• Nie Znaleziono Wyników

strcutCalc a program to generate a priori structure models of Mars

N/A
N/A
Protected

Academic year: 2021

Share "strcutCalc a program to generate a priori structure models of Mars"

Copied!
14
0
0

Pełen tekst

(1)

strcutCalc

a program to generate a priori structure models of Mars

A. Rivoldini, P. Lognonné, Antoine Mocquet, and the

MSS team

(2)

Motivation

• need for a large set (>>1000) of plausible interior structure models for blind tests

• could be provided by science team members following (often changing) requirements from MSS

• or generated on the fly by MSS

(3)

Prior models of Mars

• should agree with average density

• compatible with thought mantle composition of Mars

• and thermal state

• have liquid layer in core made of Fe-S

(4)

MSS requirements

• user provided crust structure model

• user provided elastic properties for mantle along given reference mantle temperature as a function of p (from Perple_X, MMA-EoS, .. for a given composition)

• user provided temperature deviation from reference temperature profile for upper mantle

→By combining the above 3 inputs with chosen core radii a large number of models can

be constructed

(5)

Upper mantle velocities

• predicted seismic velocity

variations at depth shallower than 600km are smaller than precision expected from SEIS

• profiles are smooth and are not significantly affected by upper mantle phase

transitions

• effect of temperature is much larger than effect of

composition

Planned Products of the Mars Structure Service

Fig. 1 A suite of predicted shear wave velocity models for the mantle under Mars conditions for a series of bulk composition models. For each composition, the thick line represents calculated properties for a cold thermal profile, while the thin one represents a hot profile (Plesa et al. 2016). Temperature profiles are shown in Fig. 2. Composition model abbreviations are defined in Table 1. Light blue colored bar represents the L1 and L2 mission requirements for InSight’s ability to resolve elastic structure. The L1–L2 requirements are defined only for the depth region shaded in yellow

2.2 Estimates of Likely Sources

While the seismic catalog will be produced by the other major service of the mission, the MQS, pre-launch estimates of seismicity are also extremely important for defining the tech- niques that will be useful to determine the structure models. Mars’ seismicity is expected to lie somewhere between that of the Earth and the Moon, with potential sources including faulting, meteorite impacts, and atmospheric hum (Golombek et al. 1992; Lognonné and Mosser 1993; Lognonné et al. 1996; Panning et al. 2015). The Phobos tide is another signal with known amplitude, which can be expected to be detected through stacking (Lognonné and Mosser 1993; Lognonné et al. 2000; Van Hoolst et al. 2003).

The total seismic moment release per year is 10

22

Nm/yr on the Earth and 10

15

Nm/yr on the Moon, which loosely brackets the total moment release on Mars to be between 10

17

Nm/yr and 10

19

Nm/yr (Golombek 2002). Faulting, driven by internal cooling and large lithospheric loads such as Tharsis, is expected to be the dominant source of seismic- ity. Estimates based on predicted stress release from internal cooling (Phillips 1991) and the area, total slip and age of surface faults (Golombek et al. 1992) both derive a total moment release for Mars of about 10

18

Nm/yr. The largest uncertainties in deriving recur- rence intervals for different magnitude seismic events center around the assumed negative power law slope of the number versus size of marsquakes and the largest possible marsquake

�� �� ��

���

����

����

����

� [���]

[�]

(6)

Effect of T on v p/s and ρ is almost linear

vS(Tcold) vS(Thot)

vS(Thot)+(Tcold-Thot)(∂vs/∂T)p,c

��

����

����

����

����

� [���]

[�/�]

ρ(Tcold) ρ(Thot)

ρ(Thot)+(Tcold-Thot)(∂ρ/∂T)p,c

��

����

����

����

����

����

����

� [���]

ρ[��/� ]

v s (p, T + T) = v s (p, T) + v s (p, T)

T p,c T + ...

