• Nie Znaleziono Wyników

CHAMP, GRACE, GOCE and Swarm Thermosphere Density Data with Improved Aerodynamic and Geometry Modelling

N/A
N/A
Protected

Academic year: 2021

Share "CHAMP, GRACE, GOCE and Swarm Thermosphere Density Data with Improved Aerodynamic and Geometry Modelling"

Copied!
2
0
0

Pełen tekst

(1)

Delft University of Technology

CHAMP, GRACE, GOCE and Swarm Thermosphere Density Data with Improved Aerodynamic and Geometry Modelling

March, Gunther; Doornbos, Eelco; Visser, Pieter

Publication date 2017

Document Version Final published version

Citation (APA)

March, G., Doornbos, E., & Visser, P. (2017). CHAMP, GRACE, GOCE and Swarm Thermosphere Density Data with Improved Aerodynamic and Geometry Modelling. Poster session presented at 4th Swarm Science Meeting & Geodetic Missions Workshop, Banff, Canada.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Funding for this study is provided by the Netherlands Organisation for Scientific Research (NWO)

Methodology

Through detailed high fidelity 3-D CAD models and Direct Simula-tion Monte Carlo (DSMC) computaSimula-tions, flow shadowing and com-plex concave geometries can be investigated. This was not possible with previous panels method, especially because of the low fidelity geometries and the inability to model shadowing effects. The panel method consists of the application of Sentman’s equations to a sim-plified geometry model. A number of flat panels describe the entire structure of the satellite. Normal vectors and areas of each panel give the fundamental information needed to retrieve aerodynamic coefficients. This geometry and aerodynamic modelling turned out to have a large influence on derived densities, particularly for sat-ellites with complex elongated shapes and protruding instruments and beams.

The geometry and aerodynamic modelling have been enhanced with the DSMC approach and the accelerometer data have been reprocessed leading to higher fidelity density estimates. In particu-lar, the Stochastic PArallel Rarefied-gas Time-accurate Analyzer (SPAR-TA) simulator from SANDIA Laboratories has been used for the aerodynamic modelling. The collisions between atmospheric parti-cles and satellite outer surfaces are simulated within a fixed domain. Pressures and shear stresses associated to each surface element are computed and processed to retrieve force coefficients.

Aerodynamic datasets from this processing are obtained as output. Afterwards, these datasets are processed by the Near Real-Time

Den-sity Model (NRTDM) developped by Doornbos at TU Delft.

Acceler-ometer data have been processed with Panels and SPARTA methods. The results are provided in the following sections.

Representation of the SPARTA simulation domain for Swarm satellite.

Geometry Modelling

In order to improve previous panel geometries for CHAMP, GRACE, GOCE and Swarm, new geometries have been designed with CATIA

V5 R21.

These geometries have been the inputs for SPARTA DSMC simula-tions. Several attitude configurations have been simulated in order to describe all the possible flight configurations during mission lifetime.

For panels and SPARTA results, which are provided in the following section, a fully diffusive energy accommodation coefficient and a wall temperature of 400 K have been adopted.

Satellite geometry models designed with CATIA V5 R21.

Satellite Density Data Improvements

Within this section, the densities obtained with Panels and SPARTA aerodynamic models have been compared with three atmospheric models (NRLMSISE-00, JB-2008 and DTM-2013). The results are available for CHAMP, GRACE, GOCE and Swarm missions for some specific periods which are listed below.

CHAMP (07/11/2002 - 31/12/2008) GRACE (12/12/2005 - 17/03/2009) GOCE (01/11/2009 - 05/11/2013) SWARM-B (19/07/2014 - 30/09/2016) SWARM-C (& A) (19/07/2014 - 30/09/2016) Panels SPARTA 0 10000 20000 10−15 10−14 10−13 10−12 10−11

GRACE A densities from NRLMSISE−00 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 GRACE A densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.668 σ* = 1.420 0 200 400 600 800

Points per bin

0 10000 20000 10−15 10−14 10−13 10−12 10−11

GRACE A densities from JB−2008 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 GRACE A densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.920 σ* = 1.440 0 100 200 300 400 500 600 700

Points per bin

0 10000 20000 10−15 10−14 10−13 10−12 10−11

GRACE A densities from DTM−2013 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 GRACE A densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.874 σ* = 1.379 0 200 400 600 800

Points per bin

0 10000 20000 10−15 10−14 10−13 10−12 10−11

GRACE A densities from NRLMSISE−00 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 GRACE A densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.699 σ* = 1.420 0 200 400 600 800

Points per bin

0 10000 20000 10−15 10−14 10−13 10−12 10−11

GRACE A densities from JB−2008 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 GRACE A densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.964 σ* = 1.440 0 100 200 300 400 500 600 700

Points per bin

0 10000 20000 10−15 10−14 10−13 10−12 10−11

GRACE A densities from DTM−2013 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 GRACE A densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.915 σ* = 1.379 0 200 400 600 800

Points per bin

0 20000 40000 60000 10−13 10−12 10−11 10−10 10−9

GOCE densities from NRLMSISE−00 model (kg/m

3)

