• Nie Znaleziono Wyników

Some remarks on systems of ideals

N/A
N/A
Protected

Academic year: 2021

Share "Some remarks on systems of ideals"

Copied!
8
0
0

Pełen tekst

(1)

- 63

-Z E S -Z Y T Y NAUKOWE W Y Ż S -Z E J S-Z K O Ł Y PED AG O G IC-ZN EJ W B Y D G O SZ CZ Y P ro b le m y M a te m a ty c z n e 1 9 8 2 z .4 A n d rzej Nowicki UMK Toruń R y sz a rd Żuchow ski W S P B y d g o sz c z SO M E R E M A R K S ON S Y S T E M S OP IDEALS

If R is a commutative ring with Identity and M is a n y s e t of id e a ls of R , then a p a ir ( R , M) w ill be c a lle d a system of id e a ls , if the following con d ition s a r e sa tisfie d

A L R is an elem ent o f M,

A 2. A n in te rse c tio n of a n y s e t of elem ents of M i s an elem ent of M,

A 3. A union of a n y non-em pty s e t, to tally o rd e re d b y in clu sion , of elem ents of M is an elem ent o f M,

A 4 , T he null id e a l b elon g s to M,

A 5 . If A , В belong to M, then A+B b elon g s to M, Aft. If A , В b elon g to M, then A B b elon g s to M, A 7. If A , В b e lo n g to M, th en A :B b e lo n g s to M, w h e r e A :B - -< r € R{ A r * b € А L b € B J A 8. If A b e lo n g s to M, a n d x Is a n y e le m e n t of R , th en oo A - ( J (A :x n ) b e lo n g s to M. x n - о L et ( R , M ) b e a s y s te m of I d e a ls . E le m e n ts of M a r e c a lle d M - ld e a ls . If E i s a s u b s e t of R , th en w e d e n o te b y £ e^ th e s m a lle s t M—id e a l c o n ta in in g E . If A i s a n id e a l of R , then w e d e n o te b y А +ф th e g r e a t e s t M - id e a l c o n ta in e d in A . If ( R , M ) a n d ( S , N) a r e s y s t e m s of id e a ls , th en a rin g hom om orphism f:R — > S w ill b e c a lle d a m orphism of s y s t e m s if:

(2)

2. A n Ideal g e n e ra te d ln S b y the im age o f a n y M ^ d eal is an N-4deaL

In the p a p e rs |VJ , ]Vj , th e re a r e elem ents o f the th e o ry of s y ste m s o f id e a ls an d among o th e rs im portant e x a m p le s o f sy ste m s a s f.e. s y ste m s of differential id e a ls ( j_4j, jś] ) , s y s te m s o f differential id e a ls with re s p e c t to a h ig h er d erivatio n ( [2] , [э] ) and sy s te m s of

hom ogenous id e a ls in a ring with a grading ( j l j , ;»] ).

In this p ap er w e g ive som e rem a rk s on s y ste m s of id e a ls and w e d e s c rib e som e new ex am p les o f th o se .

PROPOSITION 1 . If M is a s e t o f id e a ls of R sa tisfy in g A 3 , then the condition A S i s eq u ivalen t with the follow ing condition:

(i) If A £ M, then A T £ M, fo r e v e r y m ultlplicatlvely s e t T ln R, w h ere A p » £ r 6 R; rt £ A , fo r som e t £ t|- .

PROOP. T he p ro p e rty (l) im plies A 8 , b e c a u s e T * ^ х П{ n - О, 1 , 2, . . I i s a m ultiplieatively s e t ln R an d • A ^ . Now, w e

p ro v e the in v e rs e im plication. Let A £ M an d le t T b e a m ultiplieatively s e t ln R. C o n sid e r a fam ily XI • |S| S i ł a mulUplicaUvely s e t in R, su c h that S с T and A ^ £ M f . The fam ily XX is non-em pty, b e c a u s e fo r t £ T , ^ tn, n - О, 1 , 2, . . . ^ is a m ultiplieatively s e t contained in T, and b y A 8 , w e h a v e A | - A t £ M. N otice, that Z sa tle fie e the assum ption o f Lemma K u ra to w sk i-Z o m . Let

1 £ I

j

be a chain in XI • T hen |A g • i £ I

j

is a chain in M and S m u S. is a m ultiplieatively s e t in R, contained in

I 6 1

T . S in c e A= - M A , then, b y A 3 , we h a v e A - £ M. T hus

_ I £ I 1 S

S £ 5 1 .

