• Nie Znaleziono Wyników

British Chemical Abstracts. A. Pure Chemistry, May

N/A
N/A
Protected

Academic year: 2022

Share "British Chemical Abstracts. A. Pure Chemistry, May"

Copied!
124
0
0

Pełen tekst

(1)

BRITISH CHEMICAL ABSTRACTS

A . - P U R E CHEMISTRY

MAY, 1931.

G en eral, P h y sic a l, and

N e w b a n d s in th e s e c o n d a r y s p e c t r u m of h y d ro g e n . D . S. Jo g (Phil. Mag., 1931, [vii], 41, 761—7S6; cf. R ichardson, A., 1930, 387).—The known electronic levels of hydrogen are su m m ar­

ised, a n d are in te rp re te d on H u n d ’s th e o ry of axial q u a n tisa tio n ; th e m ethod is applied to th e calculation of th e electronic term s of th e hydrogen molecule.

N . M. Bl i g h. F in e s t r u c t u r e i n h y d r o g e n b a n d lin e s . 0 . W . Ri c h a r d s o n an d W . E. Wi l l i a m s (N ature, 1931, 127, 481).—A n ex am in atio n of th e sp ectru m of hydrogen in a large H ilger q u a rtz spectrograph crossed by a reflexion echelon establishes th e corre­

lation betw een th e spectrum of m olecular hydrogen and atom ic helium . L. S. Th e o b a l d.

G a s e o u s d is c h a r g e s . I. C h a r a c te r is tic s of th e d is c h a r g e s i n h y d r o g e n a n d n i t r o g e n a t re d u c e d p r e s s u r e s w i t h a n in c a n d e s c e n t c a th o d e . II. In flu e n c e of th e t h e r m a l t r e a t m e n t of th e e le c tro d e o n t h e g lo w d is c h a r g e . I I I . In flu e n c e of g a s - l o a d i n g of th e c a th o d e o n th e ig n itio n p o te n tia l o f th e g lo w d is c h a r g e in h y d r o g e n . E. Ba d a r e u (Bull. F a c. S tiin te C ernauti, 1929, 3, 221—236, 304—306, 1— 8 ; Chem. Z entr., 1930, ii,

1043). L. S. Th e o b a l d.

C old e m is s io n f r o m u n c o n d itio n e d s u r f a c e s . W. H. Be n n e t t (Physical Rev.,' 1931, [ii], 37, 582—

590).—Em ission from unconditioned m etals in high electric fields an d th e effect on th e em ittin g surfaces of discharges th ro u g h hydrogen were investigated.

Loose fine p articles have a g rea ter influence on th e quantity' of em ission th a n n a tu re an d conditioning of

cathode. N . M. Bl i g h.

C le a n -u p p h e n o m e n o n i n h y d r o g e n . E . Hi e d e- mann (Ann. Physik, 1931, 8, [v], 456—474).—The clean-up phenom enon in hydrogen follows a norm al (in essentials sim ilar to t h a t described b y Johnson) or an abnorm al (observed by' Mierdel) course d epend­

ing on th e tre a tm e n t to w hich th e discharge tu b e has Lcen previously' subjected. The norm al clean-up is characterised b y adsorption of hydrogen, w hilst th e abnormal appeal's to be th e resu lt of condensation of a mixture of silicon hydrides. W . Go o d.

V isible s p e c t r u m of h e liu m . J . S. To w n s e n d

and F . L. Jo n e s (Phil. Mag., 1931, [vii], 11, 679—

685; cf. A ., 1930, 973).—The relatio n betw een the

% h | em itted b y a discharge in a gas a n d th e energy' o£ the electrons causing ionisation by collision w ith the gas molecules w as in v estig ated by observations

o o 539

In o r g a n ic C h em istry.

on th e change in in te n sity of th e light due to changes of pressure in helium over th e range 20— 2 m m ., an d electron energies 3— 4 volts. B o h r’s m odel of th e helium atom , requiring a m inim um of 20 volts for ra d ia tio n emission, is n o t supported.

N. M. Bl i g h. H y p e r f in e s t r u c t u r e of L i +. I I . P . Gü t- t i n g e r an d W . Pa u l i (Z. Physik, 1931, 67, 743—

765).—T heoretical (cf. A., 1930, 1487). H yperfine separations in th e L i 1- lines, 3Fo.i,2'“3‘8ij are com p ar­

able w ith fine stru c tu re separations.

A. B. D. Ca s s i e. V a c u u m s p a r k s p e c t r a to 4 0 Á . : s p e c t r a of B e I I I , B e IV , B I V , B v , a n d C v . B. E d l é x (N ature, 1931, 127, 405— 406).—T he hydrogen- an d helium -like sp ectra previously tra c e d to Be rv (A., 1930, 263) have been com pleted w ith B rv- B v, and C v , and the lim it of optical spectra has been b ro u g h t dow n to 40-28 Á. W ave-lengths of th e series 1W — n~P an d 12,S'—32P , an d 11S —n 1P are ta b u la te d . T he calculated q u a n tu m defect from th e series of Be i n is n —n * = —0-013±0-001. L. S. Th e o b a l d.

I n te n s ity m e a s u r e m e n t s i n th e a t m o s p h e r i c o x y g e n b a n d a t 7 6 0 0 Á . W . H . J . Ch i l d s an d R . Me c k e (Z. P h y sik , 1931, 6 8, 344— 361).—T he in ten sity of absorption due to th e A -group of oxy-gen near 7600 A. w as determ ined b y F rerich s’ m ethod (ibid., 1925, 31, 305), using a dispersion of 2-6 Á. p er m m ., and colum ns of air 14, 33, an d 62 m etres long.

D eviations from L a m b e rt’s law were investigated and a I lowed for, an d th e sta tistic a l w eights of th e ro tatio n al levels were determ ined.

A. B. D. Ca s s i e. S t a r t i n g p o te n tia ls of th e c o r o n a d is c h a r g e in n e o n . F . M. Pe n n i n g (Phil. Mag., 1931, [vii], 11, 961— 980),— C ontrary to th e results of Huxley' (cf.

A., 1928, 567), th e sta rtin g p o te n tia l of a positive discharge in pu re neon was found to be higher th a n th a t of a negative discharge. The form er could, how ever, be decreased below th e la tte r by the a d d itio n of traces of argon. N. M. Bl i g h.

P h o t o m e t r y of t h e n e o n la m p . M. J . Dr u y v e s- t e y n an d N. Wa r m o l t z (Z. Physik:, 1931, 6 8, 378—

394).— L ig h t em itted norm ally to th e cathode of a neon lam p w as investigated visually b y m eans of a ro ta tin g sector photom eter. F ifteen in tern atio n al candles are e m itte d per a m p , passing th ro u g h th e la m p ; th is intensity' is proportional to th e c u rren t an d indep en d en t of cathode fall an d gas pressure.

A stu d y of th e influence of helium and argon suggests

(2)

5 4 0 B R I T IS H C H E M IC A L A B S T R A C T S .— A .

th a t ex citatio n is due to slow electrons of 25 volts

energy. A. B. D. Ca s s i e.

N e w r e s o n a n c e s e r ie s of s u l p h u r v a p o u r . I I I . J . G e n a r d (Bull. Acad. roy. Belg., 1931, [v], 17, 184— 190).—The e x te n t of th e ex citatio n region of th e resonance spectrum of S2 w as investigated. Con­

ditions used were o th er th a n those giving the optim um fluorescence; e xcitation was by m eans of m agnesium spark. The lower lim it of th e e x citatio n spectrum is betw een 2890 an d 2850 A. A. J . M e e .

R o ta tio n a l a n a ly s is of th e S 2 b a n d s . S. M.

