• Nie Znaleziono Wyników

FEM solution for example problem of stationary heat flow

N/A
N/A
Protected

Academic year: 2021

Share "FEM solution for example problem of stationary heat flow"

Copied!
89
0
0

Pełen tekst

(1)

FEM solution for example problem of stationary heat flow

Piotr Pluciński

e-mail: Piotr.Plucinski@pk.edu.pl

Jerzy Pamin

e-mail: Jerzy.Pamin@pk.edu.pl

Chair for Computational Engineering

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl

Computational Methods, 2020 J.Paminc

(2)

Determination of shape functions for 3-node element

Shape function N i (x, y) = α 1i + α 2i x e + α 3i y e

1 x i y i

1 x j y j

1 x k y k

α 1i

α 2i

α 3i

 =

 1 0 0

W =

1 x i y i

1 x j y j

1 x k y k

= 2P 4

y x

i k

j e

y N i (x e , y e )

x 1 i

k j

α 1i = x j y k − x k y j

2P 4

α 2i = y j − y k

2P 4

Computational Methods, 2020 J.Paminc

(3)

Determination of shape functions for 3-node element

Shape function N i (x, y) = α 1i + α 2i x e + α 3i y e

1 x i y i

1 x j y j

1 x k y k

α 1i

α 2i

α 3i

 =

 1 0 0

W =

1 x i y i

1 x j y j

1 x k y k

= 2P 4

y x

i k

j e

y N i (x e , y e )

x 1 i

k j

α 1i = x j y k − x k y j

2P 4

α 2i = y j − y k

2P 4

Computational Methods, 2020 J.Paminc

(4)

Determination of shape functions for 3-node element

Shape function N i (x, y) = α 1i + α 2i x e + α 3i y e

1 x i y i 1 x j y j

1 x k y k

α 1i α 2i

α 3i

 =

 1 0 0

W =

1 x i y i

1 x j y j

1 x k y k

= 2P 4

W α

1i

=

1 x i y i

0 x j y j

0 x k y k

= x j y k − x k y j

α 1i = W α

1i

W = x j y k − x k y j 2P 4

y x

i k

j e

y N i (x e , y e )

x 1 i

k j

α 1i = x j y k − x k y j

2P 4

α 2i = y j − y k

2P 4

Computational Methods, 2020 J.Paminc

(5)

Determination of shape functions for 3-node element

Shape function N i (x, y) = α 1i + α 2i x e + α 3i y e

1 x i y i 1 x j y j

1 x k y k

α 1i α 2i

α 3i

 =

 1 0 0

W =

1 x i y i

1 x j y j

1 x k y k

= 2P 4

W α

1i

=

1 x i y i

0 x j y j

0 x k y k

= x j y k − x k y j

α 1i = W α

1i

W = x j y k − x k y j 2P 4

y x

i k

j e

y N i (x e , y e )

x 1 i

k j

α 1i = x j y k − x k y j

2P 4

α 2i = y j − y k

2P 4

Computational Methods, 2020 J.Paminc

(6)

Determination of shape functions for 3-node element

Shape function N i (x, y) = α 1i + α 2i x e + α 3i y e

1 x i y i 1 x j y j

1 x k y k

α 1i α 2i

α 3i

 =

 1 0 0

W =

1 x i y i

1 x j y j

1 x k y k

= 2P 4

W α

2i

=

1 1 y i

1 0 y j

1 0 y k

= y j − y k

α 2i = W α

2i

W = y j − y k

2P 4

y x

i k

j e

y N i (x e , y e )

x 1 i

k j α 1i = x j y k − x k y j

2P 4

α 2i = y j − y k

2P 4

Computational Methods, 2020 J.Paminc

(7)

Determination of shape functions for 3-node element

Shape function N i (x, y) = α 1i + α 2i x e + α 3i y e

1 x i y i 1 x j y j

1 x k y k

α 1i α 2i

α 3i

 =

 1 0 0

W =

1 x i y i

1 x j y j

1 x k y k

= 2P 4

W α

2i

=

1 1 y i

1 0 y j

1 0 y k

= y j − y k

α 2i = W α

2i

W = y j − y k

2P 4

y x

i k

j e

y N i (x e , y e )

x 1 i

k j α 1i = x j y k − x k y j

2P 4

α 2i = y j − y k

2P 4

Computational Methods, 2020 J.Paminc

(8)

