• Nie Znaleziono Wyników

Waveguiding properties of thin film light guide made of LiNb0₃ single crystal

N/A
N/A
Protected

Academic year: 2021

Share "Waveguiding properties of thin film light guide made of LiNb0₃ single crystal"

Copied!
8
0
0

Pełen tekst

(1)

Optica Applicata, Vol. X, No. 2, 1980

Waveguiding properties of thin film light guide made

0fL iN b O 3 single crystal*

Wiesław Ciurapiński, Krzysztof Goździk, Mieczysław Szustakowski, Bogusław Św ietlicki

M ilitary Academy o f Technology, W arsaw, Poland.

One o f the m ost suitable materials for thin layer light m odulation in the visible range is lithium niobate. A plate o f lithium niobate o f Y cu t, thinned down to th e thickness o f order o f 30 [i.m w ith one side deposited w ith a m etal layer, creates an assymmetric waveguide. The light flux from a He-Ne laser introduced to the plate w ith th e help o f a prism o f B iG e 0 2o single crystal propagates in the direction o f A-axis. The surface acoustic wave, propagating in the

2-axis direction, is generated by two interdigital transducers positioned close to each other.

This waveguide enabled a propagation o f 70 modes b u t only four o f them positioned in the central p art o f the spectrum transm it a significant light intensity. A fter switching-on the acoustic wave o f frequency 60 M H z and 187 M H z a diffractions o f R am an-N ath and Bragg types in all these four significant modes was observed.

Introduction

The fundamental element used to laser beam control in the optical integrated system are acousto-, electro- and magnetooptic modulators, deflectors and all kinds of op­ tical switches [1-3]. These elements are usually produced in the form of planar light guides obtained by diffusion, ion inaplanation or thin film evaporation on the single crystal substrate [4]. The waveguiding properties of waveguides obtained in this way differ considerably from those of ideal light waveguides which are well repre­ sent by a thin single crystal layer. These differences result from technological diffi­ culties connected with the production of an optically uniform light waveguide by means of the above methods.

In this paper the production possibility and waveguide properties of planar light waveguide made of lithium niobate plate are examined. The waveguiding effect was obtained with a distinct mode separation. Simultaneously, an effect o f acoustooptic light modulation base on Raman-Nath or Bragg effects was observed.

Light-guiding properties o f thin plate waveguide o f LiNbCL

The light-guide was made of a single crystal plate of lithium niobate 30 p,m thick, deposited on a solid quartz substrate. Fig. 1 shows the waveguide design and the orien­ tation of axes. The prism coupling the light beam from the He-Ne laser was made o f rutile.

* This paper has been presented a t the F o u rth Polish-Czechoslovakian O ptical Conference in Rynia (near W arsaw), Poland, Septem ber 19-22, 1978.

(2)

10? W. Ciurapinski, K. Gozdzik, M. Szustakowski et al.

c b

Fig. 1. a. M odel o f th e system for which th e calculations were carried o u t: 1 — prism, 2 — slit, 3 — light-waveguide, 4 — substrate, 5 — light beam, b. O rientation o f crystallographic axis w ith respect to th e coordinate system (y — light acceptance angle, 0X — light propagation angle, X, Y, Z — crystal

axes, x , y , z — axes o f th e accepted coordinate system)

In this way an asymmetric anisotropic light-guide was obtained. In such a light guide the characteristic equation for TE-modes has the form [5]:

tr if—nl \ 1/2

+ a rc ta n ( —--- £-1 + n m , \ n 2- n } }

where: W — light-guide thickness,

k 0 = 2II/A0 (A0 — light wavelength in vacuum), nf — effective refractive index of light-guide, nc — refractive index in the air,

« i, «2 — refractive indices of light guide along the x- and y-axes,

respec-From the formula (1) the following parameters of the light propagation effect in the light-guide have been determined:

6>x — light propagation angle,

y — angle of light coupling via prism, m — order of excited mode,

nf — effective refractive index in the light-guide.

The results of calculations of these parameters for the thickness range 10-30 (Am and A0 = 0. 6328 are shown in fig. 2.

As it follows from fig. 2 the order of propagating modes within considered thick­ ness range is very high and the mode number for a unit change nf is very great. It has been expected that due to some laser beam divergence as well as to fluc­ tuations of refractive index nf resulting, among others, from the surface treatment inaccuracies a great number of modes will be observed.