(7)

Generate upper mantle models by

providing temperature deviation profiles

• from pre-calculated profiles of density, seismic velocities, and iso-chemical partial derivatives with respect to

temperature along end-member temperature profiles for a given set of mantle compositions

��

����

����

����

����

� [���]

[�/�]

��

-���

-���

-��

��

���

���

� [���]

Δ[�]

(8)

strcutCalc

• computes pressure, temperature, density, seismic

velocities profiles for the whole planet and planet moment of inertia and core light element weight fraction

• requires user provided files for crust structure, upper

mantle temperature deviation profile, mantle mineralogy, and core radius

• core model assumes liquid convecting Fe-S

(9)

Implementation

• Fortran 2003 (compiles with gfortran 8.1)

• solves Poisson’s and hydrostatic pressure equation in the whole planet and solves adiabatic temperature equation in the core

• ode’s with boundary conditions are solved with

BVP_SOLVER (Fortran 90/95, Shampine et al 2006)

(10)

crust structure file:

$ more crustModels/crust.dat

d [km] rho[kg/m] vp[m/s] vs[m/s]

0.00 2600.00 5400.00 3117.69 10.00 2600.00 5470.00 3158.11 20.00 2600.00 5540.00 3198.52 30.00 2900.00 6750.00 3897.11 40.00 2900.00 6800.00 3925.98 50.00 2900.00 6850.00 3954.85

• contains density[kg/m 3 ], v p [m/s], and v s [m/s] as a function of depth [km]

• from surface down to depth of crust thickness

(11)

lithosphere temperature file:

$ more lithosphereModels/lithosphere.dat d[km] deltaT [K]

50. 0.

100. 10.4 150. 20.34 200. 29.39 250. 37.16 300. 43.3 350. 47.55 400. 49.73 450. 49.73 500. 47.55 550. 43.3 600. 37.16 650. 29.39 700. 20.34 750. 10.4 800. 0.

• contains temperature deviation as a function of depth

• from bottom of crust on to a depth of less than about

800km (p<~8GPa)

(12)

mantle mineralogy file:

$ more mantleCompositions/TAY_Thot.dat

p [GPa] T[K] rho[kg/m3] vp[m/s] vs[m/s] drhodT[kg/m3/K] dvpdT[m/s/K] dsvdT[m/s/K]

0.00 272.15 3394.10 7064.40 3464.30 -0.06 -0.30 -0.16 0.25 383.17 3397.20 7745.90 4425.70 -0.08 -0.42 -0.27 0.51 494.19 3403.90 7739.30 4416.90 -0.08 -0.46 -0.30 0.77 605.21 3489.80 7942.40 4549.30 -0.09 -0.51 -0.32 1.04 716.23 3488.70 7919.30 4523.60 -0.10 -0.53 -0.33 1.30 816.52 3487.60 7896.80 4499.40 -0.10 -0.54 -0.33 1.56 906.88 3486.80 7877.10 4477.40 -0.10 -0.54 -0.34 1.81 993.39 3485.90 7857.30 4455.90 -0.10 -0.55 -0.34 2.07 1076.05 3485.20 7838.40 4435.10 -0.10 -0.56 -0.35 2.33 1154.85 3483.50 7818.40 4414.50 -0.10 -0.56 -0.35 2.58 1229.79 3482.40 7800.80 4395.50 -0.11 -0.56 -0.35 2.84 1300.87 3481.60 7785.90 4378.00 -0.11 -0.57 -0.35 3.09 1368.10 3481.30 7774.10 4362.00 -0.11 -0.57 -0.35 3.34 1431.47 3481.50 7764.60 4347.50 -0.11 -0.57 -0.36 3.59 1490.99 3482.10 7757.10 4334.30 -0.11 -0.57 -0.36 3.84 1546.65 3483.20 7751.90 4322.40 -0.11 -0.57 -0.36 4.09 1598.45 3484.80 7749.00 4312.00 -0.11 -0.57 -0.36 4.34 1646.39 3486.80 7748.20 4302.90 -0.11 -0.57 -0.36 4.59 1690.48 3489.30 7749.70 4295.30 -0.11 -0.57 -0.36 4.84 1730.72 3492.20 7753.30 4289.00 -0.11 -0.57 -0.36 5.09 1767.09 3495.60 7759.00 4284.00 -0.11 -0.57 -0.36 5.33 1799.61 3499.50 7766.90 4280.50 -0.11 -0.56 -0.36 5.58 1818.36 3505.00 7782.40 4281.90 -0.11 -0.56 -0.36 5.82 1823.98 3511.90 7805.10 4287.80 -0.10 -0.55 -0.36 6.07 1829.60 3518.80 7827.30 4293.70 -0.10 -0.55 -0.36 6.31 1835.21 3525.60 7849.00 4299.40 -0.10 -0.54 -0.35 6.56 1840.83 3532.30 7870.40 4305.00 -0.10 -0.54 -0.35

