• Nie Znaleziono Wyników

Accuracy of pedestrian and traffic flow models: Meaningful quantifications

N/A
N/A
Protected

Academic year: 2021

Share "Accuracy of pedestrian and traffic flow models: Meaningful quantifications"

Copied!
35
0
0

Pełen tekst

(1)

Introduction New accuracy measures Test cases Conclusion & outlook

Accuracy of Pedestrian and Traffic

Flow Models

Meaningful Quantifications

Femke van Wageningen-Kessels

Serge Hoogendoorn, Winnie Daamen

TFTC Summer Meeting and Conference

Celebrating 50 Years of Traffic Flow Theory — Portland, Oregon, 2014

(2)

Introduction New accuracy measures Test cases Conclusion & outlook

Background

How good is a traffic/pedestrian flow model?

Observations

reality

experiment

Model

simulations

Predictions

Compare

qualitative

quantitative

calibration and validation

parameter estimation

(3)

Introduction New accuracy measures Test cases Conclusion & outlook

Background

How good is a traffic/pedestrian flow model?

Observations

reality

experiment

Model

simulations

Predictions

Compare

qualitative

quantitative

calibration and validation

parameter estimation

(4)

Introduction New accuracy measures Test cases Conclusion & outlook

Background

How good is a traffic/pedestrian flow model?

Observations

reality

experiment

Model

simulations

Predictions

Compare

qualitative

quantitative

calibration and validation

parameter estimation

(5)

Introduction New accuracy measures Test cases Conclusion & outlook

Accuracy measures review

Goodness of Fit of speed, spacing, density, flow

(Root Mean) Squared (Normalized) Error, Mean

(Absolute) (Normalized) Error,

GEH statistic

Correlation Coefficient

Theil’s Bias/Variance/Covariance Proportion,

Theil’s Inequality Coefficient

Likelihood

Total flux, time spent, evacuation time

Usually do not take into account specific features

(6)
(7)
(8)
(9)

Numerical simulations

(10)

Introduction New accuracy measures Test cases Conclusion & outlook

Contribution: new accuracy measures

Allow focus on certain feature of flow instead

of averaging

Gives insight into type of error

Insight into how to improve accuracy

(11)

Introduction New accuracy measures Test cases Conclusion & outlook

Outline

Introduction

New accuracy measures

Test cases

Traffic congestion simulation

Bi-directional pedestrian flow modelling

Conclusion & outlook

(12)

Introduction New accuracy measures Test cases Conclusion & outlook

New accuracy measures

x

y

Exact

x

y

Phase error

Is location of high/low

density/speed area correct?

x

y

Diffusion error

Do sharp transitions between

high/low density/velocity

areas stay sharp?

(13)

Introduction New accuracy measures Test cases Conclusion & outlook

New accuracy measures

x

y

Exact

x

y

Phase error

Is location of high/low

density/speed area correct?

x

y

Diffusion error

Do sharp transitions between

high/low density/velocity

areas stay sharp?

(14)

Introduction New accuracy measures Test cases Conclusion & outlook

New accuracy measures

x

y

Exact

x

y

Phase error

Is location of high/low

density/speed area correct?

x

y

Diffusion error

Do sharp transitions between

high/low density/velocity

areas stay sharp?

(15)

Introduction New accuracy measures Test cases Conclusion & outlook

From concept to quantification

Centre of mass for phase error

In x - and y -direction

Large difference ⇒ large phase error

x

y

x

y

x

ρ

x

ρ

(16)

Introduction New accuracy measures Test cases Conclusion & outlook

From concept to quantification

Centre of mass for diffusion error

In density- (or speed-) direction

Large difference ⇒ large diffusion error

x

y

x

y

x

ρ

x

ρ

(17)

Introduction New accuracy measures Test cases Conclusion & outlook

Test case 1: Traffic congestion simulation

Exact solution of LWR model ⇔ simulation results

2km jam

time

0

critical density

jam density

free flow

congestion

Solve with different numerical methods

(18)