In fact, the mode structure obtained experimentally consisted of about 50-60 modes of very low intensity. A group of “ strong” modes which may be distinguished in the central part of these “weak” modes will be called significant, hereafter. The number of these strong modes oscillates between 2 and 11, depending upon the

cou-(

1

)

(3)

Waveguiding properties oj thin film light guide ... 109

W [jxm]

Fig. 2. Param eters o f light propagation process in light waveguide o f L iN b 0 3 for several higher order modes. The numbers close to curves denote the mode numbers, n f — effective refractive index, W — waveguide thickness, Wwz — relative thickness, y — light acceptance angle,

light propagation angle

Fig. 3. Structure o f significant m odes: a) — two-m ode case, b) four-mode case

pling angle y. They contained above 95% of the intensity transmitted by the whole light waveguide. In fig. 3 two- and four-mode structures of significant modes are shown. The weak-mode background is not visible in the pictures.

The transmission efficiency rjt of the light waveguide examined (fig. 4) depends upon the coupling angle y and the kind of excited modes. The coupling effectivity for TE-modes was 10 times higher than that for TM-modes.

(4)

110 W. Ciurapiński, K. Goździk, M. Szustakowski et al.

2 3

Fig. 4. Transmission efficiency o f the Bragg diffraction vs. coupling angle: — transm ission effici­ ency, y — acceptance angle, /,· — incidence beam intensity, /,· — emerging beam intensity

Acoustooptic interaction

The quantity characterizing the interaction effectivity is the diffraction efficiency de­ fined as the ratio of the diffracted intensity to that of the incident beam. In the case of Bragg-type diffraction its efficiency depends upon the light propagation parame­ ters and the acoustic wave in the following way [6]:

where: vn — propagation velocity of the n-th mode,

v — light velocity in the medium of which the modulator is made,

Od — diffraction angle,

L — length of the interaction path, Ud — diffraction angle,

(Pijki — photoelastic constants, Bq3 — amplitude of deformation, y * -

distribution for deformation field).

In the system described the surface acoustic wave propagated along the z-axis. Assuming that this wave is of the Rayleigh-type with the displacement components «2 > «3 [7], the terms I l t , I 33 appearing in dependence (3) may be reduced to the form :

(

2

)

vnk sinQf sin0 dEt j h i +cosOicos&de33I33

v f UdU*dx2 (3)

Al = f B 3P l i v9utu :d x2Wp i3B3K t

/ 33 = j B3p 33V3 Ui Ud dx2 ^ p 33B3K,

(5)

Waveguiding properties o f thin film light guide

...

I l l

where K < 1 is the coefficient representing the degree to which the electric and magnetic field distributions are overlapping. By virtue of the above expressions and the fact that sin h/A is of order of 10“ 3 the diffraction efficiency may be finally

expressed:

B x10'5

Fig. 5. Bragg diffraction efficiency vs am plitude o f d eform ation: r) — diffraction efficiency, — incidence beam intensity, Id — diffracted beam intensity

The theoretical dependence of the Bragg diffraction upon the deformation ampli­ tude B3 is shown in fig. 5. Similar considerations carried out for the diffraction of Raman-Nath-type allow to determine the efficiency in the form:

(6) 0 3 0.2 0.1 / / / 10 20 B*10'5

Fig. 6. R am an-N ath diffraction efficiency vs. am plitude of deform ation (th e significations are the sam e as in figure 5)

Fig. 6 presents the dependence of the diffraction efficiency of this type upon the deformation amplitude. In addition to the diffraction effect the acoustooptical

(6)

112 W. Ciurapinski, K. Gozdzik, M. Szustakowski et al.

interaction evokes — in the case of anisotropic waveguide — a mode inversion in the part of scattered light. The change of indicatrix generated by the acoustic wave is

^ eU ~ ~ SfiPijkl^kl’ (7)

In the system described the changes are expressed as follows:

— e ii(Pl2*S,2 + / ,i 3 < S ' 3 + P l 4 ‘S,4)>

A e 2 2 = e 22(jPll‘^ 2 + / ^ i 3 ‘S,3 + P l 2 <S,4)j (8)

zle33 = — 8l2(p44S4— p4iS2).

Hence, for the TE-modes (E3, H2t H 4) components of the induction vector have the form

i~\~Asi i 0 0 “ O '

D2-{-D2 = 0e22-\- Ae22 As32 0 (9)

D3+ D 3 A e32 0 e33 -\-Ae33 [e3\

The relation D3 = Ae33E3 determines the values of electric field scattered in the TE-mode structure, while the D2 = Ae23E3 component defines those in TE- mode structure. For low diffraction orders the two kinds of modes propagate under different angles and are easily distinguishable. In the case of multi-mode waveguide the angle differences between the TE- and TM-modes are very small and the mode inversion effect may be distinguished only by applying the polarization state analysis of scattered light.

Experimental exam inations

The experimental examinations were carried out in the system shown in fig. 7. To the waveguide described in fig. 1 a pair of. interdigital transducers exciting the acoustic surface wave has been added.

