• Nie Znaleziono Wyników

FEM for continuum statics

N/A
N/A
Protected

Academic year: 2021

Share "FEM for continuum statics"

Copied!
84
0
0

Pełen tekst

(1)

FEM for continuum statics

Piotr Pluciński

e-mail: Piotr.Plucinski@pk.edu.pl

Jerzy Pamin

e-mail: Jerzy.Pamin@pk.edu.pl

Chair for Computational Engineering

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl

Computational Methods, 2020 J.Paminc

(2)

Lecture contents

1 Equilibrium state

2 FEM discretization

3 Plane stress

4 Example

(3)

Equilibrium state

Y Z

X

S

n t

u(x, y, z) ρb(x, y, z)

P

P

0

V

Body force density vector [N/m

3

] ρb = ρ

 0 0

−g

Traction vector [N/m

2

] t =

t x

t y

t z

Displacement vector, strain tensor, stress tensor (Voigt’s notation)

u =

 u

x

u

y

u

z



,  =

 

xx



xy



xz



xy



yy



yz



xz



yz



zz





x



y



z

γ

xy

γ

yz

γ

zx

, σ =

 σ

xx

σ

xy

σ

xz

σ

xy

σ

yy

σ

yz

σ

xz

σ

yz

σ

zz



σ

x

σ

y

σ

z

τ

xy

τ

yz

τ

zx

Computational Methods, 2020 J.Paminc

(4)

Equilibrium state

Y Z

X

S

n t

u(x, y, z) ρb(x, y, z)

P

P

0

V

Body force density vector [N/m

3

] ρb = ρ

 0 0

−g

Traction vector [N/m

2

] t =

t x

t y

t z

Displacement vector, strain tensor, stress tensor (Voigt’s notation)

u =

 u

x

u

y

u

z



,  =

 

xx



xy



xz



xy



yy



yz



xz



yz



zz





x



y



z

γ

xy

γ

yz

γ

zx

, σ =

 σ

xx

σ

xy

σ

xz

σ

xy

σ

yy

σ

yz

σ

xz

σ

yz

σ

zz



σ

x

σ

y

σ

z

τ

xy

τ

yz

τ

zx

(5)

Equilibrium state

Y Z

X

S

n t

u(x, y, z) ρb(x, y, z)

P

P

0

V

Body force density vector [N/m

3

] ρb = ρ

 0 0

−g

Traction vector [N/m

2

] t =

t x

t y

t z

Displacement vector, strain tensor, stress tensor (Voigt’s notation)

u =

 u

x

u

y

u

z



,  =

 

xx



xy



xz



xy



yy



yz



xz



yz



zz





x



y



z

γ

xy

γ

yz

γ

zx

, σ =

 σ

xx

σ

xy

σ

xz

σ

xy

σ

yy

σ

yz

σ

xz

σ

yz

σ

zz



σ

x

σ

y

σ

z

τ

xy

τ

yz

τ

zx

Computational Methods, 2020 J.Paminc

(6)

Equilibrium state

Y Z

X

S

n t

u(x, y, z) ρb(x, y, z)

P

P

0

V

Body force density vector [N/m

3

] ρb = ρ

 0 0

−g

Traction vector [N/m

2

] t =

t x

t y

t z

Displacement vector, strain tensor, stress tensor (Voigt’s notation)



x



  σ

x

σ

(7)

Equilibrium state

Y Z

X

S

n t

u(x, y, z) ρb(x, y, z)

P

P

0

V

Equilibrium equations for a body

Z

S

tdS + Z

V

ρbdV = 0

Static boundary conditions t = σn where σ – stress tensor

Using Green–Gauss–Ostrogradsky theorem

Z

S

σndS = Z

V

L T σdV where L – differential operator matrix

Computational Methods, 2020 J.Paminc

(8)

Equilibrium state

Y Z

X

S

n t

u(x, y, z) ρb(x, y, z)