Introduction New accuracy measures Test cases Conclusion & outlook

Test case 1: Traffic congestion simulation

Exact solution of LWR model ⇔ simulation results

2km jam

time

congestion spills back

congestion solves

0

critical density

jam density

free flow

congestion

Solve with different numerical methods

(19)

Introduction New accuracy measures Test cases Conclusion & outlook

Numerical solutions: space time density

time

space

time

space

time

space

Min supply demand

Upwind explicit

Upwind implicit

0

critical density

jam density

free flow

congestion

(20)

Introduction New accuracy measures Test cases Conclusion & outlook

Numerical solutions: density cross section t = 600 s

Min supply demand

Upwind explicit

Upwind implicit

Centre of mass ⇒ phase & diffusion error

(21)

Introduction New accuracy measures Test cases Conclusion & outlook

Numerical solutions: density cross section t = 600 s

Min supply demand

Upwind explicit

Upwind implicit

Centre of mass ⇒ phase & diffusion error

(22)

Introduction New accuracy measures Test cases Conclusion & outlook

Phase error

Diffusion error

Upwind implicit

Min supply

demand

Upwind explicit

Results help selecting appropriate numerical method

Small time steps: upwind is best

Big time steps: use implicit, but at cost of

phase error

(23)

Introduction New accuracy measures Test cases Conclusion & outlook

Phase error

Diffusion error

Upwind implicit

Min supply

demand

Upwind explicit

Results help selecting appropriate numerical method

Small time steps: upwind is best

Big time steps: use implicit, but at cost of

phase error

(24)

Introduction New accuracy measures Test cases Conclusion & outlook

Test case 2:

Bi-directional pedestrian flow modelling

Experimental data ⇔ model

−5 0 5 −2 0 2 Densities class 1 (−>), t=350 (s) location (m) location (m) 0 0.5 1 −5 0 5 −2 0 2 Densities class 2 (<−), t=350 (s) location (m) location (m) 0 0.5 1

class 1 →

class 2 ←

model

data

model

data

Continuum flow model

2 parameters for avoidance

β

u

=

0.8, β

o

=

2.3 (set 1)

Test with other parameter settings

(25)

Introduction New accuracy measures Test cases Conclusion & outlook

Test case 2:

Bi-directional pedestrian flow modelling

Experimental data ⇔ model

−5 0 5 −2 0 2 Densities class 1 (−>), t=350 (s) location (m) location (m) 0 0.5 1 −5 0 5 −2 0 2 Densities class 2 (<−), t=350 (s) location (m) location (m) 0 0.5 1

class 1 →

class 2 ←

model

data

model

data

model

data

model

data

Continuum flow model

2 parameters for avoidance

β

u

=

0.8, β

o

=

2.3 (set 1)

Test with other parameter settings

(26)

Introduction New accuracy measures Test cases Conclusion & outlook

Test case 2:

Bi-directional pedestrian flow modelling

Experimental data ⇔ model

−5 0 5 −2 0 2 Densities class 1 (−>), t=350 (s) location (m) location (m) 0 0.5 1 −5 0 5 −2 0 2 Densities class 2 (<−), t=350 (s) location (m) location (m) 0 0.5 1

class 1 →

class 2 ←

model

data

model

data

model

data

model

data

Continuum flow model

2 parameters for avoidance

β

u

=

0.8, β

o

=

2.3 (set 1)

Test with other parameter settings

(27)

Introduction New accuracy measures Test cases Conclusion & outlook

Experimental data ⇔

model with different

parameter settings

model

data

model

data

β

u

=

0.8, β

o

=

2.3 (set 1)

almost perfect

model

data

model

data

β

u

=

0.7, β

o

=

1.36 (set 2)

lanes swapped

model

model

model

model

model

model

model

model

model

model

model

model

model

model

model

data

data

β

u

=

0.63, β

o

=

0.63 (set 3)

no lanes

Parameters are calibrated for total flux

(28)

