• Nie Znaleziono Wyników

Fundamentals of computational thermo-elasticity

N/A
N/A
Protected

Academic year: 2021

Share "Fundamentals of computational thermo-elasticity"

Copied!
18
0
0

Pełen tekst

(1)

Thermo-elasticity Examples

Fundamentals of computational thermo-elasticity

J. Pamin

in cooperation with

J. Jaśkowiec, P. Pluciński, R. Putanowicz, A. Stankiewicz, A. Wosatko

Cracow University of Technology, Department of Civil Engineering, Institute for Computational Civil Engineering

5 listopada 2015

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Overview and assumptions

1 Thermo-elasticity

Thermodynamic background Theory and algorithms

2 Examples

Assumptions

small displacements and strains isotropic continuum

linear elasticity static loading

nonstationary heat transport coupling due to thermal expansion

selected material parameters temperature-dependent

Fundamentals of computational thermo-elasticity

(2)

Thermodynamics and mechanics

Thermodynamics provides restrictions on the form of constitutive models

State variables (observable and internal), e.g.

(, κ, θ) - strain tensor, internal variable vector, temperature, resp.

A thermodynamic system is reversible if thermodynamic potentials do not depend on internal variables

Laws of thermodynamics (for elementary material volume) 1 → ˙e = σ : ˙ + r − ∇q (balance of internal energy) 2 → s pro ­ 0 (specific internal entropy production)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Dissipation

Definition of energy dissipation density

D = θs pro = D mech + D ther ­ 0 (local + conductive) D = σ : ˙ − ( ˙e − θ ˙s) − q · ∇θ

θ ­ 0 (Clausius-Duhem inequality) Helmholtz free energy ψ(, κ, θ)

e − θs = ψ Dissipation inequality for isothermal conditions

D = σ : ˙ − ˙ ψ ­ 0 ψ = ∂ψ : ˙ + ∂κψ · ˙κ ˙ D = (σ − ∂ψ) : ˙ + K · ˙κ ­ 0 K = −∂κψ (thermodynamic forces)

Fundamentals of computational thermo-elasticity

(3)

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Material models - isothermal elasticity

Hyperelasticity

σ = σ() and D = 0 Selected ψ is path-independent internal stress power W

ψ = ˙ ˙ W () = σ : ˙ (stored elastic energy) Work equals stored elastic energy

W | t t

1

0

=

Z t

1

t

0

W ()dt = ψ( ˙ 1 ) − ψ( 0 )

ψ = ˙ ∂ψ

∂ : ˙

D = σ : ˙ − ∂ψ

∂ : ˙ = 0 → σ = ∂ψ

∂

˙

σ = 2 ψ

∂ ⊗ ∂ : ˙ (tangent stiffness)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Non-isothermal conditions

Dissipation inequality for non-isothermal conditions D = σ : ˙ − ( ˙ ψ + s ˙ θ) − q ·∇θ

θ ­ 0

Thermo-elasticity ψ = ˙ ∂ψ

∂ : ˙ + ∂ψ

∂θ

θ , ˙ s = − ∂ψ

∂θ , D = − q · ∇θ θ Thermo-elasto-plasticity

ψ = ψ( e , κ, θ),  e =  −  p ψ = ˙ ∂ψ

∂ e : ˙ e + ∂ψ

∂κ ˙κ + ∂ψ

∂θ θ ˙ D mech = σ : ˙ p + K · ˙ κ ­ 0

D ther = − q · ∇θ θ ­ 0

Fundamentals of computational thermo-elasticity

(4)

Temperature dependence

In principle all material

parameters (isotropy assumed) are temperature-dependent:

– density ρ

– Young modulus E – Poisson ratio ν

– expansion coefficient α – heat conductivity k – heat capacity c

For elastic-plastic materials additionally:

– yield stress σ y

– hardening modulus h p

Figures from (Ottosen and Ristinmaa, 2005)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Sources of nonlinearity

Arbitrary choice made for present derivation: E (θ), k(θ)

Hence, nonlinearity is due to temperature-dependence of Young modulus and heat conductivity, and possibly natural boundary conditions for the thermal subproblem (radiation).