Na h d ć and A. Ch r is t y (Physical R ev., 1931, [ii], 3 7 , 490—506; cf. R osen, A., 1927, 608).—The emission spectrum of S2 was obtained b y m eans of a Geissler tube, an d th e bands 91 (X 2857-36), 70 (X 2860-13), 8— 1 (X 2887-84), 9— 1 (X 2917-38), a n d 7— 1 (X 2920-28) were investigated. E ach b a n d consists of th ree R and th ree P b ran ch es; th e stru c tu re is sim ilar to t h a t of th e S ch u m an n -R u n g e bands of oxygen.

W ave num bers an d in terv als for th e lines of each band are tab u la te d , an d th e ro ta tio n a l analysis is

obtained. N. M. Bl ig h.

S p a r k s p e c t r a of c h lo r in e . K Mu r a k a w a

(Sci. P ap ers In st. Phys. Chem. Res. Tokyo, 1931, 1 5 , 105— 109; cf. th is vol., 276).— The spectrum of Cl i i i was excited by increasing th e spark g ap and c u rre n t in a Geissler tu b e w ith tu n g sten electrodes, one containing a little sodium chloride. Intensities, w ave-lengths, an d term com binations are ta b u la te d for 29 newly-classified lines. The classification of Cl i i lines is extended. N. M. Bl ig h.

B a n d s p e c t r a of s c a n d iu m , y t t r i u m , a n d l a n t h a n u m m o n o x id e s . W . F . M e g g e r s and J . A. W h e e l e r (Bur. S tan d . J . Res., 1931, 6, 239—

275).—T he b and spectrum of scandium oxide con­

tain s 139 b an d heads, all degraded tow ards th e red.

T hey are divided in to five system s, th e 0 -0 tr a n ­ sitions having heads a t 4857-79 an d 4858-09, 6017-07, 6036-17, 6064-31, 6079-30 A. Y ttriu m oxide gives 120 b an d heads degraded to w ard s th e red, th e five 0 -0 tran sitio n s being 4817-38 an d 4818-20, 5939-08, 5972-04, 6096-78, 6132-06 A, L an th an u m m onoxide gives 300 b and heads, divided in to nine system s, seven of w hich include all bands shaded tow ards th e red, a n d th e o th er tw o of groups of w eaker bands shaded aw ay from th e red. C. W . G ib b y .

I n t e n s i t y m e a s u r e m e n t s in t h e s p e c t r u m of m a n g a n e s e . R . S . Se w a r d (Physical R ev., 1931, [ii], 37, 344— 361; cf. M cLennan, A., 1926, 766;

D uffendack, A., 1929, 966).— R elativ e in ten sity m easurem ents were m ade, an d full d a ta ta b u la te d for 150 lines of 23 m ultiplets of Mn i, an d 3 of Mn i i.

N. M. Bl ig h. F lu o r e s c e n c e of z in c v a p o u r . W . K a p u ś c i ń s k i (Bull. A cad. Polonaise, 1930, A, 453— 459).—The fluorescence spectrum of zinc v ap o u r extends from 2130 to 4900 A., an d consists of lines an d bands.

The trip le ts originate in levels n o t directly excited from th e ground level. A. B. D. C a s s ie .

O p tic a l e x c ita tio n f u n c tio n s of c a d m iu m a n d z in c lin e s . K . La r c h ć (Physikal. Z., 1931, 3 2 , 1 8 01 8 1 ).—A lecture. W . Go o d.

C r itic a l p o te n tia ls of th e s p a r k s p e c t r u m of c a d m iu m . D. Co l so n (Proc. Iow a Acad. Sci., 1929, 3 6 , 307).— E x c ita tio n b y electron im p act (8-8—200 volts) was em ployed. Ch e m ic a l Ab s t r a c t s.

S e c o n d s p e c t r u m of x e n o n . C. J . Hu m p h r e y s, T. L. d e Br u i n, an d W . F . Me g g e r s (Bur. S tand. J . R es., 1931, 6. 287— 293).—A p a rtia l list of identified term s an d th eir com binations is given.

C. W . Gi b b y. P r o b a b i l i t i e s of r e c o m b in a tio n in to th e 1 2S s t a t e of c æ s iu m . C. B o e c k n e r (Bur. S tand. J . Res., 1931, 6, 277— 285).— The in te n sity d istrib u tio n in th e Y2S series of cæsium has been m easured between 3184 an d 2750 A. F rom th is an d th e velocity dis­

trib u tio n of th e discharge electrons th e relative prob­

ab ility of recom bination of free electrons in to the l 2tS sta te is shown to fall n early as th e inverse fo u rth power of th e velocity for energies greater th a n 0-15 v olt. C. W . G ib b y .

M e a s u r e m e n ts in th e a r c s p e c t r u m of rh e n iu m . W . M e i d i n g e r (Z. P hysik, 1931, 68, 331— 343).—

A num ber of lines betw een 2600 a n d 3500 A. and betw een 4040 an d 5300 A. were m easured w ith ail accuracy of ¿ 0 - 1 A. in th e arc spectrum of rhenium.

A. B. D. Ca s s i e. A b s o r p tio n s p e c t r u m of d is s o lv e d m e r c u r y . H . R e i c h a r d t a n d K . F . B o n h o e f f e r (Z. Physik, 1931, 67, 780—789).—A furnace containing a quartz absorption vessel w hich could co n tain liquids a t 200 a tm . an d 250° is described. A double m ercury 2537 A. line, displaced tow ards th e red, appeared a t 120s w hen th e m ercury w as dissolved in w ater, a t 50°

when in m ethyl alcohol, a n d a t 15° w hen in hexane.

D oubling is a S ta rk effect due to th e electric field w ithin th e solution. The doublet sep aratio n dimin­

ishes w ith rise of tem p e ra tu re or decreasing density of th e solvent. A n absorption edge a t 2200 A. is ascribed to ionisation of dissolved m ercury atom s.

A. B . D. Ca s s i e. F lu o r e s c e n c e of m e r c u r y v a p o u r u n d e r a to m ic a n d m o le c u la r a b s o r p tio n . H . Nie w o d n ic z a ń s k i

(N ature, 1931, 127, 406).—T he view th a t th e fluor­

escence of m ercury v ap o u r is due m ainly to atomic a bsorption is su p p o rted by th e a u th o r’s w ork on the influence of a m agnetic field on fluorescence (A., 1929, 979; cf. R ayleigh, th is vol., 137).

L . S. Th e o b a l d. S p a r k s p e c t r a of m e r c u r y . B. Ric a r d (Compt.

rend., 1931, 192, 618— 620).—W ith th e electrodeless discharge new lines have been m easured belonging to th e H g II, H g m , a n d H g itv sp ec tra from 4000 to

2700 A . C. A . SlLBERRAD.

F in e s t r u c t u r e i n th e m e r c u r y s in g le t te r m s . S. To l a n s k y (Proc. R oy. Soc., 1931, A, 130, 55S—

578).— B y th e use of a low -pressure high-frequency electrodeless discharge in pure m ercury v ap o u r, which increases th e relativ e an d intrinsic intensities of the singlet an d inter-com bination lines involving upper singlet levels, num erous stru c tu re hav e been ex­

am ined. An explanation, based on th e conception of nuclear spin, is suggested for th e origin of th e fine stru ctu res. This accounts for m o st of th e difficulties a n d explains th e a p p a re n t m u ltip licity of th e 7lS0

level. L. L. Bir c u m s h a w.

(3)

G E N E R A L , P H Y S I C A L , A N D IN O R G A N I C C H E M IS T R Y . 5 4 1

Resonance line of m ercury on addition of rare gases. P. Ku n z e (Ann. P hysik, 1931, 8, [v], 500— 520).— The effect of helium , neon, a n d argon on the emission an d ab so rp tio n of th e resonance line of m ercury (2537) has been experim entally investig­

ated. A q u a n tita tiv e discussion of th e results is

given. W . Go o d.

Hyperfine structure of tbe m ercury resonance line 2537 A. I. S. Mr o z o w s k i (Bull. Acad.

