• Nie Znaleziono Wyników

Smolarek L. Drifting rescue units hazard’s importance estimation.

N/A
N/A
Protected

Academic year: 2021

Share "Smolarek L. Drifting rescue units hazard’s importance estimation."

Copied!
8
0
0

Pełen tekst

(1)

DRIFTING RESCUE UNITS HAZARD’S

IMPORTANCE ESTIMATION

Smolarek L.

Gdynia Maritime University, Gdynia, Poland

Abstract: In many cases the system structure of drifting rescue units (DRU) is not as

important as its operational possibility [1,3]. The DRU failure, especially capsizing, is caused not only by DRU system changes but is strongly effected by environment negative influences (the action of wind, currents, and waves), [ 4, 7].

1. Introduction

1

The international regulations presented at the IMO papers describe technical parameters and general stability criteria for Drifting Rescue Units (DRU). Unfortunately the experiences obtained during SAR action shows that such criteria are not sufficient [9]. Risk, in this context, is defined as reductions in DRU stability due to changes of loading and the environment influence.

All methods established to measure the stability of DRU take into account only hydrostatic forces. There are situations where the capsizing depends seriously on the actual kind of wave motion. A way to get an understanding of the DRU capsizing is to investigate dynamical systems with periodic or stochastic excitations.

The major sources of stability loss are [5,8]:

 gust risk is the momentum change of heeling force due to changes in wind speed;  heeling risk is the change in DRU horizontal position due to the trim and changes of

a wave slope;

 loading risk results from distribution of survivors inside DRU [11];

 performance risk is the DRU stability losses resulting from the DRU movements on waves.

1 This research was conducted within the research grant number 4T12C 03827 financially

supported by the State Committee for Scientific Research, 2004/2005.

(2)

The Tail Value at Risk (TailVaR) is defined as the average of all capsizing scenarios over the 100th percentile, where  is a selected probability level, such as 0.992. This

measure is larger than the Value at Risk for the same probability level because it is the average of all capsizing events that are over the Value at Risk, i.e. the 100th percentile. The Standard Deviation risk measure, for selected constant K (K=3), is defined as:

). (

3 ) (

3 E capsizing StdDevcapsizing

StdDev   

These risk measures can be applied after (Post) and before (Pre) changes of the DRU system and the risk reduction measures is defined as follows:

   eTailVaR R PostTailVa reduction TailVaR Pr 1  , (1) 3 3 3 1 PreStdDev PostStdDev reduction StdDev   .

The standard deviation is often used to measure the risk of dynamic systems. The standard deviation is a measure of volatility it means that if system stability parameters more vary from the average return than the more volatile is the DRU stability.

The Tail Value at Risk reflects both the probability and magnitude of the capsizing probability. This measure is looking at one side of the possible outcomes. The stationarity of a system means:

 in the statistical sense - that the mean, variance, skew and kurtosis of the system parameter distributions are taken to be stable through time;

 in the dynamical sense - that the forms of the equations that describe a system’s dynamics are assumed to be constant through time.

2. Examples

The statistical analysis of water pocket and trim importance’s for 10 life raft.

Table 1. Statistical parameters for life raft without water pocket

Trim [deg] 0 1 2 4 6 8 10

Average 0,5809 0,5879 0,5938 0,6022 0,6066 0,6073 0,6049 Median 0,5749 0,5826 0,5903 0,6061 0,6113 0,6225 0,6061 Var 0,0788 0,0756 0,0736 0,0726 0,0737 0,0756 0,0775

2 REPORT TO AMERICAN ACADEMY OF ACTUARIES INDEX SECURITIZATION TASK FORCE by

CASUALTY ACTUARIAL SOCIETY VALUATION, FINANCE AND INVESTMENTS COMMITTEE, Harvey A. Sherman.