Determination of shape functions for 3-node element

Shape function N i (x, y) = α 1i + α 2i x e + α 3i y e

1 x i y i

1 x j y j 1 x k y k

α 1i

α 2i α 3i

 =

 1 0 0

W =

1 x i y i 1 x j y j 1 x k y k

= 2P 4

W α

3i

=

1 x i 1 1 x j 0 1 x k 0

= x k − x j

α 3i = W α

3i

W = x k − x j

2P 4

y x

i k

j e

y N i (x e , y e )

x 1 i

k j α 1i = x j y k − x k y j

2P 4

α 2i = y j − y k

2P 4

Computational Methods, 2020 J.Paminc

(9)

Determination of shape functions for 3-node element

Shape function N i (x, y) = α 1i + α 2i x e + α 3i y e

1 x i y i

1 x j y j 1 x k y k

α 1i

α 2i α 3i

 =

 1 0 0

W =

1 x i y i 1 x j y j 1 x k y k

= 2P 4

W α

3i

=

1 x i 1 1 x j 0 1 x k 0

= x k − x j

α 3i = W α

3i

W = x k − x j

2P 4

y x

i k

j e

y N i (x e , y e )

x 1 i

k j α 1i = x j y k − x k y j

2P 4

α 2i = y j − y k

2P 4

Computational Methods, 2020 J.Paminc

(10)

2D example of heat flow – 3-node elements

q n = 0

q n = 0 q n = 5 J/m 2 s

T = 20 C

4 m

3 m

k = 0.9 J/ms C f = 2 J/m 2 s h = 1 m

X Y

1 i

2 j

3 k

i k j 4

Discretization

1 2

Computational Methods, 2020 J.Paminc

(11)

2D example of heat flow – 3-node elements

q n = 0

q n = 0 q n = 5 J/m 2 s

T = 20 C

4 m

3 m

k = 0.9 J/ms C f = 2 J/m 2 s h = 1 m

X Y

1 i

2 j

3 k

i k j 4

Discretization

1 2

Computational Methods, 2020 J.Paminc

(12)

Heat flow in 2D

Z

A

(∇w) T Dh∇T dA = − Z

Γ

q

wh qdΓ − b Z

Γ

T

whq n dΓ + Z

A

whf dA

+ boundary condition

T = b T on Γ T

T = NΘ, w = Nw = w T N T , ∇T = BΘ

∇w = w T B T , D = kI, h = const

Computational Methods, 2020 J.Paminc

(13)

Heat flow in 2D

Z

A

(∇w) T Dh∇T dA = − Z

Γ

whq n dΓ + Z

A

whf dA

+ boundary condition

T = b T on Γ T

T = NΘ, w = Nw = w T N T , ∇T = BΘ

∇w = w T B T , D = kI, h = const

Computational Methods, 2020 J.Paminc

(14)

Heat flow in 2D

Z

A

(∇w) T Dh∇T dA = − Z

Γ

whq n dΓ + Z

A

whf dA

+ boundary condition

T = b T on Γ T

T = NΘ, w = Nw = w T N T , ∇T = BΘ

∇w = w T B T , D = kI, h = const

Computational Methods, 2020 J.Paminc

(15)

Heat flow in 2D

Z

A

(∇w) T Dh∇T dA = − Z

Γ

whq n dΓ + Z

A

whf dA

+ boundary condition

T = b T on Γ T

T = NΘ, w = Nw = w T N T , ∇T = BΘ

∇w = w T B T , D = kI, h = const

w T Z

A

B T kBdA Θ = −w T Z

Γ

N T q n dΓ + w T Z

A

N T f dA, ∀w

Computational Methods, 2020 J.Paminc

(16)

Heat flow in 2D

Z

A

(∇w) T Dh∇T dA = − Z

Γ

whq n dΓ + Z

A

whf dA

+ boundary condition

T = b T on Γ T

T = NΘ, w = Nw = w T N T , ∇T = BΘ

∇w = w T B T , D = kI, h = const Z

A

B T kBdA Θ = − Z

Γ

N T q n dΓ + Z

A

N T f dA

Computational Methods, 2020 J.Paminc

(17)

