• Nie Znaleziono Wyników

The n-dimensional Fourier equation with the Robin’s boundary conditionusing the finite difference method

N/A
N/A
Protected

Academic year: 2022

Share "The n-dimensional Fourier equation with the Robin’s boundary conditionusing the finite difference method"

Copied!
8
0
0

Pełen tekst

(1)

THE n-DIMENSIONAL FOURIER EQUATION WITH THE ROBIN’S BOUNDARY CONDITION USING

THE FINITE DIFFERENCE METHOD

Grzegorz Biernat, Sylwia Lara-Dziembek, Edyta Pawlak Institute of Mathematics, Czestochowa University of Technology

Częstochowa, Poland

grzegorz.biernat@im.pcz.pl, sylwia.lara@im.pcz.pl, edyta.pawlak@im.pcz.pl

Abstract. The article is a continuation of the considerations on the three-dimensional Fourier equation supplemented by the third boundary condition (the Robin’s condition).

The paper is based on the Finite Difference Method.

Keywords: block matrices, determinant, Fourier equation, boundary condition

Introduction

The subject of our discussion is the heat flow in the n-dimensional area described by the Fourier equation with Robin’s boundary condition. In this paper we present the exact solution to this problem.

Solution of the problem

We consider the n-dimensional Fourier equation [1, 2]

( ) ( ) ( )

( )

1

2 2 2

1 2 1 2 1 2

2 2 2

2

1 2

, , ..., , , , ..., , , , ..., ,

...

, , ..., , λ

ρ

 ∂ ∂ ∂ 

 + + +  =

 ∂ ∂ ∂ 

 

= ∂

n

n n n

n

T x x x t T x x x t T x x x t

x x x

T x x x t

c

t

(1)

where λ is a thermal conductivity [W/mK], c is a specific heat [J/kgK], ρ is a mass density [kg/m 3 ], T is temperature [K], 1 , 2 , ...,

n

x x x denote the geometrical co-ordinates and t is time [s].

Assuming the following difference quotients we obtain the differential approxima-

tion of the second derivatives appearing in equation (1)

(2)

( )

( )

1 2 1 2 1 2

1

1 2 1 2 1 2

2

1 2 1 2 1 2

2 1, ,..., , , ,..., , 1, ,..., ,

1 1

2 2

1

2 , 1,..., , , ,..., , , 1,..., ,

2 2

2 2

2

2 , ,..., 1, , ,..., , , ,.

2

2

, 1 1

2

, 1 1

2

− +

− +

− +

∆ = ≤ ≤ −

∆ ∆

− +

∆ = ≤ ≤ −

∆ ∆

− +

∆ =

∆ M

n n n

n n n

n n

i i i l i i i l i i i l

i i i l i i i l i i i l

i i i l i i i l i i

n

T T T

T

i m

x x

T T T

T i m

x x

T T T

T

x ( )

.., 1,

2 + , 1 ≤ ≤ − 1

i n l

n n

n

i m

x

(2)

and the approximation of the first derivative of the time

1 2 , ,..., , 1 2 , ,..., , 1

− , 1

∆ −

= ≤ ≤

∆ ∆

n n

i i i l i i i l

T T

T l q

t t (3)

The initial condition has the form

1 2 , ,..., ,

, 0

= ≤ ≤

i i i l n ini

T T l q (4)

where T ini is the initial temperature.

The system of equations containing the Fourier equation with the Robin conditions [2-4] is presented

( )

( )

( )

2

0, 2 ,..., ,

,1,..., , 1

, 0,..., , 1

, ,...,1,

1 2

, ,..., 0,

1 2

1 1, ,..., ,

1

2

2 2 2

2 2 2

2

2

2

2

...

λ α

λ α

λ α

λ ρ

 −

 = −

 ∆

 −

  = −

 ∆

 

 −

 = −

 ∆

   ∂ ∂ ∂  ∆

  + + +  =

 ∂ ∂ ∂  ∆

 

 M

n

i i n l

i i n l

i i n l

i i l

i i l

n

i i l env

T env

T env

T env

T env

T env

n

T T

T T

x

T T

T T

x

T T

T T

x

T T T T

c

x x x t

(5)

where α is the heat transfer coefficient and T env is the ambient temperature of environment.