• contains p,T, ρ, v p , v s , and their partial derivatives with respect to

temperature as function of pressure (p<~25GPa)

(13)

$./strcutCalc usage

usage: coreRadius([1300.e3,2100.e3]m) fileNameCrustModel fileNameLithosphereModel fileNameMantleMineralogy [fileNameResult]

$ ./strcutCalc 1800.e3 crustModels/crust.dat lithosphereModels/lithosphere.dat mantleCompositions/TAY_Thot.dat xS=18.045 MOI=0.3664 MOITEST=F error:0

r[km] g[m/s**2] p[GPa] T[K] rho[kg/m**3] vp[m/s] vs[m/s]

3389.500000 3.727866 0.000000 272.156100 2600.000000 5400.000000 3117.690000 3377.000000 3.728156 0.121160 324.174317 2600.000000 5487.500000 3168.212500 3364.500000 3.728551 0.242331 376.156056 2750.000000 6145.000000 3547.815000 3352.000000 3.729052 0.363517 428.090062 2900.000000 6787.500000 3918.762500 3339.500000 3.729661 0.484721 479.886035 2900.000000 6850.000000 3954.850000 3339.500000 3.729661 0.484721 479.886035 3397.448951 7734.180463 4420.295474 3152.000000 3.606373 2.876820 1345.448821 3477.619546 7763.960129 4363.114553 2964.500000 3.494262 5.193466 1831.404145 3491.565383 7733.425025 4264.041315 2777.000000 3.390212 7.465703 1896.968701 3553.302078 7928.836912 4312.564866 2589.500000 3.293508 9.711436 1914.206485 3616.616894 8130.666452 4372.948143 2589.500000 3.293508 9.711436 1914.206485 3616.616894 8130.666452 4372.948143 2392.125000 3.204100 12.051156 1969.672993 3688.258290 8344.593772 4439.197888 2194.750000 3.123606 14.410450 2025.332284 3873.519155 8992.771928 4802.417836 1997.375000 3.059398 16.790520 2081.322565 3944.821036 9219.700280 4891.276924 1800.000000 3.030448 19.189908 2137.822682 4031.637983 9516.050414 5039.386124 1800.000000 3.030448 19.189908 2137.822682 5778.080940 4943.914493 0.000000 1350.000000 2.333467 26.338113 2286.449399 6044.656638 5219.104415 0.000000 900.000000 1.584731 31.761712 2356.308666 6236.478479 5410.895300 0.000000 450.000000 0.801181 35.147064 2380.133201 6352.825455 5524.237429 0.000000 0.000000 0.000000 36.297928 2383.382681 6392.169772 5561.861085 0.000000

usage:

(14)

Available when?

• soon for MSS (beginning October)

• rest of science team as soon as MSS has finished testing

Cytaty

Powiązane dokumenty

The reduced method creates reduced models by removing support vectors and uses a general formulation of Support Vector Classification with a priori knowledge in the form of

(ii) Hence find the time intervals in the 24-hour period during which the water is less than 10 metres deep... Find the value of a, the value of b and the value

relatively unique understanding of upbringing environment (for the pedagogy, especially social pedagogy of that time) suggested by Radlińska ought to be supplemented and analyzed

To z kolei daje nad zieję zrealizow ania całkow icie sam odzielnego auto m atyczn eg o tłum aczenia. P odstaw ow ym problem em je st w ięc rozw iązanie zagadnienia

Pierw sze tłumaczenie wyróżnia się tym , że jego autor kładzie akcent na zrozumiałość fabuły opowieści snutej przez praczki nad wodą (praczki okazują się

In the summer of 2002 the Institute of Energy of the European Commission (JRC-IE) proposed the HFR-EU1 irradiation experiment in the High Flux Reactor (HFR) at Petten to the

Another Chinese polysem is 股东 gŭdōng and its English equivalents are ‘shareholder’ and ‘stockholder’ (in German: ‘Aktionär m’, ‘Anteilseigner m’, ‘Gesellschaft

dr János Ede Szilágyi z Uniwersytetu w Miszkolcu (Węgry). W toku obrad okazało się, że to właśnie problematyce transgranicznego nabywa- nia nieruchomości rolnych oraz nabywania