Heat flow in 2D

Z

A

(∇w) T Dh∇T dA = − Z

Γ

whq n dΓ + Z

A

whf dA

+ boundary condition

T = b T on Γ T

T = NΘ, w = Nw = w T N T , ∇T = BΘ

∇w = w T B T , D = kI, h = const Z

A

B T kBdA Θ = − Z

Γ

N T q n dΓ + Z

A

N T f dA

K = Z

A

B

T

kBdA, f = Z

A

N

T

f dA, f

b

= − Z

Γ

N

T

q

n

Computational Methods, 2020 J.Paminc

(18)

Heat flow in 2D

Z

A

(∇w) T Dh∇T dA = − Z

Γ

whq n dΓ + Z

A

whf dA

+ boundary condition

T = b T on Γ T

T = NΘ, w = Nw = w T N T , ∇T = BΘ

∇w = w T B T , D = kI, h = const Z

A

B T kBdA Θ = − Z

Γ

N T q n dΓ + Z

A

N T f dA

K = Z

A

B

T

kBdA, f = Z

A

N

T

f dA, f

b

= − Z

Γ

N

T

q

n

KΘ = f + f b

Computational Methods, 2020 J.Paminc

(19)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

i 1 j k 4

2

K matrix – element 1 N 1 = 

1 − 1 4 x 1 4 x − 1 3 y 1 3 y 

B 1 = ∇N =

 −0.250 0.250 0.000 0.000 −0.333 0.333



K 1 = Z

A

1

B T kBdA = A 1 B T kB

=

0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600

K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(20)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

i 1 j k 4

2

K matrix – element 1 N 1 = 

1 − 1 4 x 1 4 x − 1 3 y 1 3 y 

B 1 = ∇N =

 −0.250 0.250 0.000 0.000 −0.333 0.333



K 1 = Z

A

1

B T kBdA = A 1 B T kB

=

0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600

K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(21)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

i 1 j k 4

2

K matrix – element 1 N 1 = 

1 − 1 4 x 1 4 x − 1 3 y 1 3 y 

B 1 = ∇N =

 −0.250 0.250 0.000 0.000 −0.333 0.333



K 1 = Z

A

1

B T kBdA = A 1 B T kB

=

0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600

K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(22)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

i

2 j k

1 1

i

3 j k 4

2

K matrix – element 2 N 2 = 

1 − 1 3 y 1 4 x 1 3 y − 1 4 x 

B 2 = ∇N =

 0.000 0.250 −0.250

−0.333 0.000 0.333



K 2 = Z

A

2

B T kBdA = A 2 B T kB

=

0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(23)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

i

2 j k

1 1

i

3 j k 4

2

K matrix – element 2 N 2 = 

1 − 1 3 y 1 4 x 1 3 y − 1 4 x 

B 2 = ∇N =

 0.000 0.250 −0.250

−0.333 0.000 0.333



K 2 = Z

A

2

B T kBdA = A 2 B T kB

=

0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(24)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

i

2 j k

1 1

i

3 j k 4

2

K matrix – element 2 N 2 = 

1 − 1 3 y 1 4 x 1 3 y − 1 4 x 

B 2 = ∇N =

 0.000 0.250 −0.250

−0.333 0.000 0.333



K 2 = Z

A

2

B T kBdA = A 2 B T kB

=

0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(25)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

1 1

i

3 j k 4

2

f vector – element 1 and 2 - A 1 = A 2

f e = Z

A

e

N T f dA = f 3 A e

 1 1 1

 =

 4 4 4

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(26)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

i 1 j k 4

2

f b vector – element 1 f b 1 = −

Z

Γ

1ij

(N 1 ) T q n dΓ − Z

Γ

1jk

(N 1 ) T q n

Z

Γ

1ki

(N 1 ) T q n dΓ

f b 1 =

 0 0 0

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(27)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

i 1 j k 4

2

f b vector – element 1 f b 1 = −

Z

Γ

1ij

(N 1 ) T q n b.c. = 0

dΓ − Z

Γ

1jk

(N 1 ) T q n b.c. = 0

flow continuity along edge 1-3 q n 1

ki = −q n 2 ij

Z

Γ

1ki

(N 1 ) T q n dΓ

f b 1 =

 0 0 0

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(28)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