Introduction New accuracy measures Test cases Conclusion & outlook

Experimental data ⇔

model with different

parameter settings

model

data

model

data

β

u

=

0.8, β

o

=

2.3 (set 1)

almost perfect

model

data

model

data

β

u

=

0.7, β

o

=

1.36 (set 2)

lanes swapped

model

model

model

model

model

model

model

model

model

model

model

model

model

model

model

data

data

β

u

=

0.63, β

o

=

0.63 (set 3)

no lanes

Parameters are calibrated for total flux

(29)

Introduction New accuracy measures Test cases Conclusion & outlook

Results

No difference for parameter settings according to:

MAE & RMSE of class specific speed

Diffusion error

Total flux

But: ME & RMSE of v

x

and phase error show set 1

is best

(30)

Introduction New accuracy measures Test cases Conclusion & outlook

Results

No difference for parameter settings according to:

MAE & RMSE of class specific speed

Diffusion error

Total flux

But: ME & RMSE of v

x

and phase error show set 1

is best

(31)

Introduction New accuracy measures Test cases Conclusion & outlook

Results

ME & RMSE of v

x

0

200

400

0

0.1

0.2

0.3

0.4

0.5

t (s)

rmse of v (m/s)

Beta0u=0.8, Beta0o=2.3

0

200

400

−0.4

−0.2

0

0.2

0.4

t (s)

me of v (m/s)

0

200

400

0

0.5

1

1.5

2

2.5

3

t (s)

rmse (black) and mae (green) of vx (m/s)

0

200

400

−6

−4

−2

0

2

4

6

t (s)

phase error x (m)

0

200

400

−2

−1

0

1

2

t (s)

phase error y (m)

0

200

400

−0.4

−0.2

0

0.2

0.4

t (s)

difference v CM (m/s)

set 1

model

data

model

data

0

200

400

0

0.1

0.2

0.3

0.4

0.5

t (s)

rmse of v (m/s)

Beta

u

=0.7, Beta

o

=1.36

0

200

400

−0.4

−0.2

0

0.2

0.4

t (s)

me of v (m/s)

0

200

400

0

0.5

1

1.5

2

2.5

3

t (s)

rmse (black) and mae (green) of vx (m/s)

0

200

400

−6

−4

−2

0

2

4

6

t (s)

difference x CM (m)

0

200

400

−2

−1

0

1

2

t (s)

difference y CM (m)

0

200

400

−0.4

−0.2

0

0.2

0.4

t (s)

difference v CM (m/s)

ME

RMSE

set 2

model

data

model

data

0

200

400

0

0.1

0.2

0.3

0.4

0.5

t (s)

rmse of v (m/s)

Beta

u

=0.63, Beta

o

=0.63

0

200

400

−0.4

−0.2

0

0.2

0.4

t (s)

me of v (m/s)

0

200

400

0

0.5

1

1.5

2

2.5

3

t (s)

rmse (black) and mae (green) of vx (m/s)

0

200

400

−6

−4

−2

0

2

4

6

t (s)

difference x CM (m)

0

200

400

−2

−1

0

1

2

t (s)

difference y CM (m)

0

200

400

−0.4

−0.2

0

0.2

0.4

t (s)

difference v CM (m/s)

set 3

model

model

model

model

model

model

model

model

model

model

model

model

model

model

model

data

data

Set 1 best

Large phase error for set 2

(32)

Introduction New accuracy measures Test cases Conclusion & outlook

Results

Phase error y -direction

0 200 400 0 0.1 0.2 0.3 0.4 0.5 t (s) rmse of v (m/s) Beta0u=0.8, Beta0o=2.3 0 200 400 −0.4 −0.2 0 0.2 0.4 t (s) me of v (m/s) 0 200 400 0 0.5 1 1.5 2 2.5 3 t (s)

rmse (black) and mae (green) of vx (m/s)