Now we consider the systems of equations corresponding to the exemplary vertices,

edges and lateral planes of our n-cube.

(3)

In the first vertex of the n-cube (for 1 , 2 , ...,

i i i n ) we have

( )

( )

( )

( ) ( ) ( )

( ) ( )

1,0,..., 0,

0, 0,...,0, 1

0,1,0, ...,

0,0,...,0, 2

0, 0,...,1,

0,0,...,0,

0,0,0,..., 1,0,0,...0,

2 2 2

1 1 1

0,0,0,...,

2 2

2 2

2

2

2

2

2

λ α

λ α

λ α

λ λ λ

λ λ

− = −

− = −

− = −

− + +

∆ ∆ ∆

+ −

∆ ∆

M

l env

l env

l env

l env

l env

l env

n

env l l

env

T T

T T

x

T T

T T

x

T T

T T

x

T T T

x x x

T T

x x ( )

( ) ( ) ( )

0, 1, 0,...0, 2

2

0,0, 0,...0, 0,0, 0,...0, 1

0,0,0,..., 0, 0,0,...1,

2 2 2

...

2

λ

λ λ λ

ρ

+ + +

+ − + = −

∆ ∆ ∆

l l

l l

env l l

n

T x

T T

T T T c

z z t

x

(6)

Thus, the system of equations is as follows:

( ) ( )

0,0,...,0, 1,0,...,0,

1 1

0,0,...,0, 0,1,...0,

2 2

0,0,...,0, 0,0,...,1,

0,0,..., 0, 1,

2 2

1 1

2 2

2 2

2 2

2

λ λ

α α

λ λ

α α

λ λ

α α

λ ρ λ

=

 

− ∆ =    − ∆   

 

− ∆ =    − ∆   

 

− ∆ =    − ∆   

 

 +  −

 ∆ ∆  ∆

 

 

M

l l env

l l env

l l env

n n

n

l

p p

T T T

x x

T T T

x x

T T T

x x

c T T

x t x ( ) ( )

( )

0,..., 0, 2 0,1,...,0, 2 0,0,...,1,

2

0,0,...,0, 1 2

1

λ ... λ

λ ρ

=

 

 

 

 

 

 

 

 − − − =

 ∆ ∆

 

= +

 ∆ ∆

l l l

n n

env l

p p

T T

x x

T c T

x t

(7)

(4)

The main matrix system above has the form

( ) ( ) ( ) ( )

1

2

2 2 2 2

1 1 2

0 0

2

0 0

2

0 0

2 2

α λ

α λ

α λ

λ ρ λ λ λ

=

 − 

 ∆ 

 

 − 

 

 ∆ 

 

=  

 

 ∆ 

 

 

 + − − − 

 ∆ ∆ ∆ ∆ ∆ 

 

L

L

M M M O M

L

L

n n

p p n

x

x A

x c

x t x x x

(8)

Using the determinant of the matrix A we obtain the limitations on the steps of the differential grid [5]

1

2

0 2

0 2

0 2

det 0

α λ

α λ

α λ

 − >

 ∆

 

− >

 ∆

 

 

 

− >

 ∆

  >

 M

n

x

x

x A

(9)

So

1

2

2 2

2

λ λ

α α

λ λ

α α

λ λ

α α

 < ∆ <

 

 < ∆ <

 

 

 < ∆ <



M

n

x x

x

(10)

(5)

The determinant of the matrix A can be written in the following form:

( )

3

2

1 1

1

det 1 4 2

λ λ ρ

α

= =

=

 

 

= ⋅ + −

 ∆ ∆ ∆ 

∆    

∑ ∑

n n

n

p p p

p p p

c A

t x

x x

(11)

Now, we calculate the determinant corresponding to the variable T 0, 0,…, 0, l

( )

0,0,..., 0,

3

0,0,..., 0, 1 2

1 1

1

det 1

4 2

λ λ ρ

α

= =

=

   

   

= ∆ ⋅       ∆ − ∆    + ∆   

∑ ∑

l ∏

n n

T n env l

p p p

p p p

c

A T T

x t

x x

(12)

The temperature of node (0, 0, …,0) at the time l is as follows:

( )