Let S С T be a maximal elem ent in XX • T hus A s é- M. S u p p o se that S T , and le t t £ T \ S . T hen U - s j/ * } ls « m ultiplieatively s e t contained in T and p ro p e rly containing S . B y A 3 , we h a v e - A s |tnj . - (A s ) t € M. T h e re fo re S Ç V a n d U g £ , , in sp ite of S is a maximal elem ent in XX . S o , w e get S - T, a n d A T £ M.

(3)

PROPOSITION 2. U (R , M) U a a y a tam o f id e a ls , than an a lg a b ra ic a um o f a n y s e t of elem en ts o f M, i s a n elem ent o f M.

PROOF. If A la an Ideal of R, then the condition A £ M la eq u ivalen t with the Implication! x 6 A |xj d A ( s e e Щ ) . Let

[ A ,] , £ , be a co llectio n of M<4deals. If x ér 2 Z A j then x - a^ + . . ♦ a n b elo n g s to A . + . . . + A . , s o j V J С A . ♦ , . . ♦ A. с

I n I n

С Г а,.

A ssu m e now, that (к , m) is a s y ste m of Id eals, S i s a m ultiplieatively s e t in R and S - 1 R is a quotient ring of R with re s p e c t to S . Let N - { S - 1 A ; А С м | . It Is e a s y to p ro v e , that N i s the o n ly s e t of Id ea ls in S - 1 R s u c h that ( S - 1 R, N) i s a sy ste m o f Id eals and the n atu ral homomorphism ftR S - 1 R, r ,—» * is a morphism of sy ste m s. T he s e t N We s h a ll denote b y S - 1 M.

PROPOSITION 3. If S is a m ultiplieatively a e t In R and A € then

a ) (s a ) фф. - S “Ł ( ( A Ы b ) [ s ' V ] - s- ^ a]

PROOF. F irs t, w e p ro v e , that if A - A g , then ( S - 1a) ^ = S - 1 A

It U c le a r, that ( s “XA ) ^ - S - 1 B, w h ere В É Ы and В - В . H ence A ^ - ( A g ) ^ - ( Г 1 ( S ^ A ) ) - * - ^ ( ( S ^ A j ^ ) - Г * ( s ”1 В )

- B S - b. _

w h ere ft R —> S~ R is the natural homomorphism.

T h en w e h a v e S - 1 (A 1^) - S - 1 В - ( S - 1 A ) ^ , s o fin ally ( S - 1 A ) # - ( S _ 1 (A S ) ) ^ - s " l ( ( A s )1p . T h is e n d s the p roof o f a ) . T he p roof o f b ) i s stan d ard .

A sy ste m (R , M ) is c a lle d s p e c ia l. If the ra d ic a l of an a rb ita ry M -id eal Is a n M -ideal ( [V] ).

PROPOSITION 4. If S is a m ultiplicativaly s e t ln R, and (R.M ) Is a s p e c ia l sy ste m , then ( S - 1 R, S - 1 M) Is s p e c ia l too.

(4)

- 1 - 1

PROOF4. Let be a n y prime id e a l in S R. T hen О » S P, w h ere P ia a prime id e a l ln R d is jo in t from S . B y p roposition 3 a ) ,

*1 »

w e h a v e Q ^ - ( S P)^_ - s “ ( P ^ ). But (R , M) i s s p e c ia l, s o P ^ i s a prime id e a l o f R (T h .1 .2 [7] ) . S in c e P ^ . С P and TPoS-0

then P ^ Г» S m 0 F in a lly, GL ^ S '^ P ^ is a prime id e a l in S - 1 R and b y ^ 7]w e h a v e th e s is .

If P i s a prime id e a l in R, then w e denote b y (R p , Mp ) a system ( S ^ R , S _ 1 M ), w h ere S - R 4 P.

PROPOSITION 5. Let (R , M) b e a sy ste m o f id e a ls . The follow ing con d ition s a r e eq u ivalen t

( 1 ) (R, M) i s s p e c ia l,

( 2 ) (R p , 1* s p e c ia l, fo r e v e r y prime id e a l P in R.