P

P

0

V

Equilibrium equations for a body

Z

S

tdS + Z

V

ρbdV = 0

Static boundary conditions t = σn where σ – stress tensor

Using Green–Gauss–Ostrogradsky theorem

Z

S

σndS = Z

V

L T σdV where L – differential operator matrix

(9)

Equilibrium state

Y Z

X

S

n t

u(x, y, z) ρb(x, y, z)

P

P

0

V

Equilibrium equations for a body

Z

S

tdS + Z

V

ρbdV = 0

Static boundary conditions t = σn where σ – stress tensor

Using Green–Gauss–Ostrogradsky theorem

Z

S

σndS = Z

V

L T σdV where L – differential operator matrix

Computational Methods, 2020 J.Paminc

(10)

Equilibrium equations

Navier’s equations

Z

V

L T σ + ρb dV = 0 ⇐⇒L T σ + ρb = 0 ∀P ∈ V

σ ij,j + ρb i = 0

Weak formulation – weighting function w ≡ δu – kinematically admissible displacement variation

Z

V

(δu) T L T σ + ρb dV = 0 ∀δu

(11)

Equilibrium equations

Navier’s equations

Z

V

L T σ + ρb dV = 0 ⇐⇒L T σ + ρb = 0 ∀P ∈ V σ ij,j + ρb i = 0

Weak formulation – weighting function w ≡ δu – kinematically admissible displacement variation

Z

V

(δu) T L T σ + ρb dV = 0 ∀δu

Computational Methods, 2020 J.Paminc

(12)

Equilibrium equations

Navier’s equations

Z

V

L T σ + ρb dV = 0 ⇐⇒L T σ + ρb = 0 ∀P ∈ V σ ij,j + ρb i = 0

Weak formulation – weighting function w ≡ δu – kinematically admissible displacement variation

Z

V

(δu) T L T σ + ρb dV = 0 ∀δu

(13)

Equilibrium equations

Navier’s equations

Z

V

L T σ + ρb dV = 0 ⇐⇒L T σ + ρb = 0 ∀P ∈ V σ ij,j + ρb i = 0

Weak formulation – weighting function w ≡ δu – kinematically admissible displacement variation (complying with kinematic b.cs)

Z

V

(δu) T L T σ + ρb dV = 0 ∀δu

Z

V

(Lδu) T σdV + Z

S

(δu) T σndS + Z

V

(δu) T ρbdV = 0

Computational Methods, 2020 J.Paminc

(14)

Equilibrium equations

Navier’s equations

Z

V

L T σ + ρb dV = 0 ⇐⇒L T σ + ρb = 0 ∀P ∈ V σ ij,j + ρb i = 0

Weak formulation – weighting function w ≡ δu – kinematically admissible displacement variation (complying with kinematic b.cs)

Z

V

(δu) T L T σ + ρb dV = 0 ∀δu

Z

V

(Lδu) T σdV + Z

S

(δu) T σn t

dS + Z

V

(δu) T ρbdV = 0

(15)

Equilibrium equations

Navier’s equations

Z

V

L T σ + ρb dV = 0 ⇐⇒L T σ + ρb = 0 ∀P ∈ V σ ij,j + ρb i = 0

Weak formulation – weighting function w ≡ δu – kinematically admissible displacement variation (complying with kinematic b.cs)

Z

V

(δu) T L T σ + ρb dV = 0 ∀δu

Z

V

(Lδu) T σdV + Z

S

(δu) T tdS + Z

V

(δu) T ρbdV = 0

Computational Methods, 2020 J.Paminc

(16)

Equilibrium equations

Navier’s equations

Z

V

L T σ + ρb dV = 0 ⇐⇒L T σ + ρb = 0 ∀P ∈ V σ ij,j + ρb i = 0

Weak formulation – weighting function w ≡ δu – kinematically admissible displacement variation – it is virtual work principle

Z

V

(δu) T L T σ + ρb dV = 0 ∀δu

Z

V

(Lδu) T σdV = Z

S

(δu) T tdS + Z

V

(δu) T ρbdV

(17)