(3)

Stdev 0,2807 0,2749 0,2714 0,2694 0,2714 0,2750 0,2784 Skew -0,2059 -0,1820 -0,1889 -0,2420 -0,2848 -0,2897 -0,2616 Kurt -1,0410 -1,0805 -1,0591 -0,9889 -0,9853 -1,0345 -1,0879 Range 0,9760 0,9649 0,9649 0,9649 0,9649 0,9649 0,9649 1st Quartile 0,3751 0,3831 0,3909 0,3982 0,4010 0,3959 0,3909 3rd Quartile 0,8430 0,8439 0,8448 0,8517 0,8587 0,8671 0,8755 80th percentile 0,8853 0,8885 0,8918 0,8957 0,8995 0,9026 0,9048

Table 2. Statistical parameters for life raft with water pocket

Trim [deg] 0 1 2 4 6 8 10 Average 0,5410 0,5475 0,5529 0,5607 0,5651 0,5665 0,5652 Median 0,5280 0,5312 0,5343 0,5409 0,5413 0,5490 0,5413 Var 0,0420 0,0390 0,0370 0,0353 0,0353 0,0362 0,0371 Stdev 0,2050 0,1974 0,1923 0,1878 0,1880 0,1902 0,1926 Skew -0,6075 -0,5351 -0,5152 -0,5648 -0,6263 -0,6419 -0,6166 Kurt 0,0550 -0,0463 0,0081 0,2507 0,3570 0,3078 0,2172 Range 0,8298 0,8136 0,8136 0,8136 0,8136 0,8136 0,8136 1st Quartile 0,4569 0,4629 0,4682 0,4770 0,4831 0,4814 0,4792 3rd Quartile 0,7073 0,7100 0,7127 0,7181 0,7251 0,7320 0,7341 80th percentile 0,7483 0,7509 0,7535 0,7588 0,7595 0,7602 0,7627 199

(4)

Fig. 1. Plot of importance measures for water pocket as a function of life raft trim; TailVar1reduction, TailVar3reduction, StaDev3reduction

Fig. 2. Trim importance measures of 10 person life raft

The equation of the fitted model is

(5)

Fig. 3. Plot of fitted model

Table 3. Regression Analysis for GZz and GZbez

Parameter Estimate StandardError StatisticT P-Value

Intercept 0,150411 0,0051698 29,0943 0

Slope 0,700559 0,00589 118,94 0

Correlation Coefficient = 0,998484, R-squared = 99,697 percent, Standard Error of Est. = 0,0143633

Table 4. Analysis of Variance for GZz and GZbez

Source Sum of Squares Df SquareMean F-Ratio P-Value

Model 2,91854 1 2,91854 14146,79 0

Residual 0,00887109 43 0,000206

Total (Corr.) 2,92742 44

The equation of the fitted model is

CMz(with) = 0,115654 + 0,714268*CMbez(without) (3)

(6)

Fig. 4. Plot of fitted model for critical moment, 10-person life raft Table 5. Regression Analysis for CMz and CMbez

Parameter Estimate StandardError StatisticT P-Value Intercept 0,115654 0,0054045 21,3996 0

Slope 0,714268 0,006626 107,798 0

Table 6. Analysis of Variance

Source SquaresSum of Df SquareMean F-Ratio P-Value

Model 2,6529 1 2,6529 11620,45 0

Residual 0,0098167 43 0,0002283

Total (Corr.) 2,66272 44 Correlation Coefficient = 0,998155 R-squared = 99,6313 percent Standard Error of Est. = 0,0151095

(7)

Fig. 5. Plot of difference for righting arm Table 7. Kolmogorov-Smirnov Test

Estimated overall statistic DN 0,288889

Two-sided large sample K-S statistic 1,37032

Approximate P value 0,046775

In the Kolmogorov-Smirnov test, the maximum distance is 0,288889. The approximate P-value for the test is less than 0,05, there is a statistically significant difference between the two distributions at the 95,0% confidence level.

Fig. 6. Importance of life raft trim and influence of water pocket for righting moment

3. Summary

There is a relation between the capsizing of DRU and bifurcation scenarios of appropriated excited dynamical systems. Because of the

(8)

complexity of such problems a first step is to analyses these systems numerically [10].