Fig. 7. Model o f an acoustooptic thin film m odulator: a) side wiev, b) top view. 1 — coupling prism, 2 — slit, 3 — light waveguide, 4 — substrate, 5 — transducer, 6 — light beam, 7 — acoustic wave ( x , y , z — orientation o f

crystallographic axes)

In the experiment the following quantities were measured:

y — angle of light coupling, 0 t — diffraction angle,

(7)

Waveguiding properties o f thin film light g u id e

...

113

Fig. 8. R am an-N ath diffraction for tw o significant modes: a) before leading-in o f the acoustic power, b) after leading-in o f the power

Fig. 9. R am an-N ath diffraction for four significant modes: a) before leading-in o f th e acoustic power, b) — after leading-in o f the power

Fig. 10. Bragg diffraction for tw o significant modes

In the system described acoustooptic interaction effects were also observed. After exciting the acoustic surface wave an effect of Raman-Nath diffraction was obtained at the frequency 60 MHz and the effect of Bragg diffraction at the frequency 187 MHz. Figs. 8, 9 and 10 represent both the effects for different numbers of sig­ nificant modes.

Experimental and theoretical dependences of the Raman-Nath diffraction angle upon the frequency are presented in fig. 11. Theoretical expectations concerning the changes in polarization of the light transmitted through the system have also found their experimental verifications.

(8)

114 W. Ciurapiński, К. Goździk, M. Szustakowski et al.

Fig. 11. R am an-N ath diffraction angles vs. th e frequency, full line presents theoretical results, broken line shows the results o f experiment (@</ —[diffrac­ tion angle, / — acoustic wave fre­

quency)

References

[1] Kuhn L. e t all., Appl. Phys. L ett. 17, 265 (1970). [2] Schmidt R . V. et all., Appl. Phys. L e tt. 23, 417 (1973). [3] Zolotov E. M ., et all., Pism a v Z h. Tekh. Fiz. 3, 226 (1977). [4] Tien P. K ., Rev. M od. Phys. 49, 361 (1977).

[5] Goncharenko A. M „ Vvedenie v integralnuyu optiku, Izd. N auka i Tekhnika, Minsk 1975. [6] Vvedenie v integralnuyu optiku, ed. M . Bam oski, Izd. M ir, Moskva 1977.

[7] Farnell G . W ., Elastic Wave Propagation in Thin Layers, ed. W. P. M ason, Academic Press, New Y ork 1972. Received, December 27, 1978, in revised fo rm M ay 7, 1979 Волноводовые свойства тонкослоистого светопровода из монокристалла Ь1МЮ 3 Одним из наиболее соответствующ их м атериалов для тонкослоистой модуляции света в видимой области является ниоб ат лития. Пластинка ниобата лития с сечением У, уто­ ненная д о толщ ины порядка 30 м км с односторонне напыленным слоем м еталла образует несимметричный волновод. П оток света и з лазера Н е-№ , введённый в пластинку с пом о­ щ ью призмы и з монокристалла Швего» распространяется по направлению к оси х. П оверх­ ностная звуковая волна, распространяю щ аяся по направлению к оси ъ генерируется двумя лежащ ими рядом меж пальчатыми преобразователями. Описанный волновод дал возмож ­ ность распространения около 70 модов, с тем , что только 4 мода, расположенных в средней части спектра переносили значащ ую интенсивность света. П осле включения звуковой вол­ ны частотой / = 60 и 187 М Гц наблю далась дифракция типа Рам ана-Н ата и Б рагга во всех 4 значащих модах.

Cytaty

Powiązane dokumenty

o ile wcześniej autor rozpatrywał symbol jako specyficzne połączenie „z czymś, co znajduje się poza granicą poznania”, o tyle w pracy История

Archiwum Historii Mówionej Śląska Cieszyńskiego nie jest zatem strukturą zamkniętą, ale zbiorem narracji i towarzyszących im materiałów, który będzie się poszerzał w

Podobnego zadania są McKay, Davis oraz Fanning, według których chcąc sku­ tecznie wpływać na innych należy przyjąć, że nie można zmienić charakteru człowieka, także

Analiz¹ objêto zmiany, jakie wystêpowa³y w produkcji, imporcie, eksporcie i poda¿y na krajowy rynek ci¹gnikowych kosiarek rotacyjnych, kopaczek i kombajnów do zbioru

The SHJ structure is based on high quality crys- talline silicon (c-Si) which is passivated with intrinsic amorphous silicon (a:Si:H). The emitter and back surface field of the

Индустриальные методы строительства жилья как решение социальных задач И.С. Рыбакова 2 АННОТАЦИЯ: Статья посвящена решению социальных

Je»eli ramiona k¡ta przetniemy dwie- ma prostymi równolegªymi, to odcinki wyznaczone na jednym ramieniu k¡ta s¡ proporcjonalne do odpowiednich odcinków na drugim ramieniu

The clinical course of Kimura’s disease is usually benign.. These observed subcutaneous masses, when left untreated, tend to slowly enlarge and may eventu- ally