Equilibrium equations

Navier’s equations

Z

V

L T σ + ρb dV = 0 ⇐⇒L T σ + ρb = 0 ∀P ∈ V σ ij,j + ρb i = 0

Weak formulation – weighting function w ≡ δu – kinematically admissible displacement variation – it is virtual work principle

Z

V

(δu) T L T σ + ρb dV = 0 ∀δu

Z

V

(Lδu) T σdV = Z

S

(δu) T tdS + Z

V

(δu) T ρbdV

work of internal forces work of external forces

Computational Methods, 2020 J.Paminc

(18)

FEM discretization (n=NNE, N =NDOF, E=NE)

Displacement field approximation u eh =

n

X

i=1

N i e (ξ, η, ζ)d e i = N e d e

N e

[3×3n] =

N 1 e 0 0 . . . N n e 0 0 0 N 1 e 0 . . . 0 N n e 0 0 0 N 1 e . . . 0 0 N n e

d e

[3n×1] =

d e 1 . . . d e n

y z

2 8

9

11 14

17

η ζ

η ζ

i

j l

m n

o p d e

[3n×1]

= T I e

[3n×N ]

d

[N ×1]

(19)

Equilibrium equation of discretized structure

Equilibrium equation (ρb e = f e – body force vector)

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

Computational Methods, 2020 J.Paminc

(20)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(L

e

N

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

(21)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(L

e

N

e

B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

Computational Methods, 2020 J.Paminc

(22)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

(23)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

E

X

e=1

(δd

e

)

T

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

Computational Methods, 2020 J.Paminc

(24)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

E

X

e=1

( δd

e

I T

e

δd

)

T

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

(25)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

E

X

e=1

( I T

e

δd)

T

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

Computational Methods, 2020 J.Paminc

(26)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

E

X

e=1

( I T

e

δd)

T

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

(δd)

T

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

(27)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

E

X

e=1

( I T

e

δd)

T

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

(δd)

T

∀δd

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

Computational Methods, 2020 J.Paminc

(28)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

E

X

e=1

( I T

e

δd)

T

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

(29)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

E

X

e=1

( I T

e

δd)

T

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e



=

E

X

e=1

I T

eT

Z

Se

N

eT

t

e

dS

e

+

Z

Ve

N

eT

f

e

dV

e



Computational Methods, 2020 J.Paminc

(30)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

Z

V

e

(L e δu e ) T σ e dV e Z

S

e

(δu e ) T t e dS e Z

V

e

(δu e ) T f e dV e



= 0

E

X

e=1

Z

Ve

(B

e

δd

e

)

T

σ

e

dV

e

Z

Se

(N

e

δd

e

)

T

t

e

dS

e

Z

Ve

(N

e

δd

e

)

T

f

e

dV

e



= 0

E

X

e=1

( I T

e

δd)