10−13 10−12 10−11 10−10 10−9 GOCE densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.854 σ* = 1.182 0 1000 2000 3000 4000 5000

Points per bin

0 20000 40000 60000 10−13 10−12 10−11 10−10 10−9

GOCE densities from JB−2008 model (kg/m

3)

10−13 10−12 10−11 10−10 10−9 GOCE densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.856 σ* = 1.163 0 1000 2000 3000 4000 5000

Points per bin

0 20000 40000 60000 10−13 10−12 10−11 10−10 10−9

GOCE densities from DTM−2013 model (kg/m

3)

10−13 10−12 10−11 10−10 10−9 GOCE densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.823 σ* = 1.163 0 1000 2000 3000 4000 5000

Points per bin

0 20000 40000 60000 10−13 10−12 10−11 10−10 10−9

GOCE densities from NRLMSISE−00 model (kg/m

3)

10−13 10−12 10−11 10−10 10−9 GOCE densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.931 σ* = 1.180 0 1000 2000 3000 4000 5000 6000

Points per bin

0 20000 40000 60000 10−13 10−12 10−11 10−10 10−9

GOCE densities from JB−2008 model (kg/m

3)

10−13 10−12 10−11 10−10 10−9 GOCE densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.933 σ* = 1.162 0 1000 2000 3000 4000 5000

Points per bin

0 20000 40000 60000 10−13 10−12 10−11 10−10 10−9

GOCE densities from DTM−2013 model (kg/m

3)

10−13 10−12 10−11 10−10 10−9 GOCE densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.896 σ* = 1.162 0 1000 2000 3000 4000 5000

Points per bin

0 10000 10−15 10−14 10−13 10−12 10−11

Swarm B densities from NRLMSISE−00 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 Swarm B densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.711 σ* = 1.459 0 100 200 300 400 500 600 700

Points per bin

0 10000 10−15 10−14 10−13 10−12 10−11

Swarm B densities from JB−2008 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 Swarm B densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.630 σ* = 1.424 0 200 400 600 800

Points per bin

0 10000 10−15 10−14 10−13 10−12 10−11

Swarm B densities from DTM−2013 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 Swarm B densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.566 σ* = 1.415 0 200 400 600 800

Points per bin

0 10000 10−15 10−14 10−13 10−12 10−11

Swarm B densities from NRLMSISE−00 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 Swarm B densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.935 σ* = 1.460 0 100 200 300 400 500 600 700

Points per bin

0 10000 10−15 10−14 10−13 10−12 10−11

Swarm B densities from JB−2008 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 Swarm B densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.828 σ* = 1.423 0 200 400 600 800

Points per bin

0 10000 10−15 10−14 10−13 10−12 10−11

Swarm B densities from DTM−2013 model (kg/m

3)

10−15 10−14 10−13 10−12 10−11 Swarm B densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.745 σ* = 1.415 0 200 400 600 800

Points per bin

0 10000 20000 10−14 10−13 10−12 10−11 10−10

Swarm C densities from NRLMSISE−00 model (kg/m

3)

10−14 10−13 10−12 10−11 10−10 Swarm C densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.717 σ* = 1.286 0 250 500 750 1000

Points per bin

0 10000 20000 10−14 10−13 10−12 10−11 10−10

Swarm C densities from JB−2008 model (kg/m

3)

10−14 10−13 10−12 10−11 10−10 Swarm C densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.633 σ* = 1.243 0 250 500 750 1000 1250

Points per bin

0 10000 20000 10−14 10−13 10−12 10−11 10−10

Swarm C densities from DTM−2013 model (kg/m

3)

10−14 10−13 10−12 10−11 10−10 Swarm C densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.598 σ* = 1.240 0 250 500 750 1000 1250 1500

Points per bin

0 10000 20000 10−14 10−13 10−12 10−11 10−10

Swarm C densities from NRLMSISE−00 model (kg/m

3)

10−14 10−13 10−12 10−11 10−10 Swarm C densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.949 σ* = 1.286 0 250 500 750 1000

Points per bin

0 10000 20000 10−14 10−13 10−12 10−11 10−10

Swarm C densities from JB−2008 model (kg/m

3)

10−14 10−13 10−12 10−11 10−10 Swarm C densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.837 σ* = 1.242 0 250 500 750 1000 1250

Points per bin

0 10000 20000 10−14 10−13 10−12 10−11 10−10

Swarm C densities from DTM−2013 model (kg/m

3)

10−14 10−13 10−12 10−11 10−10 Swarm C densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.791 σ* = 1.241 0 250 500 750 1000 1250 1500

Points per bin

0 100000 10−13 10−12 10−11 10−10

CHAMP densities from NRLMSISE−00 model (kg/m

3)

10−13 10−12 10−11 10−10 CHAMP densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.712 σ* = 1.271 0 1000 2000 3000 4000 5000

Points per bin

0 100000 10−13 10−12 10−11 10−10

CHAMP densities from JB−2008 model (kg/m

3)