(3 ) (r m • ) is s p e c ia l, fo r e v e r y maximal id e a l In R.

1 1

PROOF. T he im plication ( l ) =#• ( 2 ) fo llo w s b y P rop osition 4. It is c le a r, that (2)= ^ - ( 3 ) . W e p ro v e

(з)

“=^ ( l ) .

C o n sid e r a n y prime id e a l P in R. W e sh o w , that P i s a prime id eal. Let be a maximal id e a l, s u c h that P С Let S ■ R v M^. T hen S hi p m ^6, and b y P rop osition 3 w e h a v e ( s ”^P) — S™^ ( P^)

B e c a u s e (S~^R, s “*M ) is s p e c ia l, s o is a prime id e a l in S - 1 R, h e n c e Р^ф. i s a prime id e a l in R.

Now w e g ive new exam p les o f sy s te m s o f id e a ls . F irs t, w e d e s c rib e a ll s y s te m s of Id eals in the rin g Z o f in te g e rs.

EXAMPLE 1 . Łet P - 1 p . , ...p . . . Д be a s e t Г i i

o f prime In teg e rs (finite o r in fin ite), and le t D « A p . l , p 2 2, . . . . p^n, . . be a s e t o f fixed p o w e rs o f elem en ts o f P . T hen (Z ,M p ]

w h ere MQ - | ( n ) ; n - ( p ^ l ) e l . . .( p ^ k ^ k , Sj ^ o j ^ |(0)| i s a system o f id e a ls . C o n v e rs e ly , e v e r y sy ste m (Z , M ) h a s the a b o v e form.

PROOF. It i s e a s y to p ro v e , that (Z , MQ ) is a sy ste m of id e a ls . W e sh o w , that a n y sy ste m of id e a ls (Z , M) h a s the form (Z , M p)» Let p

-jp;

p - a prime in te g e r, s u c h that

p|

n fo r som e

(5)

И Р - Р 2 , . . . , Р к , . . .

j

, then w e define

ij - min |is there e x is te (n ) £' Ms n — p je , i > O, pj J ( с j , w h ere j - 1 ,2 ,... S e t D -

f

p * l, p2 2, . . ..p^k, . . . I . We p ro ve that M - M ^,

le le

Notice, that if (n ) £ M, w h ere n - p ^ l . * ф иШ9 then b y the uniq u en eM of prim ary decom position and b y Th. 3 .4 Ls] , w e obtain (n ) - (p*^l) л

n . . . A ( p * s ) , w h ere ( p ^ l) £ M, . . „ , (p ^ *) M. H ence, ai*o ( p * l) С M, . . . , ( p j ) £ M .

T h e r e f o r e M ^ с M. If (m) £ M, w h ere m - p ![ l. . then

£ M, fo r j - 1 , 2 , . . . , t. It i s o b v io u s that kj } ij. Let k^ - “ j i. + rj , w here О ■< r^ 4 ij, j - 1 , 2, . . . , t. U O, then (p jj) - (p]5) : (p'jVj) £ M^ w hich co n trad icts with minimality of ij. H ence, we h a v e (p^ j) - (p j^ )UJ £ MD fo r j - 1 , 2...t. F i n a l l y ( m ) - ( p ^ l ) П . . . П (pj^) € M D a n d M - M ß

We sh a ll d e s c rib e now, a ll s p e c ia l sy ste m s ln Z.

EXAMPLE 2. Let P be a s e t o f prime In tegers. T hen (Z , M _ ) ,

{ (n ) ; n - p , l . . .p^k; pJ t py .. . . i i

£ P , ^ ^ О... !k > ° } ^ { ^o )] i s a s p e c ia l system . C o n v e r s e ly , If (Z , M) is a s p e c ia l system , then th ere e x is ts a s e t P o f prime in te g e rs su c h that M - Mp .

PROOF. Is sim ilar to the proof of Exam ple 1 .

We c a n do the an alo g o u s d e sc rip tio n fo r p r in c ip a l Id eals dom ains. И (R , M) is a system o f id e a ls in R, then we denote b y M jx ] a s e t of id e a ls ift R [x] of the form A [x] - I а охП + • • • + a n* a , £ A j , w h ere A ą M. W e s h a ll, p ro v e , that (R [ x j , M [ x ] ) is a system of id e a ls . F ir s t , w e p ro v e two le m m as.