The excitation forces and moments in the DRU system will be generated by wind and waves. Trim will play an important part in the stability of a DRU which is influenced by the wind.

The risk importance measure can help to analyze how the environment parameters affected the DRU as a system and its components and how such behavior may change over time.

Identification and hierarchisation of risk factors lead to identifying single causal factors or variables. Factors which influence a DRU safety can be split into three groups:

 system parameters;  environment factors;  human factor.

Storm conditions can bring dynamic forces (wind and waves) into play so the water pockets play important role in a DRU stability.

References

1. Gourlay T., Lilienthal T.: Dynamic Stability of Ships in Waves. Australian Maritime College, Tasmania.

2. Kabaciński J.: Stateczność i niezatapialność statku. Wyższa Szkoła Morska w Szczecinie, Szczecin, 1995.

3. Renilson, M.R., Hamamoto, M.A.: Standard Method for Presentation of Capsize Data. Fourth International Ship Stability Workshop, Newfoundland, Canada, 1988. 4. Smolarek L.: Model of Wind Forces Acting at a Life Raf. Proc. KONBiN, Vol 1,

pp. 329-337, 2003.

5. Smolarek L.: Approximation of Life Raft Capsizing Risk Function. Proc. KONBiN, Vol 1, pp. 321-329, 2003.

6. Smolarek L.: The Stochastic Model of Life Raft Capsizing Phenomenon. 6th Conference on Maneuvering and Control of Marine Crafts University of Girona, Girona, Spain, September 17-19, 2003.

7. Smolarek L.: Modelling of The Wind Generated Force Acting On The Liferaft. Annual of Navigation, No 6, pp. 81-91, 2003.

8. Smolarek L.: Inflatable life raft stability. Archives of Transport, Vol.XV No. 4, pp. 41-57.2003.

9. Smolarek L.: Risk Evaluation of Life Rafts in Operational Conditions. IMAM, Lizbona, Portugalia, Volume 1, pp. 1593-1600, 2005.

(9)

Smolarek L.: Application of computer simulation in life raft safety parameter

estimation. II Międzynarodowy Kongres Mórz i Oceanów,

Szczecin-Świnoujście,Volume 1, p.p 189-198, 2005.

11. Smolarek L.: Influence of the survivors deployment on the life raft stability. Archives of Transport, Vol. XVII No.1, pp. 39-52, 2005.

12. http://www.avweb.com/news/reviews/182493-1.html.

13. Stamatelatos M.: Probabilistic Risk Assessment Procedures Guide for NASA

Managers and Practitioners. NASA Headquarters Office of Safety and Mission

Assurance (OSMA), 2002.

Cytaty

Powiązane dokumenty

musical rhythm correlated with the acquisition of rhoticity, English vowels, intonation, and language rhythm.. ● To what extent do musical experience and

Te same prądy przenikają całą Europę, ale nie kopiow anie pew nych genialnych pionierów nowoczesnego kierun­ ku, lecz w yciśnięcie na ogólnych prądach własnej

Artykuł umieszczony jest w kolekcji cyfrowej bazhum.muzhp.pl, gromadzącej zawartość polskich czasopism humanistycznych i społecznych, tworzonej przez Muzeum Historii Polski

Rozczarowanie oficjalnymi wynikami referendum dla jednych stało się powodem do zniechęcenia wobec zajmowania się polityką, ale dla innych było bodźcem do działania

The findings in Olga Bigun’s study are scientifically-grounded, consider­ ate, provided with theoretical, historical and literary arguments, and the monograph is based

Tagged as: A Laudatio, architecture, Arendt Center, articulation, artwork, Bard College, beauty, biological sphere, change, city, common world, design, dialogue, earth,

Marcin Białobrzeski przypominał, że Jezus Chrystus stał się czło- wiekiem przez dobroć Boga Ojca, aby się spełniły pisma.. Udowadniał, że nie da się rozdzielić boskości

W tym czasie wykonano również karty katalogu naukowego, bowiem z badań milenijnych zachowały się jedynie karty z roku 1949.. W iększość tych prac została