Polonaise, 1930, A, 464— 503).— The Zeem an effect in absorption w as studied for th e m ercury 2537 A.

line w ith fields up to 8 kilogauss. A nom alies ob­

served by M cNair (A., 1928, 807) betw een 1 and 3-5 kilogauss in emission ap p ear in absorption.

This hyperfine stru c tu re an d Zeem an effect can n o t be explained b y o rd in ary hypotheses.

A. B. D. Ca s s i e.

Hyperfine structure of certain m ercury lines.

B. V e n k a t e s a c h a r an d L. S i b a i y a (Mysore U niv.

J., 1930, 4, 145— 148).— Analyses of th e m ercury lines 6716, 6123, 6072, an d of 4916 A. are given.

C. W . Gi b b y.

Intensity of m ercury lines excited by positive ions. D. Fr i s o h e (Proc. Iow a A cad. Sei., 1929, 36, 307— 308).— T he results were com pared w ith those of investigation of th e electron spectrum .

Ch e m ic a l Ab s t r a c t s.

Life of the excited state and the fine structure of the m ercury arc spectrum. S. Mr o z o w s k i (Z.

Physik, 1931, 68, 278— 283).— I t is show n th a t th e times of life of different levels w hich ta k e p a r t in the production of a m u ltip le t are nearly equal to each other so far as tran sitio n s to o th e r levels belong­

ing to th e sam e term system are concerned.

A . J . Me e.

Thallium -inert gas bands. H. Kr e f f t and R. Ro m p e (N aturw iss., 1931, 1 9 , 269).—M ixtures of thallium v ap o u r w ith in e rt gases give absorption bands in th e neighbourhood of th e strongest th alliu m lines (5350 an d 3776 A.). P ro b ab ly these arise from a th a lliu m -in e rt gas molecule. T he sep aratio n of the b and heads varies w ith th e in e rt gas.

W . R . An g u s.

Influence of ion density on the arc spectrum of thallium. H . Kr e f f t (N aturw iss., 1931, 1 9 , 269—

270).—Spectrogram s are given showing th e influence of different c u rre n t stren g th s on th e absorption spectrum ob tain ed from a discharge in m ix tu res of thallium w ith in e rt gases. The observed phenom ena

are discussed. W . R . An g u s.

Determination of energy of dissociation from predissociation spectra. L. A. T u r n e r (Z.

Physik, 1931, 68, 178— 183).— A n ex p lan atio n of th e existence of tw o ty p es of predissociation spectrum is given. I n th e one th e disappearance of fine stru c tu re 18 sharp, in th e o th e r g radual. A. J . Me e.

R e d u c tio n of in t e n s i t y of s p e c t r a l lin e s in stro n g e le c tr ic fie ld s . C. La n c z o s (Z. P hysik, 1931, 68, 204— 232).— The reduction of th e in te n sity

°1 the emission lines of th e hydrogen ato m is dis­

cussed q u a n tita tiv e ly on th e basis of w ave m echanics, and ascribed to “ pre-ionisation.” The electric field sets the ato m in a sta te of spontaneous ionisation, so th a t radioactive disintegration can ta k e place. In

th e higher ex cited sta te s th is d isin teg ratio n takes place in a tim e which is less th a n th e life of th e excited atom , an d as ra d ia tio n tra n sitio n can n o t ta k e place the emission line disappears.

A. J . Me e.

Zeeman effect of forced radiation transitions produced by inner electric fields. G. P . It t m a n n

an d H . C. Br in k m a n (N aturw iss., 1931, 1 9 , 292).—•

The occurrence of a forbidden line in absorption or emission sp ectra m ay be due to tw o causes, which can be distinguished by a stu d y of th e Z eem an effect.

The Zeem an effect for tran sitio n s which are forced by electric fields by no m eans agrees w ith th a t p roduced for p erm itte d tran sitio n s. A. J . Me e.

After-glow and its life in discharge tubes.

D . B. De o d h a r (N ature, 1931, 1 2 7 , 485).—A strong after-glow persisting for 45 m in. has been observed in silica tu b es filled w ith gases a t low pressures and excited for 2 m in. b y induction coils giving a n o u tp u t of 400 volts. T he ra te of decay is extrem ely slow.

The flash phenom enon recorded by B raddick (this vol., 1) is seen in these after-glows. L. S. Th e o b a l d.

Sensitivity of photographic plates in tbe region between ultra-soft X-rays and tbe ultra­

violet. M. S o d e r m a n (Z. P hysik, 1931, 6 7 , 790—

793).— S chum ann plates are b est su ited to p h o to ­ g raphing sp ectra betw een 50 an d 500 A.

A. B. D. Ca s s i e.

Sources of illum ination for ultra-violet m icro­

scopy. B. K . Jo h n s o n (Proc. P hysical Soc., 1931, 4 3 , 127— 137).— Q u a n tita tiv e m easurem ents have been m ade of th e relative intrinsic brightness of spectrum lines given b y various sources of rad iatio n . S park discharge betw een cadm ium electrodes is th e m ost suitable source of ra d ia tio n for q u a rtz rnono- ch ro m at microscope objectives com puted for a w ave­

length in th e neighbourhood of 0-275 p. A special tran sfo rm e r an d condenser is described.

W . E. Do w n e y.

Influence of the crystal-orientation of the cathode on that of an electrodeposited layer.

W . A. Wood (Proc. P hysical Soc., 1931, 4 3 , 138—

141).— A '-Ray ex am in atio n shows t h a t th e o rien tatio n of a copper deposit for sm all cu rren ts is th e sam e as th a t of th e cathode. Nickel a t low c u rre n t densities assum es a d istin ct o rientation. As th e c u rre n t is increased th ere is a region of no o rientation, b u t a t still higher cu rre n ts th e o rien tatio n is th e sam e as th a t of th e cath o d e surface. W . E . Do w n e y.

Intensity of X-rays reflected from platinum, silver, and glass. H . W . E d w a r d s (Physical R ev., 1931, [ii], 3 7 , 339— 343).—T he in te n sity of a m ono­

chrom atic beam of X -ray s of w ave-length 0-69 A., ob tain ed by reflexion from ealcite, was m easured on reflexion from platin u m , silver, and glass m irrors for angles of incidence varying from 0-75 to 1-25 tim es th e critical angle. N . M. B l i g h .

Frequencies of characteristic X-radiation for the elem ents 1 1 Na to 1 7 Cl, calculated more accurately than at present w ith hypotheses extending the classical theory. S. Bj o r c k (Z.

P hysik, 1931, 68, 133— 144).—Theoretical.

A. B. D. Ca s s i e.

(4)

542 B R I T I S H C H E M IC A L A B S T R A C T S .— A .

M a s s a b s o r p t i o n c o e ffic ie n t of t h e I i s h e ll a c c o r d in g t o t h e D ir a c r e l a t i v i s t i c t h e o r y of th e e le c tro n . L. C. Ro e ss (Physical R ev., 1931, [ii], 37, 532— 555).—M athem atical. W ith a m odel ato m containing tw o non-interacting electrons an d a fixed nucleus th e m ass absorption coefficient is calculated w ith th e help of th e D irac relativistic equation.

R esu lts fo r lead, tin , zinc, an d alum inium are ta b u l­

a te d an d graphed for com parison w ith experim ental d a ta , an d w ith values calculated on a non-rclativistic basis (cf. Stobbe, th is vol., 138). N . M. Bl ig h.

D is tr ib u tio n of e le c tr ic ity i n th e l i t h i u m a to m . B. Ar a k a t z u a n d P. Sc h e r r e h (Helv. p h y s. A c ta , 1930, 3, 428— 135 ; Chem. Z entr., 1931, i,“ 13— 14).

—T he scatterin g of X -ray s b y lith iu m has been exam ined b y th e pow der ruothod, and th e electronic d istrib u tio n is discussed. A. A. El d r i d g e.

T h e i o n is a tio n f o r m u l a a n d th e n e w s t a t i s t i c s . W . An d e r s o n (Phil. Mag., 1931, [vii], 11, 6 8 5 — 6 86).

