otrzymać logiczny, spójny i poprawny językowo tekst.. My girlfriend likes

• “Nowy Sącz Experiment” in the end of 50’s and 60’s years and its influence on city's innovation,.. • 7 economical “tigers” – there is always somebody behind