LEMMA 1 . Let f - a x n + . . . + a . g - b x™ + . . . . + b„n o m о belong to R [x] . If g. f - O, then ł - О

(6)

PROOP. S in c e f - ( 1 ) b m . a n - О <*> b m - l * n + b m * n - l - ° (m) b l « n ♦ b 2a r>_1 ♦ ...+ bn+ 1a e - О (m + l) bo a n + Ь1 а л _1 ♦ ... ♦ bna o - О 2 -n. -V л п n о

M ultiply the equation ( 2 ) b y a n, ( 3 ) b y a * , ... (m + l) by

V haV * S b m - l a n - ° I b nw2 n „ a 3 - O. ' m ' l a n b .a _ - О ,

“ o V * 1 - °

Ш41 H ence g-a n — O. L E M M A 2 . l e t f - а п хП + • • • • ♦ a 0 * 8 “ Ьт Х,П + * * ' + b 0 O*o .

b elon g to R j j x j . . If g £ L J ( ° » )• then fo r e a c h p a ir i# J, w h ere k - 0

i ■ Ot 1 , 2. , . 9m , j m l # 2 ... n th ere e x is ts s ( i # j) £ N su c h

* * • • J ■

that b,. a p 1 • - 0.

PROOF. Induction with re g a rd of n, w h ere n - deg f. If n 0 , the Lemma is obvious» S u p p o se now, that Lemma is true fo r polynom ials f of d e g re e * < n, and fo r e v e r y polynom ial g. Let d eg f ш n, and g £ ( Ojf* ).

k - o

S u p p o se , that g. fP •> 0. Let h - f*3. A c o e ffic ie n t at the maximal p ow er of x in h is equalt a P - b S in c e g.h - 0, b y the Lemme 1 , w e h a v e g.bm+1 - 0 . T hen g . а Г - 0, w h ere r - p(m + l ) .

Let - f- a nx n, then g . £ +г - o, F in a lly g £ О (°И^), к —о w h e r e d e g Г, < r>-l, th e t h e s is fo llo w s b y th e In d u ctio n a ss u m p tio n .

(7)

C o r o lla r y , b e t A b e a n i d e a l in R a n d le t f - a ^ x „ £ • • • • + a 0> g - Ьт хГП + • • • • + bQ b e p o ly n o m ia ls in R £x]. If g e kU Q( A f x ] t f ) , th en fo r e v e r y p a ir i j , w h e r e i » 0 ,1 ,2 , . . . , m, j = 1 , 2, . . . , n, th e re e x i s t s s ( i , j ) e N s u c h th a t b ^ . a f ^ * A.

PRO O F. It s u f f ic e s to a p p ly uem m a 2 an d the is o m o r p h is m (% ) f x ]

THEO REM . L et f - а пхП + • • • • + a 0 ^ R Cx3 ond le t A b e and

id e a l of R . T h e n A [ x ] ^ = (A a П A& П . . . A^ ) Гх^

a o a l a n

1Й ’ (А { х ] : fk ) -

Л

( U ( A :a k ) ) [ x ] . .

k * o i - о k - o

PRO O F. T h e in c lu s io n C: fo llo w s from C o r o lla r y , w e p ro v e the cm + . . . + b b e lo n g s to ( N ( A :a k 1 ö S * ' 1 l " 0 1 then b k a ^ o k , . . . , b ^ n k C A , S e t s k - m a x ( s . , . . . . , s n k ) . in v e r s e in c lu s io n . I f g - b x s s m + . . , + b o b e lo n g s to .* i - o |~0' ■ ( I )( A :a . i ) ) Гх~1 » i — ' then b k a Qo k , . . . , b ^ n k Ê A , S e t s k - m a x ( s Qk... .... s n k ) . fo r к - 1 , 2 , . . m. T h e n b ^ k E A an d g . fs 0 + sl + * + Sme A j x ] . E X A M PLE 5 . If ( R , m ) i s a s y s t e m s of i d e a ls , th en ( R IX) [x ] i s a s y s te m of i d e a l s too. P R O O F. It i s c l e a r , th a t th e c o n d itio n s A 1 - A 7 a r e s a t is f ie d . 3 y th e o b o v e T h e o re m , th e c o n d itio n A 8 i s a ls o s a t is f ie d .