i 1 j k 4

2

f b vector – element 1 f b 1 = −

Z

Γ

1ij

(N 1 ) T q n b.c. = 0

dΓ − Z

Γ

1jk

(N 1 ) T q n b.c. = 0

flow continuity along edge 1-3 q n 1

ki = −q n 2 ij

Z

Γ

1ki

(N 1 ) T q n dΓ

f b 1 =

 0 0 0

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(29)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

i

2 j k

1 1

i

3 j k 4

2

f b vector – element 2

f b 2 = − Z

Γ

2ij

(N 2 ) T q n dΓ

Z

Γ

2jk

(N 2 ) T q n dΓ − Z

Γ

2ki

(N 2 ) T q n

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(30)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

i

2 j k

1 1

i

3 j k 4

2

f b vector – element 2

f b 2 = Z

Γ

2ij

(N 2 ) T q n dΓ

flow continuity along edge 1-3 q n 1

ki = −q n 2 ij

Z

Γ

2jk

(N 2 ) T q n dΓ − Z

Γ

2ki

(N 2 ) T q n dΓ

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(31)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

i

2 j k

1 1

i

3 j k 4

2

f b vector – element 2 f b 2 = −

Z

Γ

2jk

(N 2 ) T q n dΓ − Z

Γ

2ki

(N 2 ) T q n dΓ

Z

Γ2jk

(N

2

)

T

q

n

dΓ = − Z

4

0

N

2

(x, y = 3) 

T

(−5)dx

=

" 0 10 10

#

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(32)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

i

2 j k

1 1

i

3 j k 4

2

f b vector – element 2 f b 2 =

 0 10 10

Z

Γ

2ki

(N 2 ) T q n

Z

Γ2 ki

(N

2

)

T

q

n

dΓ = − Z

3

0

N

2

(x = 0, y) 

T

q

n

dx

=

" f

b1

0 f

b4

#

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



,

f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(33)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

i 1 j k 4

2

Assembly

K 1 =

0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600

K =

0.338 −0.338 0.000 0.000

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.600 0.000 0.000 0.000 0.000 0.000

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



, f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(34)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

i

2 j k

1 1

i

3 j k 4

2

Assembly

K 2 =

0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938

K =

0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



, f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(35)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

i 1 j k 4

2

Assembly

f 1 =

 4 4 4

f =

 4 4 4 0

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



, f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(36)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

i

2 j k

1 1

i

3 j k 4

2

Assembly

f 1 =

 4 4 4

f 2 =

 4 4 4

f =

 8 4 8 4

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



, f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

(37)

2D example of heat flow – 3-node elements

qn = 0 qn=0 qn = 5 J/m2 s

T=20C

k = 0.9 J/ms◦C f = 2 J/m2s h = 1 m

X Y

Discretization

1 i

2 j

3

k

i 1 j k 4

2

Assembly

f b 1 =

 0 0 0

f b =

 0 0 0 0

K

1

=

 0.338 −0.338 0.000

−0.388 0.938 −0.600 0.000 −0.600 0.600



K

2

=

 0.600 0.000 −0.600 0.000 0.338 −0.338

−0.600 −0.338 0.938



f

1

= f

2

=

 4

4 4



f

b1

=

 0

0 0



, f

b2

=

 f

b 1

10 f

b 4

+ 10



K =



0.938 −0.338 0.000 −0.600

−0.388 0.938 −0.600 0.000 0.000 −0.600 0.938 −0.338

−0.600 0.000 −0.338 0.938



f =



8 4 8 4



,

fb =



fb1

0 10 fb4 + 10



Θ =



20 48.040 57.145 20



Computational Methods, 2020 J.Paminc

Cytaty

Powiązane dokumenty

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Civil Engineering Department, Cracow University of Technology URL: www.L5.pk.edu.pl. Computational Methods, 2015

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Faculty of Civil Engineering, Cracow University of Technology

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Based on the results presented in Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH (Jankowska E.,

Jesionowski, Marine sponge skeleton photosensitized by copper phthalocyanine: A catalyst for Rhodamine B degradation, Open Chemistry 2016, 14, 243-254 Małgorzata

Metallic lithium is not directly applied as anode material, as dendrites would be formed during cycling, leading to short-circuit of the cell and even thermal