( )

0,0,...,0, 1 2

1 1

0,0,...,0,

2

1 1

1

2 1 2

λ ρ

α

λ ρ

α

= =

= =

 

 −  +

 ∆  ∆

 ∆ 

 

=

+ −

∆ ∆

∑ ∑

∑ ∑

n n

env l

p p p

p

l n n

p p p

p

T c T

x t

x T

c

t x

x

(13)

Assuming the following markings

( ) 2 1

, 1,..., , 1 ,

2

λ ρ

α

=

= = = =

∆ ∆

n p

p p

p

a p n b d c

x t

x

(14)

we get

0,0,...,0, 1 1

0,0,..., 0,

1

=

=

 

− +

 

 

 

=

− +

n

p env l

p

l n

p p

a b T d T

T

a b d

(15)

or in another notation

1

0,0,...,0, 0,0,...,0, 1

1 1

=

= =

= +

− + − +

∑ ∑

n p p

l n env n l

p p

p p

a b

T T d T

a b d a b d

(16)

Similarly, we proceed for the remaining vertices.

(6)

Subsequently we repeat the procedure for each edge .

And so, on the edge (i 1 ,0,…,0), where 1 ≤ i 1 ≤ m 1 − 1, i 2 = 0, ..., i n = 0 we receive

( )

( )

( )

( ) ( ) ( )

1 1

1

1

1

1

1

1 1 1

1,0,...,0, 1, 0,..., 0,

,0,,...,0, 1

,1,0,..., 0,

, 0,..., 0, 2

, 0,..., 1,

, 0,..., 0,

1, 0,..., 0, ,0,...,0, 1, 0,

2 2 2

1 1 1

2

2

2

2

λ α

λ α

λ α

λ λ λ

+ −

− +

− = −

− = −

− = −

− +

∆ ∆ ∆

M

i l i l

i l env

i l env

i l env

i l env

i l env

n

i l i l i

T T

T T

x

T T

T T

x

T T

T T

x

T T T

x x x

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

1 1

...,0,

,0,..., 0, ,1,...,0,

2 2 2

2 2 2

,0,...,0, ,0,...,0, 1

,0,...,0, ,0,..., 1,

2 2 2

2 ...

2

λ λ λ

λ λ λ

ρ

+

+ − + + +

∆ ∆ ∆

+ − + = −

∆ ∆ ∆ ∆

l

env i l i l

i l i l

env i l i l

n n n

T T T

x x x

T T

T T T c

x x x t

(17)

Thus, the respective determinants take the following forms:

1 ( ) 2 1

1

det 1 4 2

λ λ ρ

α

= =

=

 

 

= ∆ ⋅    ∆ + ∆ − ∆   

∑ ∑

n n n

n

p p p

p p p

c A

t x

x x

(18)

( ) ( )

, 0,..., 0,

1,0,...,0, ,0,...,0, 1

2 2

2 1

1 1

det

1 4 2

λ λ λ ρ

α − −

= =

=

=

   

   

= ∆ ⋅       ∆ − ∆    + ∆ + ∆   

∑ ∑

i l

T

n n n

env i l i l

n

p p p

p p p

A

c

T T T

x t

x x

x

(19)

Ultimately, the temperature on the edge (i, 0, 0) 1 ≤ i 1 ≤ m 1 − 1, i 2 = 0, ..., i n = 0

at the moment l is given by the formula

(7)

( ) ( )

( )

1,0,..., 0, ,0,..., 0, 1

2 2

2 1

1 ,0,...,0,

2

1 1

1

2 1

2

λ λ ρ

α

λ ρ

α

− −

= =

= =

 

 −  + +

 ∆  ∆

 ∆  ∆

 

=

− +

∆ ∆

∑ ∑

∑ ∑

n n

env i l i l

p p p

p

i l n n

p p p

p

c

T T T

x t

x x

T

c

x t

x

(20)

Using designations (14), we obtain

1 2

,0,...,0, 1,0,...,, ,0,...,0, 1

1 1 1

=

− −

= = =

= + +

− + − + − +

∑ ∑ ∑

n p p

i l n env n i l n i l

p p p

p p p

a b

a d

T T T T

a b d a b d a b d

(21)

Analogously we calculate the temperature for the other edge points.