For generalization refer e.g. to (Ottosen and Ristinmaa, 2005)

Fundamentals of computational thermo-elasticity

(5)

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Thermoelasticity

Voigt’s notation:

σ = [σ x , σ y , σ z , τ xy , τ xz , τ yz ] T

 = [ x ,  y ,  z , γ xy , γ xz , γ yz ] T Assumed b, ˆ t independent of temperature

Equilibrium

L T σ + b = 0 in V σn = ˆ t on S t u = ˆ u on S u

Linear elasticity + thermal expansion (θ = T − T 0 )

 =  e +  θ , σ = E( −  θ ),  = Lu

 θ = αθΠ, Π = [1 1 1 0 0 0] T , E = E(θ)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Momentum balance

Weak form at t + ∆t (u = ˆ u, v u = 0 on S u ) Z

V

(Lv u ) T σ dV = Z

V

v u T b dV + Z

S

t

v T u ˆ t dS ∀v u

σ t+∆t = σ t + ∆σ

∆σ = lim

i →∞ ∆σ i , ∆σ i +1 = ∆σ i + d σ, σ t+∆t i = σ t + ∆σ i Z

V

(Lv u ) T d σ dV = W t+∆t ext − W t+∆t int,i

W t+∆t int,i = Z

V

(Lv u ) T σ t+∆t i dV

Fundamentals of computational thermo-elasticity

(6)

Momentum balance

Linearized weak form

d σ = E d  − d  θ  + dE  −  θ 

d E = dE

d θ, d  θ = αΠ d θ, s θ = dE

( − αθΠ) − αEΠ d σ = E d  + s θ d θ

d  = L d u Z

V

(Lv u ) T E L d u dV + Z

V

(Lv u ) T s θ d θ dV = W t+∆t ext − W t+∆t int,i

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Heat transport

Assumed ρ, r , ˆ q independent of temperature Heat transport

c ˙ θ + ∇ T q = r in V q T n = ˆ q on S q

θ = ˆ θ on S θ Fourier’s law

q = −Λ∇θ, Λ = Λ(θ)

Fundamentals of computational thermo-elasticity

(7)

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Heat transport

Weak form at t + ∆t (θ = ˆ θ, v θ = 0 on S θ ) Z

V

v θ c ˙ θ dV − Z

V

(∇v θ ) T q dV = Z

V

v θ r dV − Z

S

q

v θ ˆ q dS ∀v θ

θ t+∆t = θ t + ∆θ Generalized midpoint rule

(1 − γ) ˙ θ t + γ ˙ θ t+∆t = θ t+∆t − θ t

∆t For γ = 1 backward Euler for time integration

θ ˙ t+∆t = ∆θ

∆t Z

V

v θ c ∆θ

∆t dV − Z

V

(∇v θ ) T q t+∆t dV = Q t+∆t ext

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Heat transport

Weak form at t + ∆t (θ = ˆ θ, v θ = 0 on S θ )

∆θ = lim

i →∞ ∆θ i , ∆θ i +1 = ∆θ i + d θ, θ i t+∆t = θ t + ∆θ i q t+∆t = q t + ∆q

∆q = lim

i →∞ ∆q i , ∆q i +1 = ∆q i + d q, q t+∆t i = q t + ∆q i Linearization:

d q = −

∇θ d θ − Λ∇( d θ)

Fundamentals of computational thermo-elasticity

(8)

Heat transport

Linearized weak form

1

∆t Z

V

v θ c d θ dV + Z

V

(∇v θ ) T

∇θ d θ dV + +

Z

V

(∇v θ ) T Λ∇( d θ) dV = Q t+∆t ext + Q t+∆t int,i

Q t+∆t int,i = Z

V

(∇v θ ) T q t+∆t i dV − 1

∆t Z

V

v θ c∆θ i dV

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Thermodynamic background Theory and algorithms

Discretization and coupling

u, v u using N u , u = N u ˇ u, B u = LN u θ, v θ using N θ , θ = N θ θ, B ˇ θ = ∇N θ Substitution leads to:

"

K i K θ ,i 0 C + H i

# "

d ˇ u d ˇ θ

#

=

"

f t+∆t ext − f t+∆t int,i h t+∆t ext − h t+∆t int,i

#

where K

i

=

Z

V

B T u E

i

B u dV , K

θ ,i

= Z

V

B T u s

θ,i

N

θ

dV

C = 1

∆t Z

V

N T

θ

cN

θ

dV , H

i

= Z

V

B T

θ



i

∇θ

i

N

θ

+ Λ

i

B

θ

 dV

f

t+∆t

int,i = Z

V

B T u σ

t+∆ti

dV , h

t+∆t

int,i = Z

V

N T

θ

c ∆θ

i

∆t dV − Z

V

B T

θ

q

t+∆ti

dV

Staggered algorithm possible

Fundamentals of computational thermo-elasticity

(9)

Thermo-elasticity Examples

Square configuration under thermal load

q

n

= 0

q

n

= 0

q

n

= 0 T ( t )

t T

1

Mechanics:

– density ρ = 2

– Young modulus E = 20000 – Poisson ratio ν = 0.2 – yield stress σ y = 300

– hardening modulus E T = 2000

Heat flow:

– initial temperature T 0 = 0 – heat conductivity k = 10 – heat capacity c = 1

– expansion coefficient α = 0.01

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Square configuration under thermal load (FEAP)

Equivalent stress (elasticity)

Evolution of equivalent stress (FEAP)

Fundamentals of computational thermo-elasticity

(10)

Square configuration under thermal load (FEAP)

Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Square configuration under thermal load (FEAP)

Equivalent stress (elasticity)

Fundamentals of computational thermo-elasticity

(11)

Thermo-elasticity Examples

Square configuration under thermal load (FEAP)

Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Square configuration under thermal load (FEAP)

Equivalent stress (elasticity)

Fundamentals of computational thermo-elasticity

(12)

Square configuration under thermal load (FEAP)

Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Square configuration under thermal load (FEAP)

Equivalent stress (elasticity)

Fundamentals of computational thermo-elasticity

(13)

Thermo-elasticity Examples

Square configuration under thermal load (FEAP)

Equivalent stress (elasticity)

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Square configuration under thermal load (ANSYS)

Equivalent stress (elasticity)

coarse mesh dense mesh

Caution: sensitivity of results to space and time discretization!

Fundamentals of computational thermo-elasticity

(14)

Square configuration under thermal load (ANSYS)

Equivalent stress (plasticity)

coarse mesh dense mesh

Caution: locking in plasticity must be prevented!

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Square configuration under thermal load (ANSYS)

Plastic strain measure

coarse mesh dense mesh

Question: what if we need full coupling due to plastic dissipation and thermal softening?

Fundamentals of computational thermo-elasticity

(15)

Thermo-elasticity Examples

FEMDK (Tochnog kernel): heat induced deformation

Problem setup

0.9 1.0

1.0

00 00 00 00 00 00 00 00

11 11 11 11 11 11 11 11

00 00 00 00 00 00 00 00

11 11 11 11 11 11 11 11

0000 0000 0000 0000 1111 1111 1111 1111

000 111

00 00 00 00 00 00 00 00

11 11 11 11 11 11 11 11

00 00 00 00 00 00 00 00

11 11 11 11 11 11

11 11 000 000 000 111 111 111

0000 0000 0000 1111 1111 1111

000 000 111 111

000 000 111 111

00 00 00 11 11 11

convection to environment T

t T(t) free to

move

fixed fixed

T(0) = 0 T(2) = 1600 insulation

insulation

Material properties (SI Units): Steel AISI-304, density ρ = 8030.0, Young modulus E = 1.93e11, Poisson ratio ν = 0.29, yield stress σ

y

= 24.3e6, linear expansion coefficient α = 1.78e − 5, heat conductivity k = 16.3, convection coefficient h c = 10.0, environment temperature T ambient = 0.0.

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

FEMDK (Tochnog kernel): heat induced deformation

Discretisation

Fundamentals of computational thermo-elasticity

(16)

FEMDK (Tochnog kernel): heat induced deformation

Final temperature distribution

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

FEMDK (Tochnog kernel): heat induced deformation

Final displacement

Fundamentals of computational thermo-elasticity

(17)

Thermo-elasticity Examples

FEMDK (Tochnog kernel): heat induced deformation

Final total strain distribution

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

FEMDK (Tochnog kernel): heat induced deformation

Final isotropic hardening parameter

Movie

Fundamentals of computational thermo-elasticity

(18)

FEMDK (Tochnog kernel): heat induced deformation

Effective stress distribution in wall cross-section

J. Pamin & co. (Cracow University of Technology) Fundamentals of computational thermo-elasticity

Thermo-elasticity Examples

Literature

G. A. Maugin.

The Thermomechanics of Plasticity and Fracture.

Cambridge University Press, Cambridge, 1992.

D.W. Nicholson.

Finite element analysis. Theromechanics of solids.

CRC Press, Boca Raton, 2008.

N.S. Ottosen and M. Ristinmaa.

The Mechanics of Constitutive Modeling.

Elsevier, 2005.

W. Prager.

Introduction to Mechanics of Continua.

Dover Publications, 1961.

Fundamentals of computational thermo-elasticity

Cytaty

Powiązane dokumenty

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Civil Engineering Department, Cracow University of Technology URL: www.L5.pk.edu.pl. Computational Methods, 2015

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

[29] Nielsen Y., Erdogan B., Level of visualization support for project communication in  the Turkish construction industry: A quality function deployment approach, Canadian Journal

PE tools are especially aimed at the improvement of the quality and reliability of products, services, and processes; therefore, the introduction of these tools within

Based on the results presented in Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH (Jankowska E.,