EXA M PLE 4 . If ( R , M ) i s a s p e c ia l s y s te m of i d e a ls , then ( « Ы . M [ x ] ) i s a s p e c i a l s y s t e m of i d e a ls .

(8)

REFERENCES

[l] M.F. A tiy a h , I.G .M acdonald, Introduction to Commutative A lg e b ra Adi s on - W e s e le y P ublishing Com pany, M a s s a c h u s e tts 1 9 6 9 [2 ] W .C.Brown, W .K uan, Id eals and h ig h er d erivatio n in commutative

rin g s, C anadian Jo u rn al of M athem atics 2 4 ( l 9 7 2 ) . . [3] N.J a c o b s o n , L ectu re s in A b stra c t A lg e b ra v o l. II i I, D. Van

N ostrand Com pany. 1 9 6 4

[4] W .F .K eig h er, Prime d ifferential id e a ls in d iferen tial rin g s, Contribu­ tion to A lg e b ra , A C ollection of P a p e rs D edicated to E K olch in ,

1 9 7 7 , 2 3 9 - 2 4 9 .

[5 ] E .R .K olch in, D ifferential A lg e b ra and A lg e b ra ic G ro u p s, A cadem ic P r e s s . New Y ork, London, 1 9 7 3 .

[б] A.Nowicki, Prime id e a ls stru c tu re in additiwe c o n s e rv a tiv e sy ste m s (to a p p e a r) . .

[ 7] A.N owickl, R .Ż uchow ski, S p e c ia l sy ste m s of id e a ls i n commutative rin g s (to a p p e a r in. Com m entationes M athem aticae).

[8] O .Z ariski, P .Sam uel, Commutative A lg e b ra v o l . 2, Van N orstrand C.O, P rinceton . 1 9 6 0

[9] R .Ż uchow ski, S y ste m s of id e a ls in commutative rin g s (to a p p e a r in Com m entationes M athem aticae).

PEWNE UWAGI O SYSTE M ACH IDEAŁÓW STRESZCZEN IE

W p ra c a c h [7] , [9 ] podane s ą elem enty teorii system ó w ideałów i m iędzy innymi w a ż n ie jsz e p rz y k ła d y system ó w ja k np. s y s te m y ideałów

ró ż n ic z k o w y c h , s y s te m y ideałów niezm ienniczych ze w zg lęd u n a d e ry w a c ję w y ż s z ą i sy ste m y ideałów je d n o ro d n ych w p ie rśc ie n ia c h z g rad acją .

W n in ie jsz e j p r a c y podane s ą pew ne uwagi d o tyczą ce system ó w i o p isa n e s ą nowe p rz y k ła d y system ó w ideałów .

Cytaty

Powiązane dokumenty

We can find in each case functions h, g, p similarly as it was done in the discussions of (*) so that the resulting function Fap does not belong to the class B(a, b).. This ends

This leads to th e crucial point concerning national history of science, nam ely th a t it is concerned w ith th e in terrelatio n betw een scientific theories,

3 Może to wynikać ze specyfiki miejsca pracy – większość badanych osób pracuje w przedszkolu, a pacjenci onkologiczni zazwyczaj korzystają z pomocy logopedycznej w

Design and implemention of algorithms which automatically extract multiword expressions from Polish text using an inflection dictionary and Wikipedia as data sources..

Odwzorowanie obiektów w przestrzeni trójwymiarowej przy wykorzystaniu metod analizy i przetwarzania obrazów cyfrowych do zastosowań geologiczno–górniczych.. Klasyczne metody

WELL-SCALE SURROGATE RESERVOIR MODEL BASED ON ELEMENTS OF ARTIFICIAL INTELLIGENCE FOR SHALE GAS SIMULATION.. Among the solutions dedicated to shale gas simulation in recent

However, if the very prooedure of analysis oonslsts in carrying out the slloitatlon of members procedural devices by means of &#34;overbearing&#34; their understanding,

Komornicka’s text one will find both chauvinistic criticism of women (“Even the most elegant and proud woman – there is kind procurement, servile hastiness, which lights up her