— R em arks on a p ap er by C handrasekhar (A., 1930,

83 3 ). N . M. Bl ig h.

I o n is a tio n of a r g o n , n e o n , a n d h e liu m b y v a r i o u s a lk a li io n s . R . M. Su t t o n a n d J . C.

Mo u z o n (Physical R ev., 1931, [ii], 37, 379— 382;

cf. A., 1930, 656).— Cæsium, ru b id iu m , potassium , a n d sodium positive ions from K u n sm an c a ta ly st sources an d lith iu m ions from spodum ene were used to produce ionisation in helium , neon, a n d argon.

M axim um ionisation was produced in each gas by th e alkali ion n earest to it in atom ic nu m b er (cf.

Beeck, A., 1930, 1494). N . M. Bl ig h. T h e o r y of t h e p h o to - e le c tr ic e ffe c t i n m e ta ls . I. Tam m a n d S. Sc h u b ln (Z. P hvsik, 1931, 68, 97—

113).—T heoretical. Photo-em ission is re la ted to the p o te n tia l b arrier a t th e m etal surface (surface effect) a n d to th e energy of binding of conduction electrons (volum e effect). T he influence of surface lay ers is

discussed. A. B. D. Ca s s i e.

P h o to - e le c tr ic e ffe c t a n d re f le x io n of e le c tr o n s a t h y d r o g e n is e d p o t a s s i u m s u r f a c e s . W . Kl u g e

a n d E. Rupp (Physikal. Z., 1931, 32, 163—172).—

A n experim ental arrangem ent is described w ith w hich parallel investigations of th e stru c tu re and photo-electric em ission of potassium surfaces were carried out. T he results su p p o rt th e view th a t th e selective photo-electric effect ex h ib ited b y th e potassium surface a fter a glow discharge in hydrogen a t low pressure is due to interspersion of potassium in potassium hydride. T he investigations of surface stru c tu re by electron reflexion lead to th e values 7-3 volts for th e m ean inner p o te n tia l of potassium a n d 5-4 A. ¿0-1 for th e lattice co n sta n t of potassium

hydride (cubic lattice). W . Go o d.

Q u a n t u m d y n a m ic s of th e e le c tr o n . E. S c h r ô -

d i n g e r (Sitzungsber. Prouss. A kad. W iss., B erlin, 1931, 12 p p .).— M athem atical.

D ir e c tio n s of e m is s io n o f p h o to - e le c tr o n s . P . Au g e r an d (Ml l e.) T. Me y e r (Compt. rend., 1931, 1 9 2 , 672—673).

E l a s t i c s c a t t e r i n g of s lo w e le c tr o n s i n a r g o n . E . C. Bu l l a r d an d H . S. W . Ma s s e y (Proc. R oy.

Soe., 1931, A, 1 3 0 , 579—590; cf. R am sauer an d

K o llath , A., 1930, 269, 1495).—W ith th e o bject of o btaining fu rth e r in sig h t in to th e R am sau er effect, experim ents have been carried o u t in w hich th e an g u lar d istrib u tio n of slow electrons (velocities from 4 to 40 volts) scattered elastically in argon have been m easured over th e an g u lar range 15— 125°. S c a tte r­

ing curves are obtain ed showing pronounced m axim a an d m inim a. L . L. Bir o u m s h a w.

D if f r a c tio n of e le c tr o n s i n m e r c u r y v a p o u r . F . L. Ar n o t (Proc. R oy. Soc., 1931, A, 1 3 0 , 655—

667; cf. preceding a b stra c t).— B y m eans of th e a p p a ra tu s previously described (A., 1930, 6), th e ang u lar d istrib u tio n s of electrons of 15 different velocities (8-6— 800 volts) scattered in m ercury v ap o u r have been m easured over a n angular range of IS —

126°. L. L. Bir o u m s h a w.

S c a t t e r i n g of h ig h - v e lo c ity e le c tr o n s i n h y d r o ­ g e n a s a t e s t of th e i n t e r a c t i o n e n e r g y of tw o e le c tr o n s . H . C. Wo l fe (Physical R ev., 1931,

[ii], 37, 591— 601).— M athem atical. N . M. Bl i g h. A b s o r p tio n c o e ffic ie n t f o r s lo w e le c tr o n s in t h a l l i u m v a p o u r . R . B. Br o d e (Physical R ev., 1931, [ii], 37, 570—573; cf. A., 1930, 657).—T he absorption coefficient w as obtained b y sending a beam of electrons th ro u g h th alliu m v ap o u r a n d m easuring th e decrease in in te n sity of th e beam as a fun ctio n of th e v ap o u r p re ssu re ; p lo tte d ag ain st th e velocity of th e electrons th ere is a m inim um a t 1-4 an d a m axim um a t 4-5 volts. IST. M. Bl ig h.

L ib e r a tio n of e le c tr o n s b y c o llis io n w ith p o s itiv e io n s a t lo w g a s p r e s s u r e s . I I . S ilv e r , a lu m in iu m , p o t a s s i u m , s o d iu m , a n d m e r c u r y in h y d r o g e n , n itr o g e n , m e r c u r y v a p o u r , a n d r a r e g a s e s . A. Gü n t h e r-Sc h u l z e an d F . Ke l l e r (Z.

P hysik, 1931, 68, 162— 173).—The yield of electrons due to collision in hydrogen an d nitrogen increases w ith th e am o u n t of gas, b u t in th e rare gases is inde­

p e n d e n t of th is factor. I t increases w ith th e energy of collision, b u t above 1000 v o lts th e increase is small. I n general th e n u m b er of electrons se t free is g reater th e sm aller is th e m ass of th e ion colliding.

A. J . Me e. P y r o m e t r y a n d t h e r a d i a t i o n p r o p e r t i e s of h e a te d m e t a l s . R . Ha s e (Proc. P hysical Soc., 1931, 43, 212—216).— I t is experim entally shown th a t th e m axim um of th e energy e m itted b y a ra d ia tin g m etal is proportional to th e square ro o t of th e specific resistance a t zero a n d to th e six th pow er of th e absolute te m p eratu re, in stead of to th e fifth pow er as in th e case of a black body. The resu lts are in good agreem ent w ith theoretical predictions, based on M axwell’s th eo ry . W . E . Do w n e y.

D ir e c t m e a s u r e m e n t of m o le c u la r v e lo c itie s . I. F . Za r t m a n (Physical R ev., 1931, [ii], 37, 383—

391; cf. E ldridge, A., 1928, 108; L am m ert, A., 1929, 970).—A m ethod is described in w hich m ole­

cules condense on a glass p late fasten ed to a rapidly revolving cylinder. A stream of bism uth molecules having velocities of 168— 673 m . per sec. w as spread over a b a n d 3 cm . w id e ; th e v ap o u r w as found to con­

sist of 40% B i an d 60% Bi2 a t 851°. N . M. Bl ig ii. P o s itiv e io n e m is s io n f r o m t h i n p l a t i n u m f ilm s o n g la s s . R . A. Ne l s o n (Rev. Sei. In str.,

(5)

G E N E R A L , P H Y S IC A L , A N D IN O R G A N IC C H E M IS T R Y . 5 4 3

1931, [ii], 2, 173— 179; cf. th is vol., 26).—A n apjjar- atu s for th e p ro d u ctio n of N a + or K + ions from a n eq uipotential surface of controlled therm ionic ac tiv ity is described. T he positive ion c u rre n t from platinised glass w as g rea ter th a n th a t from u n ­ platinised glass a t th e sam e tem p eratu re. A new effect, th e existence of a m axim um a n d m inim um in the positive therm ionic cu rren t-electro ly sis p o ten tial curves, w as m ore pronounced w ith th e eq u ip o ten tial

em itter. N . M. Bl i g h.

I n te r c h a n g e of t r a n s l a t i o n a l , r o t a t i o n a l , a n d v ib r a tio n a l e n e r g y in m o le c u la r c o llis io n s . C.