T

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e

Z

Se

N

eT

t

e

dS

e

Z

Ve

N

eT

f

e

dV

e



= 0

E

X Z 

E

X Z Z 

(31)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e



=

E

X

e=1

I T

eT

Z

Se

N

eT

t

e

dS

e

+

Z

Ve

N

eT

f

e

dV

e



Consideration of kinamatic and constitutive equations linear elasticity: σ = Dε

linear kinematic relation: ε = Lu

σ e = D e L e u e = D e L e N e d e = D e B e T I e d

Equilibrium equation

Computational Methods, 2020 J.Paminc

(32)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e



=

E

X

e=1

I T

eT

Z

Se

N

eT

t

e

dS

e

+

Z

Ve

N

eT

f

e

dV

e



Consideration of kinamatic and constitutive equations linear elasticity: σ = Dε

linear kinematic relation: ε = Lu

σ e = D e L e u e = D e L e N e d e = D e B e T I e d

Equilibrium equation

(33)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e



=

E

X

e=1

I T

eT

Z

Se

N

eT

t

e

dS

e

+

Z

Ve

N

eT

f

e

dV

e



Consideration of kinamatic and constitutive equations linear elasticity: σ = Dε

linear kinematic relation: ε = Lu

σ e = D e L e u e = D e L e N e d e = D e B e T I e d

Equilibrium equation

E

X

e=1

I T

eT

Z

Ve

B

eT

D

e

B

e

T I

e

ddV

e



=

E

X

e=1

I T

eT

Z

Se

N

eT

t

e

dS

e

+

Z

Ve

N

eT

f

e

dV

e



Computational Methods, 2020 J.Paminc

(34)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e



=

E

X

e=1

I T

eT

Z

Se

N

eT

t

e

dS

e

+

Z

Ve

N

eT

f

e

dV

e



Consideration of kinamatic and constitutive equations linear elasticity: σ = Dε

linear kinematic relation: ε = Lu

σ e = D e L e u e = D e L e N e d e = D e B e T I e d

Equilibrium equation

E

X T I

eT

( Z

B

eT

D

e

B

e

dV

e

)

I T

e

d =

E

X T I

eT

( Z

N

eT

t

e

dS

e

+

Z

N

eT

f

e

dV

e

)

(35)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e



=

E

X

e=1

I T

eT

Z

Se

N

eT

t

e

dS

e

+

Z

Ve

N

eT

f

e

dV

e



Consideration of kinamatic and constitutive equations linear elasticity: σ = Dε

linear kinematic relation: ε = Lu

σ e = D e L e u e = D e L e N e d e = D e B e T I e d

Equilibrium equation

E

X

e=1

I

T eT K ¯ e T I e d =

E

X

e=1

I T eT p ¯ e b +

E

X

e=1

I T eT p ¯ e

Computational Methods, 2020 J.Paminc

(36)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e



=

E

X

e=1

I T

eT

Z

Se

N

eT

t

e

dS

e

+

Z

Ve

N

eT

f

e

dV

e



Consideration of kinamatic and constitutive equations linear elasticity: σ = Dε

linear kinematic relation: ε = Lu

σ e = D e L e u e = D e L e N e d e = D e B e T I e d

Equilibrium equation

E

X eT ¯ e e

E

X eT e

E

X eT e

(37)

Equilibrium equation of discretized structure

Equilibrium equation

E

X

e=1

I T

eT

Z

Ve

B

eT

σ

e

dV

e



=

E

X

e=1

I T

eT

Z

Se

N

eT

t

e

dS

e

+

Z

Ve

N

eT

f

e

dV

e



Consideration of kinamatic and constitutive equations linear elasticity: σ = Dε

linear kinematic relation: ε = Lu

σ e = D e L e u e = D e L e N e d e = D e B e T I e d

Equilibrium equation

Kd = p b + p

Computational Methods, 2020 J.Paminc

(38)

Plane stress (σ z = 0)

Displacement vector u = {u(x, y), v(x, y)}

Strain vector

ε = {ε x , ε y , γ xy }

Stress vector

σ = {σ x , σ y , τ xy }

Traction vector

Body force intensity vector f = {f x , f y }

Constitutive matrix

D = E 1 − ν 2

1 ν 0

ν 1 0

0 0 1−ν 2

Differential operator matrix

L =

∂x 0

(39)

Plane stress (σ z = 0)

Stiffness matrix k e =

Z

A

e

B eT D e B e h e dA e

A e , h e – FE area and thickness, resp.