10−13 10−12 10−11 10−10 CHAMP densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.813 σ* = 1.219 0 1000 2000 3000 4000 5000 6000

Points per bin

0 100000 10−13 10−12 10−11 10−10

CHAMP densities from DTM−2013 model (kg/m

3)

10−13 10−12 10−11 10−10 CHAMP densities from Panels (kg/m3)

x = y x = ½y x = 2y µ* = 0.800 σ* = 1.217 0 1000 2000 3000 4000 5000 6000

Points per bin

0 100000 10−13 10−12 10−11 10−10

CHAMP densities from NRLMSISE−00 model (kg/m

3)

10−13 10−12 10−11 10−10 CHAMP densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.785 σ* = 1.271 0 1000 2000 3000 4000 5000

Points per bin

0 100000 10−13 10−12 10−11 10−10

CHAMP densities from JB−2008 model (kg/m

3)

10−13 10−12 10−11 10−10 CHAMP densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.896 σ* = 1.220 0 1000 2000 3000 4000 5000 6000

Points per bin

0 100000 10−13 10−12 10−11 10−10

CHAMP densities from DTM−2013 model (kg/m

3)

10−13 10−12 10−11 10−10 CHAMP densities from SPARTA (kg/m3)

x = y x = ½y x = 2y µ* = 0.882 σ* = 1.219 0 1000 2000 3000 4000 5000 6000

Points per bin

CHAMP

GOCE

GRACE

Swarm

Results and Future Work

A general improvement can be found comparing the mean ratio (µ*)

between Panels and SPARTA models with the atmospheric models. New densities turned out to be higher, reaching a mean +11% for CHAMP, +5% for GRACE, +9% for GOCE and +32% for Swarm.

In the next months, further research is aimed at estimating Gas-Surface-Interactions (GSI) parameters and their influences on the thermospheric density datasets.

References

• E. N. Doornbos, Thermospheric Density and Wind Determination from Satellite Dynamics, Springer-Verlag Berlin Hei-delberg, doi:10.1007/978-3-642-25129-0, 2012.

• M. A. Gallis, J. R. Torczynski, S. J. Plimpton, D. J. Rader and T. Koehler, Direct Simulation Monte Carlo: The Quest for Speed, Proceedings of the 29th Rarefied Gas Dynamics Symposium, Xi’an, China, July 2014.

Introduction

Since 2000, accelerometers on board of the CHAMP, GRACE, GOCE and Swarm satellites have provided high-resolution thermosphere density data, improving knowledge on atmospheric dynamics and coupling processes in the thermosphere-ionosphere layer.

Most of the research has focused on relative changes in density. Scale differences between datasets and models have been largely neglected or removed using ad hoc scale factors. The origin of these variations arises from errors in the aerodynamic modelling, specifically in the modelling of the satellite outer surface geometry and of the gas-surface interactions. Therefore, in order to further improve density datasets and models that rely on these datasets, and in order to make them align with each other in terms of the absolute scale of the density, it is first required to enhance the geometry modelling. Once accurate ge-ometric models of the satellites are available, it will be possible to enhance the characterization of the gas-surface interactions and the satellite aerodynamic modelling.

CHAMP, GRACE, GOCE and Swarm thermosphere density

data with improved aerodynamic and geometry modelling

G. March, E. N. Doornbos, P. N. A. M. Visser

Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands, g.march@tudelft.nl

Fourth Swarm Science Meeting & Geodetic Missions Workshop, 20-24 March 2017, Banff, Canada.

Poster Session: Thermosphere; ID: 93

Cytaty

Powiązane dokumenty

Przykładow o wskazać m oż­ n a trw ałą dyskrym inację twórczości pseudoklasy- ków, dyskrym inację, której w yrazem jest już samo określenie te j szkoły

Dla okresu następnego charakterystyczne są już wielokondygna­ cyjne budynki fabryczne odznaczające się albo stosowaniem skrom­ nego detalu klasycystycznego i

(To echo Wata, którego Machej, jak wielu jego rówieśników, uważnie przeczytał...) Uzmysławia też, że opisywane przez Macheja czuwanie-przy-rzeczach jest w swej istocie czuwaniem

Na podstawie przeprowadzonych badań można stwierdzić, że model, z wystarczającą dla obliczeń inżynierskich dokładnością, opisuje proces se- lektywnego rozdrabniania

Na podstawie analizy wyników można stwierdzić, że w przypadku wszystkich badanych zestawów obserwuje się systematyczne zmniejszanie się porowatości otwartej i całkowitej wraz

nadmiarowość pełnopasmowego sygnału akustycznego – dużo miejsca na ukrywanie znaku wodnego.  Zastosowanie kodowania

Mistrz uznaje wolę Boga za świętą (volun- tas enim Domini sancta est) 31 , ten zaś, kto będzie się nią kierował w swoim życiu, może być spokojny o życie wieczne, gdyż z

Ujawniona zostaje również zasada roz­ woju świata — jest nią walka twórczego ducha siły o uznanie w ybranej przez niego drogi rozwoju.. Szatan okazuje się