Ze n e r (Physical R ev., 1931, [ii], 37, 556— 569).—

M athem atical. T he change in in tern al energy of molecules on collisions is in vestigated. T he in te r­

change of v ib ratio n al a n d tra n sla tio n a l energy for a collision in line of a n a to m a n d diatom ic molecule, and th e interchange of ro ta tio n a l a n d tran slatio n al energy for th e collision in a p lane of an ato m an d a rigid sym m etrical molecule are exam ined.

N . M . Bl i g h. A t. w t. of o x y g e n . R e la tiv e a m o u n t s of th e th r e e is o to p e s . R . Me c i c e an d W . H . J . Ch i l d s

(Z. P h y sik , 1931, 68, 362— 377).—T he in ten sities of absorption of th e A 0 160 1G b an d d ue to a few m etres of a ir a n d of th e A 'O 10O18 b and d ue to th e e a r th ’s atm osphere were com pared, a n d th e isotope ra tio 0 16: 0 17: 0 1S w as found to be G 30±20 : 0-2 :1 . The at. w t. of oxygen is accordingly 16-0035± 00003, and th e m ass spectrographic w t. of a n elem ent is 1-00022 tim es its chem ical a t. w t.

A. B. D . Ca s s i e. A t. w t. of io d in e . A n a ly s is of io d in e p e n to x id e . G. P . Ba x t e r a n d A. Q. Bu t l e r (J. A m er. Chem.

Soc., 1931, 53, 968— 977).—T herm al decom position of iodine p entoxide produced b y d eh y d ra tio n of iodic acid affords th e iodine : oxygen ra tio 3-17262, com ­ pared w ith 3-17330 deduced from accepted a t. w t.

The discrepancy is a ttr ib u te d to abnorm al com position of the pentoxide. J . G. A. Gr i f f i t h s.

C h lo rin e is o to p e of n u c l e a r m a s s 39. G.

He t t n e r a n d J . Bö h m e (N a tu rwiss., 1931, 19, 252).

—An ex am ination of th e ro ta tio n -v ib ra tio n lines of hydrogen cliloride in th e v icin ity of 1-7 g has dem on­

strated th e existence of a chlorine isotope w ith th e nuclear m ass 39 (cf. B ecker, A., 1930, 393).

R . Cu t h i l l. C o n n e x io n b e tw e e n r e la tiv e p r o p o r t i o n s of iso to p es a n d c o r e m o m e n t s of c e r t a i n e le m e n ts . H. Sc h ü l e r an d J . E . K e y s t o n (Z. P h y sik , 1931, 68, 174— 177).—A q u a n tita tiv e relatio n betw een th e relative proportions of th e isotopes of c e rtain elem ents

«an be found if th e isotopes arc considered as even and odd. T his classification is related to th e nuclear Moment for a given ato m , a n d in consequence th e relative proportions of isotopes are also re la te d to

this q u a n tity . A. J . Me e,

R a d io a c tiv e d e c o m p o s itio n a p p e a r a n c e s in flu o rite. L. Go e b e l (Z. K rist., 1931, 76, 457—4 5 S ;

«f- Leitm eier, A., 1926, 367).— The coloration of fluorite is duo to radioactive action liberating fluorine which escap es/leav in g free calcium in colloidal form . When th e particles of calcium are sm allest, a green

colour re su lts; blue, violet, or colourless m a terial arises from progressively larger particles. Changes in size of the particles, an d consequently in colour, can be effected by h e a t, pressure, or rad iatio n , a n d the changes cap be followed b y th e ultram icroscope.

T his change m ay, how ever, be due to th e lib erated calcium ato m s form ing a definite lattice, a view su p p o rted b y th e detectio n in a n X -ra y p h o tograph of fa in t indications of a line corresponding w ith th e calcium lattic e. C. A. Si l b e r r a d.

A b s o r p tio n cf (3-rays b y m a t t e r . G . Fo u r n i e r

an d M. Gu i l l o t (Compt. rend., 1931, 1 9 2 , 555—

557).— B y a slight m odification of th e m eth o d p rev ­ iously described (cf. A ., 1926, 8S0) th e following m ass ab so rp tio n coefficients (¡i/p) fo r [3-rays from radium - D -\-li hav e been d e te rm in e d : boron 16-4; ph o s­

phorus, w hite (solid or liquid) 20-9, red 20-2; v a n a d ­ ium 19-7; arsenic 20-9; brom ine 23-0; sodium 16-8.

C. A. Si l b e r r a d. N u m b e r a n d i n t e r n a l a b s o r p tio n of y - r a y s f r o m r a d iu m - 7 ) . E . St a h e l (Z. P hysik, 1931, 68, 1— 11; cf. th is v o l.,,2 S l).—T he n u m b er of (3-rays e m itte d b j' in te rn a l conversion of the- 263 X u n its y -rad iatio n from d isin teg ratio n of 100 radium -D nuclei w as determ ined b y m eans of a Geiger counter.

A ssum ing a n in te rn a l conversion coefficient corre­

sponding w ith 97 % absorption, th is gives a n emission of ono y -q u an tu m b y each d isintegrating nucleus.

A. B. D . Ca s s i e. I n i t i a l c h a r g e of t h e r e c o il a t o m s p r o d u c e d d u r i n g th e d i s i n t e g r a t i o n of r a d o n . W . Mu n d, P . Ca p r o n, an d J . Jo d o g n e (Bull. Soc. chirn. Belg., 1931, 40, 35—74).— T he in itia l charge on th e recoil ato m s of rad o n is p o sitiv e a n d approxim ates to 2e, corresponding w ith th e loss of tw o electrons. The charge originates in th e p rim a ry disintegration, an d is n o t a resu lt of subsequent collisions w ith o th er

particles. H . F . Gi l l b e.

E le c tr o n ic e n e r g y le v e ls of th e e l e m e n t s : s iz e s a n d e le c tr o n ic s t a t e s of a t o m s i n m e ta llic c r y s t a l s . W . Hu m e- Ro t h e r y (Phil. Mag., 1931, [vii], 11, 649—6 7 8 ; cf. A ., 1930, 1233).— T heoretical.

I f Z is th e atom ic n u m b er th e in terato m ic distances in th e crystals v a ry as 1/Z, l / Z 2, l / Z 3, and l / Z 5 for elem ents a t th e beginning of th e first, second, th ird , an d fo u rth periods, respectively, w hilst th e electronic energy levels v a ry linearly as Zfi, Z i , Z 6, a n d Z 10 fo r th e N 1 electrons of th e ou term o st group of electrons of th e atom ic core or ion. T his correspondence is exam ined in d etail an d p lo tte d fo r th e groups con­

cerned, an d is applied to a discussion of th e in te r­

atom ic distances in th e cry stals of th e tran sitio n al elem ents of th e long periods, an d a m eth o d is sug­

gested for determ ining th e electronic sta te s of th e atom s in th e solid crystals. I t is concluded th a t th e tra n sitio n process begins in th e solid crystals a t group V I, an d in th e free ato m s a t group I I I . F o r th e valen cy electrons i t is show n th a t in groups 0, I a , and I I a a linear relatio n exists betw een nrV and Z 23 for th e m em bers of an y one group, w here V is th e ionisation p o ten tial a n d n th e electron q u an tu m num ber. I n group 0 th e interatom ic distances agree w ith th e law of th e sub-groups d /n —{l/a Z )x, prev ­

iously deduced. N . M. Bl i g h.

(6)

5 4 4 B R IT IS H CH EM ICA L A B STRA CTS.— A .

Statistics of nuclei. P. Eh r e n f e s t an d J . R.

"OpSe n h e im e r (Physical R ev., 1931, [ii], 3 7 , 333—

338)% pM atheniatical. N. M. Bltgh.

Statistics of com plex system s according to the new quantum m echanics. J . W i g h e r (M ath.