Element loading vector

p e = Z

A

e

N eT f e h e dA e

Boundary loading vector

p e b = Z

Γ

e

N eT t e h ee

x e y e

Γ e A e

Computational Methods, 2020 J.Paminc

(40)

FEs for panels

Three-noded element

u e (x, y) = N e (x, y) d e

N e =  N i e 0 N j e 0 N k e 0 0 N i e 0 N j e 0 N k e

 , d e =

d 1 d 2 d 3 d 4 d 5

d 6

x e y e

i

k

j d 1 e

d 2

d 3 d 4

d 5

d 6

(41)

FEs for panels

Three-noded element

u e (x, y) = N e (x, y) d e

N e =  N i e 0 N j e 0 N k e 0 0 N i e 0 N j e 0 N k e

 , d e =

d 1 d 2 d 3 d 4 d 5

d 6

x e y e

i

k

j d 1 e

d 2

d 3 d 4

d 5

d 6

y

e

N

i

(x

e

, y

e

)

x

e

1 i

k j

y

e

N

j

(x

e

, y

e

)

x

e

1

i k

j y

e

N

k

(x

e

, y

e

)

x

e

1 i

k

j

Computational Methods, 2020 J.Paminc

(42)

FEs for panels

Four-noded element

u e (x, y) = N e (x, y) d e N

e

=

 N

ie

0 N

je

0 N

ke

0 N

le

0 0 N

ie

0 N

je

0 N

ke

0 N

le



d e = {d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , d 7 , d 8 }

x e y e

i

k

j l

e d 1 d 2

d 3 d 4

d 5 d 6

d 7

d 8

(43)

FEs for panels

Four-noded element

u e (x, y) = N e (x, y) d e N

e

=

 N

ie

0 N

je

0 N

ke

0 N

le

0 0 N

ie

0 N

je

0 N

ke

0 N

le



d e = {d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , d 7 , d 8 }

x e y e

i

k

j l

e d 1 d 2

d 3 d 4

d 5 d 6

d 7 d 8

y

e

N

i

(x, y)

x

e

1

i

j

k

l y

e

N

l

(x, y)

x

e

i 1 j

k l y

e

N

j

(x, y)

x

e

1 j i

k

l y

e

N

k

(x, y)

x

e

1

i j

k l

Computational Methods, 2020 J.Paminc

(44)

Example

Statics of a panel

3 kN/m

7.5 kN/m

4 m 2 m

2 m

E = 18 GPa ν = 0.25 h = 0.2 m

X Y

4 i

5 j

2 k 1

l

Discretization

i j

3 k

1 2

d 1

d 2

d 3 d 4

d 5 d 6

d 7 d 8

d 9 d 10

elem. no. node numbers

1 4 5 2 1

2 5 3 2

(45)

Example

Statics of a panel

3 kN/m

7.5 kN/m

4 m 2 m

2 m

E = 18 GPa ν = 0.25 h = 0.2 m

X Y

4 i

5 j

2 k 1

l

Discretization

i j

3 k

1 2

d 1

d 2

d 3 d 4 d 5

d 6

d 7 d 8

d 9 d 10

elem. no. node numbers 1 4 5 2 1 2 5 3 2

Computational Methods, 2020 J.Paminc

(46)

Example

Statics of a panel

3 kN/m

7.5 kN/m

E = 18 GPa

Y Discretization

k 1

l j

3 k 2 d1

d2 d3 d4

d5 d6

Constitutive matrix

D = 18 · 10 6 1 − 0.25 2

1 0.25 0

0.25 1 0

0 0 1−0.25 2

 [kPa]

D =

19.2 4.8 0 4.8 19.2 0 0 0 7.2

· 10 6 [kPa]

Cytaty

Powiązane dokumenty

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Civil Engineering Department, Cracow University of Technology URL: www.L5.pk.edu.pl. Computational Methods, 2015

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl. Computational Methods, 2020

Faculty of Civil Engineering, Cracow University of Technology

Cracow University of Technology, Department of Civil Engineering, Institute for Computational Civil Engineering.. 5

Based on the results presented in Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH (Jankowska E.,

Jesionowski, Marine sponge skeleton photosensitized by copper phthalocyanine: A catalyst for Rhodamine B degradation, Open Chemistry 2016, 14, 243-254 Małgorzata

Metallic lithium is not directly applied as anode material, as dendrites would be formed during cycling, leading to short-circuit of the cell and even thermal