0 200 400 −6 −4 −2 0 2 4 6 t (s) phase error x (m) 0 200 400 −2 −1 0 1 2 t (s) phase error y (m) 0 200 400 −0.4 −0.2 0 0.2 0.4 t (s) difference v CM (m/s)

set 1

model

data

model

data

0 200 400 0 0.1 0.2 0.3 0.4 0.5 t (s) rmse of v (m/s) Beta u=0.7, Betao=1.36 0 200 400 −0.4 −0.2 0 0.2 0.4 t (s) me of v (m/s) 0 200 400 0 0.5 1 1.5 2 2.5 3 t (s)

rmse (black) and mae (green) of vx (m/s)

0 200 400 −6 −4 −2 0 2 4 6 t (s) difference x CM (m) 0 200 400 −2 −1 0 1 2 t (s) difference y CM (m) 0 200 400 −0.4 −0.2 0 0.2 0.4 t (s) difference v CM (m/s)

class 1 →

class 2 ←

set 2

model

data

model

data

0 200 400 0 0.1 0.2 0.3 0.4 0.5 t (s) rmse of v (m/s) Beta u=0.63, Betao=0.63 0 200 400 −0.4 −0.2 0 0.2 0.4 t (s) me of v (m/s) 0 200 400 0 0.5 1 1.5 2 2.5 3 t (s)

rmse (black) and mae (green) of vx (m/s)

0 200 400 −6 −4 −2 0 2 4 6 t (s) difference x CM (m) 0 200 400 −2 −1 0 1 2 t (s) difference y CM (m) 0 200 400 −0.4 −0.2 0 0.2 0.4 t (s) difference v CM (m/s)

set 3

model

model

model

model

model

model

model

model

model

model

model

model

model

model

model

data

data

Set 1 best

Large phase error for set 2

(33)

Introduction New accuracy measures Test cases Conclusion & outlook

Conclusion & outlook

Phase error and diffusion error

Applications

Road traffic & pedestrian flow. Future: NFD?

Comparing data vs model, model vs simulation, ...

Parameter estimation or assessment of

model/simulation method

Distinguish between different outcomes →

interpretation needed:

Phase error sometimes ok, sometimes not

Insight into possible improvements

Future research:

Larger networks with many features?

Include time

(34)

Introduction New accuracy measures Test cases Conclusion & outlook

Conclusion & outlook

Phase error and diffusion error

Applications

Road traffic & pedestrian flow. Future: NFD?

Comparing data vs model, model vs simulation, ...

Parameter estimation or assessment of

model/simulation method

Distinguish between different outcomes →

interpretation needed:

Phase error sometimes ok, sometimes not

Insight into possible improvements

Future research:

Larger networks with many features?

Include time

(35)

Introduction New accuracy measures Test cases Conclusion & outlook

Thanks!

f.l.m.vanwageningen-kessels@tudelft.nl

Cytaty

Powiązane dokumenty

Wartość kulturowa Mandatum wielokrotnie kierowała na nie uwagę badaczy, którzy zajmowali się jego polskimi wariantami z punktu widzenia historii liturgii i teatru 2.. Dwie

Jacquat i Martinoli, po analizie kilkuset kopalnych pe­ stek winorośli z Petry w Jordanie i testowaniu kilku powszechnych metod ich identy­ fikacji, konkludują że odróżnienie

teraturze przedm iotu, bez głębszego uzasadnienia, lokalizowane na Kujawach2. Nie m a więc powodu, aby ponow­ nie je przypominać. W śród przywołanej literatury autor

• Aby mógł się wytworzyć potencjał czynnościowy, pobudzenie musi przekroczyć potencjał progowy Up.

In this paper, we report the development of an external filter cavity 19 , 21 , 22 which increases the mode spacing of the fiber based combs such that a VIPA spectrometer can

Хаосомной представляется не только московская, но и в целом российская реальность (“Стоило только пересечь границу с союзным государством, как

Structural Properties and Charge Distribution of the Sodium Uranium, Neptunium, and Plutonium Ternary Oxides: A Combined X-ray Diffraction and XANES

Makarowa, choć bez wątpienia mieści się w nurcie prozy psychologicznej lat dwudziestych zdefinio­ wanym przez RAPP i Pieriewał, to jednak posiada cechy indywidualne,