N aturw iss. Anz. U ngar. A kad. W iss., 1929, 46, 576—

5 8 2 : Chem. Z entr., 1930, ii, 3502—3503).

Arrangem ent of protons and electrons in the atom ic nucleus. W . M. La t im e r (J . Am er. Chem.

Soc., 1931, 5 3 , 981— 990).—T heoretical. F ro m a consideration of th e relative abun d an ce of elem ents and of th e num ber of protons an d electrons in atom ic species th e a t. w ts. of w hich are ap p ro x im ately in teg ral m ultiples of 4, a n arra n g em en t of electrons and protons in a geom etrical space lattic e in th e atom ic nuclei consistent w ith th e num bers of “ e x tra ” electrons in th e heavier elem ents is suggested.

E ach a-particle is situ a te d a t th e corner of a te tr a ­ hedron, an d com bination of such te tra h e d ra leads to a face-centred cubic lattic e of a-particles. Since an a-particle is represented as a te tra h e d ra l arran g e­

m e n t of 4 pro to n s a b o u t an electron pair, th e insertion of a n electron p air a t each p o in t a b o u t which four sp in vectors converge, as in th e a-particle, leads to a d iam ond-type lattic e of electron pairs.

J . G. A. Gr i f f it h s.

Band spectrum of tin oxide. I. A nalysis of the vibration system s of the bluish-violet bands.

P. C. Ma h a n t i (Z. P h y sik , 1931, 68, 114—125).—

T he w ave-lengths of th e heads of bands due to tin oxide betw een 3200 an d 4600 A. were d eterm ined by a concave g ratin g , 6—18 A. p er m m . M ost of the bands were fitted to th ree system s. T he h e a t of dissociation for th e ground s ta te is 3-66J;0-l volts.

A. B . I ) . Ca s s i e.

Sim ple relations between m olecular spectra and structure. H . De s l a n d r e s (Com pt. rend., 1931, 192, 521-4525; cf. this vol., 2S3).— F u rth e r exam ples of relations betw een th e frequencies of certa in lines or bands, th e “ fu n d a m e n tal frequency ” (1062-5), an d atom ic n u m b er are given in conform ity w ith th e form ula previously deduced.

C . A . S l L B E R R A D .

Absorption spectra of aqueous solutions of the coloured ions Cu, Cr, and Co. 51. Ka h a n o-

w icz and P. Or e c c h io n i (Z. P h y sik , 1931, 68, 126—

132).—T he e x tin ctio n coefficients for infinitely d ilute electrolytic solutions containing nickel, copper, chrom ­ ium , and cobalt were determ ined th ro u g h o u t th e visible spectrum . T he p h otom etric curves show th ree phases of absorption w hich can be ascribed to molecules, free ions, and com plex ions, respectively.

A. B . D . Ca s s i e.

Absorption of light and constitution. II.

Heteropolar organic compounds. A, Bu r a w o y

(Ber., 1931, 64, [B], 462— 492; cf. th is vol., 144).—

The a bsorption of lig h t b y onium salts depends on conjugated system s. These, like those of hom opolar com pounds (loc. cit.), have polar co nstruction an d th e ir ab so rp tio n of light increases w ith th e ir length a n d degree of po larity . Positively-charged atom s function as negative term in al ato m s of th e con­

ju g a te d system s in cations. I n harm ony, th e b atho- chrom ic a ctio n increases in th e sequence X R 2< 0 - R <

S-R, hence n o t w ith th e positive, b u t ivith th e negative ch aracter. I n hom opolar com pounds an d in cations, an d in c o n tra st to th e positively-charged groups, fu rth e r uncharged groups have increased batho- chrom ic action in th e sequence 0 - R < S - R < N R 2 when th e y are in conjunction w ith th e conjugated system causing absorption, th a t is, w hen th e y are term inal m em bers of th e chrom ophore group an d consequently increase th e p olarity. I f th e y are n o t term inal m em bers of th e chrom ophoro group, th e ir hypso- chrom ic effect is strong in case of d ire ct su bstitution b u t w eak in union to a ro m atic su b stitu e n ts. The com plete spectrum of a com pound is regarded as th e re su lta n t of th e absorption bands of different chrom ophoric groups a n d isolated bands as a conse­

quence of p articu larly favoured chrom ophors. These different chrom ophors are n o t form ed in th e same molecule, b u t in different “ electron-isom eric ” mole­

cules. Sm all persistence is n o t a specific property of R bands, b u t is to be a ttrib u te d to th e presence of only a v ery sm all am o u n t of radical-like molecules in a com pound.

A ddition of acid causes p r in c ip a l^ a change in th e degree of p o la rity of th e conjugated system in so far as i t alters only th e ncgativo term in al group.

T he groups C!NH2, C!OH, C!SH arise from th e groups C:NH, CIO, C.'S. P ositively-charged ato m s have a m ore strongly bathochrom ic action a n d are therefore m ore negative th a n th e corresponding uncharged atom s. I n th e conjugated system of a cation, the m ost positive ato m in v ariab ly gives th e electron to th e anion, an d is therefore th e negative term inal atom . A ddition of a n acid molecule to an R chromo- p h o r an nihilates th e corresponding b a n d s; conse­

q u en tly R b an d s do n o t occur in th e sp ectra of cations.

The ab so rp tio n of lig h t of aci-salts or th e ir anions is a ttrib u te d to conjugated system s a n d subsidiarily to R chrom ophors. I n th is connexion, negatively- charged ato m s behave as positive groups (atom s);

in p articu lar, th e negatively-charged oxygen atom com ports itself as th e nitrogen of a n amino-group.

I t is bathochrom ic only w hen i t is th e term in al atom of a chrom ophor. I n anions in branchings of a con­

ju g a te d system,- th e positive groups O-R, S-R, N IL have a hypsochrom ic effect.

A chrom ophor is an ato m or a group which is necessary for th e occurrence of a n absorption band, in d ep en d en tly of possible su b stitu e n ts w hich merely cause displacem ent of th e bands. T h e absorption of lig h t b y organic com pounds is a ttrib u ta b le (1) to u n sa tu ra te d individual ato m s ch aracteristic for the free radicals (R chrom ophors) a n d (2) to conjugated system s, therefore groups of atom s (K chromophors).

I t is proposed to replace th e conception of “ auxo- chrom ic groups ” by “ auxochrom ic ato m s.” The la tte r are th e term in al ato m s of th e chrom ophoric groups. The ato m s 0 , S, N of th e groups O-R, S-R, N R 2 an d all negatively-charged ato m s in anions are positive auxochrom ic a to m s; th e ato m s N , O, S of th e groups CIN, CIO, CIS, N iN , NIOj to g eth e r w ith all positively-charged ato m s in cations, are negatively auxochrom ic atom s, w hereas th e uncharged carbon

ato m is am photeric. H . Wr e n.

(7)

G E N E R A L , P H Y S IC A L , A N D IN O R G A N IC C H E M IS T R Y . 5 4 5

A b s o r p tio n of s y n th e tic s p in e ls c o lo u r e d b y m a n g a n e s e a n d c h r o m iu m . K . Sc h l o s s m a c h e r

(Z. K rist., 1930, 75, 399—409; Chern. Z en tr., 1931, i, 438).

C o lo u rs of in o r g a n ic s a l t s . M. N . Sa h a an d S. C. De b (N ature, 1931, 1 2 7 , 485; cf. A., 1930, 272).—A bsorption sp e ctra of chrom ic an d ferrous chlorides o b tain ed in a vacuum furnace a t 1000—

1400° show bands a t 4100 a n d 4350 Â., respectively.

These bands are ascribed to C r+~~ an d I'V an d are due to m agnetic tran sitio n s in th e d3 a n d d6 shells. C ontinuous absorption from 3000 to 2200 A., the lim it of th e a p p a ra tu s used, is also observed a n d is ascribed to th e CT ion. L. S. Th e o b a l d.