On the plane (i 1 , i 2 , …, 0), 1 ≤ i 1 ≤ m 1 − 1, 1 ≤ i 2 ≤ m 2 − 1,

3 = 0,..., n = 0

i i we receive

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

1, , 0,...,0, , ,0,..., 0, 1, ,0,...,0,

2 2 2

1 1 1

, 1,0,..., 0, , ,0,...,0, , 1, 0,...,0,

2 2 2

2 2 2

, , 0,...,0, , ,0,...,1

2 2 2

2

2 ...

2

λ λ λ

λ λ λ

λ λ λ

− +

− +

− + +

∆ ∆ ∆

+ − + + +

∆ ∆ ∆

+ − +

∆ ∆ ∆

i i l i i l i i l

i i l i i l i i l

env i i l i i

n n n

T T T

x x x

T T T

x x x

T T T

x x x , ( 1 2 , , 0,...,0, 1 2 , ,0,...,0, 1 )

ρ

= − −

l ∆ i i l i i l

c T T

t

(22) In the case of other planes of the cube we proceed similarly.

The system of equations in the internal points of the area takes the following form:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1, ,..., , , ,..., , 1, ,..., ,

2 2 2

1 1 1

, 1,..., , , ,..., , , 1,..., ,

2 2 2

2 2 2

, ,..., 1, , ,..., , , ,.

2 2 2

2

2 ...

2

λ λ λ

λ λ λ

λ λ λ

− +

− +

− + +

∆ ∆ ∆

+ − + + +

∆ ∆ ∆

+ − +

∆ ∆ ∆

n n n

n n n

n n

i i i l i i i l i i i l

i i i l i i i l i i i l

i i i l i i i l i i

n n n

T T T

x x x

T T T

x x x

T T T

x x x

( 1 2 1 2 )

.., 1,

, ,..., , , ,..., , 1

ρ

+

=

= −

n

n n

i l

i i i l i i i l

c T T

t

(23)

(8)

Conclusion

This article is the continuation of the discussion on the boundary-initial problem for the heat flow described by the Fourier equation [3, 4].

References

[1] Biernat G., Lara-Dziembek S., Pawlak E., The determinants of the block band matrices based on the n-dimensional Fourier equation. Part 1, Journal of Applied Mathematics and Computational Mechanics 2013, 3(12), 5-13.

[2] Mochnacki B., Suchy J.S., Modelowanie i symulacja krzepnięcia odlewów, WN PWN, Warszawa 1993.

[3] Biernat G., Lara-Dziembek S., Pawlak E., The Finite Difference Method in the 2D Fourier equation with Robin’s boundary condition, Journal of Applied Mathematics and Computational Mechanics 2013, 4(12), 5-12.

[4] Biernat G., Lara-Dziembek S., Pawlak E., The 3D Fourier equation with the Robin’s boundary condition using the Finite Difference Method, Journal of Applied Mathematics and Computa- tional Mechanics 2014, 1(13), 5-12.

[5] Biernat G., Mazur J., Finite difference method in the Fourier equation with Newton’s boundary

conditions direct formulas, Scientific Research of the Institute of Mathematics and Computer

Science 2008, 2(7), 123-128.

Cytaty

Powiązane dokumenty

3. Criteria of the rationality of the boundary spectrum. From now on we only consider the real space X. The rationality of boundary spectrum in this case was established already

M u sialek, The Green's function and the solutions of the Neumann and Dirichlet problem,

Another interesting example is a flow that is induced in a narrow corner not by the boundary conditions but by a flow far away from the corner itself.. The problem was first

[2] Biernat G., Lara-Dziembek S., Pawlak E., The determinants of the block band matrices based on the n-dimensional Fourier

We encounter the block band matrices, inter alia, considering the torsion bars in the theory of vibrations, determining the currents in the eyebolt method in

Since the application of a very large number of boundary elements and internal cells significantly increases the computation time to solve the dual phase lag equa- tion, the other

The interval calculations of the source function connected with the crystalliza- tion process modelling require to take into account the interval values of the nucle- ation coefficient

In the paper we give the direct FDM formulas for the solutions of the Fourier equation with the Newton boundary condition in the x, t