O p tic a l c o n n e x io n b e tw e e n th e p h o s p h o r ­ escen ce of a l k a l i h a lid e s a n d s o lu tio n s of c o m p le x h a lid e s of le a d a n d th a l l i u m . H . Fr o m h e r z (Z.

Physik, 1931, 68, 233— 243).—A n extension to th e heavy m etals of earlier w ork on th e com plex halides of copper a n d silver (cf. A., 1929, 626).

A. J . Me e. C o lo u rin g a n d lu m in e s c e n c e b y B e c q u e r e l r a d ia tio n . I I I . K . Pr z i b r a m (Z. P hysik, 1931, 68, 403— 422 ; cf. A., 1924, ii, 8 5 ; 1927, 393).—

W ork on th e colouring of rock sa lt is sum m arised.

Colouring is due to tw o large classes of centres : neutralised cations, an d n eu tra l ato m s in irregular surroundings. M any different centres are d istin ­ guished, an d como u n d er one of these tw o classes.

Pressure favours d isturbance of th e cry stal lattice, and so increases th e ra te of colouring of a crystal.

Radioluminescence an d th e actio n of B ecquerel radiation were studied ; m a n y n a tu ra l m inerals owe their colour to Becquerel radiation.

A . B . D . Ca s s i e. E x a c t s o lu tio n of th e H a r r i e s - H e r t z c o llis io n p ro b le m , a n d i t s a p p lic a tio n to e x p e r i m e n t a l a r r a n g e m e n t i n R a m a n e ffe c t e x p e r im e n ts . H. Ba r t e l s an d C. H . No r d s t r o m (Z. P hysik, 1931, 68, 42— 63).—Theoretical. T he num ber of collisions suffered by an electron in trav ersin g a given th ic k ­ ness of gas is redeterm ined b y B a rte ls’ m ethod (A., 1930, 1336) in stead of th e original diffusion m ethod.

The earlier m ethod fails a t low densities of scatterin g material, w hen th e num ber of collisions depends on the direction of incidence of th e electrons. The results are applied to scatterin g of lig h t by tu rb id media, and i t is concluded th a t tu rb id m edia give no greater in te n sity of R a m a n rad iatio n th a n do clear

media. A. B. D. Ca s s i e.

T r a n s itio n p r o b a b i l i t y i n th e R a m a n e ffe ct.

L. S. Or n s t e i n an d J . Re k v e l d (Z. P h y sik , 1931, 68, 257—259).— A form ula is developed for th e relation betw een th e intensities of Stokes and an ti- Stokes lines. T here is some ground for a general formula for th e p ro b ab ility of a transition.

A. J . Me e. R a m a n s p e c t r u m of h y d r o g e n p e r o x id e . S.

Ve n k a t e s w a r a n(N ature, 1 9 3 1 ,1 2 7 ,4 0 6 ) .A R am an frequency of 875 accom panied by a w eak com ponent at 903 c m r1 has been observed in th e R am a n spectrum of an aqueous solution of M erck’s perhydrol. O ther diffuse bands have been obtained.

L. S. Th e o b a l d.

M o d ifie d s c a t t e r i n g b y h y d r o g e n h a lid e s . E . 0 . Sa l a n t a n d A. Sa n d o w (Physical R ev., 1931, [ii], 37, 373— 378; cf. W ood, A ., 1930, 978).—

R a m a n lines of gaseous hydrogen chloride, brom ide, a n d iodide, an d liquid hydrogen chloride and brom ide were m easured. T he shifts of th e first tw o gases agree w ith th e infra-red b a n d s; th a t of hydrogen iodide does n o t agree, an d is considered th e m ore a ccu rate d eterm in atio n of th e (0,1) H I v ib ratio n al tran sitio n . In ten sities of scatterin g are in th e reverse order of those of absorption, in agreem ent w ith th e H ill-K em b le th eo ry of scatterin g by diatom ic gas molecules (cf. A., 1929, 865). T he lines scattered by th e liquids differ in appearance from , and show sm aller shifts th a n , those of th e g a se s; th e differences in th e shifts are too large to be a ttrib u te d to a L o re n tz - Lorenz force, an d a re evidence of quantum -m echanical m olecular interactio n s (cf. B reit and S alan t, A., 1930,

1496). N . M. Bl i g h.

R a m a n e ffe c t in w a t e r a n d i n s o m e s o lu tio n s . R . Br t t n e t t i an d Z. Ol l a n s (A tti R . Accad. Lincei, 1930, [vi], 12, 522— 529).—The effect w as studied w ith w ater, w ith solutions of n itric acid, of n itra te s of sodium , am m onium , potassium , barium , alum in­

ium , lan th an u m , cerium , an d th o riu m , of h y d ro ­ chloric acid, a n d cerium chloride. The effect of th e n itra te ion is to cause depolym erisation of th e w ater, w hich, however, does n o t become hom ogeneous.

E. G. Tr y h o r n. R a m a n e ffe c t a n d p r o b l e m s of c o n s titu tio n . I I . C y a n o -c o m p o u n d s . A. Da d i e u (Ber., 1931, 64, [B], 358— 361; cf. A., 1930, 1162).—M easure­

m en ts of th e R a m an sp ectra of th e following com ­ pounds are re c o rd e d : acetonitrile, o-toluonitrile, hydrogen an d potassium cyanide, m ethyl- an d ethyl- carbylam ine, phenyl- a n d a-naphthyl-carbim ide, eth y l th io cy an ate, eth y l-, fsobutyl-, phenyl-, an d p-tolyl- thiocarbim ide. T he presence of a treble linking is established in th e thiocarbim ides, to w hich th e con­

s titu tio n R\NT<^!? is therefore ascribed, th u s indicating a stru c tu ra l difference from th e carbim ides, R-NICIO.

T he d a ta for th e carbylam ines do n o t accord w ith eith er of th e classical stru ctu res, b u t are in te rp re te d b y th e form ula R -N = C ; a n analogous co n stitu tio n appears ap p ro p riate to carbon m onoxide, fulm inic acid, an d all o th er com pounds containing “ b iv alen t ” carbon. I n hydrocyanic acid th e iso-form is calculated to be p resen t to th e e x te n t of a b o u t 0-5% . H . Wr e n.

R a m a n s p e c t r a of s o m e o r g a n ic h a lid e s . C. E . Cl e e t o n an d R . T. Du f f o r d (Physical R ev., 1931, [ii], 37, 362— 372).—R am an spectra obtained b y helium ex citatio n (cf. W ood, A ., 1929, 741) were photographed, a n d resu lts ta b u la te d and discussed for 19 sim ple organic halides n o t previously reported, including m agnesium m eth y l brom ide and iodide and ethylidene chloride an d iodide. I t is shown th a t in m an y cases th e observed frequencies can be expressed in term s of fo u r assum ed fundam entals (five in th e cyclic com pounds), tw o of w hich are n o t observed.

T he application of available th eo ry is discussed.

N . M. Bl i g h. R a m a n lin e s of c i/c /o p ro p a n e a n d v a le n c y p r o ­ p e r t i e s of s o m e o r g a n ic c o m p o u n d s . R . C. Ya t e s

(8)

546 B R I T I S H C H E M IC A L A B S T R A C T S .— A .

(Physical R ev ., 1931, [ii], 37, 616—618; cf. A., 1930,. 1349).— M athem atical. T hree fu n d am en tal w ave-num bers for cyclopropane a re calculated from th e equations of m o tio n of a system of th ree particles v ib ra tin g in a plane. T he c h ara cter of a single linking actin g a d ja c e n t to a double linking in acet- aldehyde an d to a trip le linking in aceto n itrile is

studied. N . M. Bl i g h.

M ass spectra of glasses, salts, and m etals and construction of a circular mass-spectrograph..

H . Mitraw kxn' (Ann. P hysik, 1931, 8, [v], 353— 432;

cf. th is vol., 407).— T he m ethod of investigating m ass sp ectra is described. A stro n g em ission of sodium , potassium , m agnesium , calcium , a considerable em is­

sion of silicon an d oxygen, a n d a n irregular w eak emission of heavy7 m etals from L indem ann, Je n a , T hüringen, lead, u ran iu m , an d silver glass, alundum cem ent, a n d com bustion glass have been in v estig ated m ass-spectrographically7 in th e tem p e ra tu re range 900— 1600° A bs. The m echanism of th e emission appears to be due both to electrolysis a n d to ionisation b y im pact. Mass spectrogram s of alum inium ph o s­

p h a te , K u n sm a n ’s m ix tu re, tu n g sten , p latin u m , an d copper were also stu d ied . W . Go o d.

Transparency of glasses to ultra-violet rays.

P. Gi l a r d, P . Sw i n g s, a n d A. Ha u t o t (Bull. A cad, roy. Belg., 1931, [v], 17, 235— 248).—T he effect of differing concentrations of co n stitu en ts of glasses on th e ir ultra-v io le t transm ission is exam ined. T ran s­

p arency increases w ith silica c o n te n t, b u t th ere is a n o p tim um concentration, depending on th e o th er substances present. T he co n centration of lime has little effect on th e tran sp aren cy . Increase in barium oxide o r alum ina is fa v o u ra b le ; increase in potassium is m ore favourable th a n a corresponding increase in sodium co ncentration. T he addition of boron trioxide ex ten d s th e tra n sp a ren cy . A. J . M ee.

Electrolytic valve action. I. Tantalum oxide layer. A. Gü n t h e r- Sc h u l z e a n d H . Be t z (Z.

P hysik, 1931, 68, 145— 161).— E x p e rim en t shows th a t th e layer responsible for valve actio n in th e case of ta n ta lu m consists of a com pact non-porous layer of T a 20 5. T he activ e layer has th e sam e dielectric co n sta n t when in th e electrolyte as w hen in th e dry7 s ta te , a n d th is value is know n. T his fact m a y be utilised to determ ine th e thickness of th e layer, and it is found th a t th is a m o u n ts to 82 m g w hen th e lay er is produced by a voltage of 100.

A. J . Me e.

Electric conductivity of liquid hydrocarbons in thin layers. L. Br ü n in g iia u s (J. P h y s. R adium . 1931, [vii], 2, 69— 85).-—A m ore d etailed account of w ork alread y n o ted (th is vol., 285).

M echanism of the “ e le c tr ic ” discharge in solid insulators. I. II. A. v o n Hi p f e l (Z.

P hysik, 1931, 67, 707—724; 68, 309— 324).—T he p a th s of electrons in cry stals during electrical d is­

charges were stu d ied . R esults suggest th a t th e p o te n tia l v ariatio n s giving m echanical stre n g th to a cry stal also determ ine its electrical resistance.

A. B . D . Ca s s i e.

Reciprocal relations in irreversible processes.

I. L. On s a g k r (P hysical R ev., 1931, [ii], 37, 405

426).—M athem atical. T herm oelectric phenom ena, transference phenom ena in electrolytes, an d h e a t conduction in a n anisotropic m edium are considered as exam ples of coupled irreversible processes, and a general class of reciprocal relatio n s is deduced by a new th eo retical tre a tm e n t from th e principle of microscopic reversibility. N . M. Bl i g h.

E .M .F . of dielectrics. K. La r k- Ho r o v it z

(N ature, 1931, 127, 440).— Previous w ork by7 the a u th o r is discussed. L. S. Th e o b a l d.

Dielectric constant and electric m om ent of som e am ines. P . N. Gh o s h a n d T. P. Ch a t t e r j e e

(Physical R ev., 1931, [ii], 37, 427— 429).— U sing a heterodyne n u ll-b eat m eth o d (cf. M ahanti, A., 1930, 841) th e dipole m om ent x lO 18 for m ethyl-, dim ethyl-, trim eth y l-, ethyl-, diethyl-, a n d trieth y l-am in es gave th e values 0-99, 0-90, 0-82, 0-99, 0-90, an d 0-82 e.s.u., respectively. V alues of th e dielectric co n sta n t are also given, and, except in th e case of m ethylam ine, increase w ith th e b. p. of th e com pound. T he polar groups N H ,, N H , an d N in th e respective am ines are mainly7 responsible for th e developm ent of th e dipole m om ent of th e molecule. N . M. Bl i g h.

Dielectric constant of w ater as determined by a resonance method. E . P . Li n t o n a n d 0.

Ma a s s (J. Am er. Chem. Soc., 1931, 53, 957— 964).—

Sources of error in th e m eth o d of C uthbertson and M aass (A., 1930, 523) hav e been investigated. With liquids of high dielectric c o n stan t, results are best o btain ed w ith a liigh-power oscillating circuit per­

m ittin g th e determ in atio n of th e resonance point b y m eans of th e harm onic in stead of th e fundam ental.

Provided th e co n d u ctiv ity of th e m edium is less than a certain value (4 x 10~° ohm -1 in th e case of water), th e resonance p o in t is indep en d en t of th e conductivity.

T he dielectric co n stan ts a t 25° are : e th e r 4-255, ethylene dichloride 10-38, w ater 79-2, a n d hydrogen peroxide a t 0° 93-5 (cf. loc. cit.).

J . G. A . Gr e f f it h s.

Dependence of the m olecular polarisation of gaseous aß-dichloroethane on temperature. R-

Sä n g e r (Helv. phys. A cta, 1930, 3, 461— 463; Chem.

Z entr., 1931, i, 229).— A lecture (cf. th is vol., 147).

A. A. El d r i d g e.

Variations w ith tem perature and frequency of dielectric loss in a viscous m ineral insulating oil.

H . H . Ra c e (Physical R ev., 1931, [ii], 37, 430—

446).— F ro m m easurem ents of dielectric loss using a n open q u a rtz insulated cell over a w ide range of frequency a n d tem p e ratu re, D ebye’s th e o ry of polar molecules has been ex ten d ed to give sim ple expres­

sions for conditions of m axim um loss p er cycle.

N . M. Bl i g h.

Theory of dielectrics. J . I I . J . Po o l e (Phil- Mag., 1931, [vii], 11, 995— 996).

Mol. volume and density at the absolute zero.

G. L, Ch a b o r s k i (Bui. Chim. p u ra appl., B ukarest, 1929, 31, 53—6 6 ; Chem. Z entr., 1930, ii, 1046).—

By7 th e use of Longinescu a n d C haborski’s “ molar co n centration ” C m —1000djM equations are derived fo r evalu atin g th e mol. volum e a n d d e n sity a t 0°

A b s .: F 0= 1000[Cth0 ; d0= M C m 0[1000; Cm0= C m f 1000(v—b)/b-, where v —b is th e covolum e an d b is

Cytaty

Powiązane dokumenty

U se of antim ony electrode in the electrom etric determ ination of j&gt;H- T. Electrodes obtained by electrolytically coating a P t rod with Sb gave gradually

Cancerous tissue and rat’s brain tissue both show an aerobic lactic acid (I) content higher than the normal.. The lessened respiration in the diseased tissue

ferometer with the aid of standard reference mixtures. The combined weight of the two esters in the mixture was then found by difference, and then- individual proportions

electrodialysis. displaced by the no. of adsorbed org. compound, but is proportional to the no. It is therefore concluded that there is no sp. poisoning of the centres

321— 322° (from naphthalene and the acid chloride in presence of carbon disulphide and aluminium chloride), is treated with manganese dioxide in sulphuric acid

H. Influence of pressure on the conductivity of solutions of acids. A t constant temperature the percentage increase of conductivity, regarded as a function of

T he iron in th e ash is d eterm ined by dissolving in hydrochloric acid, adding potassium perm anganate solution u n til pink, and m aking alkaline with sodium

ing after precipitation of the sol by prolonged arcing, whilst the fate of the cation of th e original solution has been followed by titratio n or by