• Nie Znaleziono Wyników

The effect of a nozzle on steering characteristics

N/A
N/A
Protected

Academic year: 2021

Share "The effect of a nozzle on steering characteristics"

Copied!
14
0
0

Pełen tekst

(1)

THE EFFECT OF A N O Z Z L E O N STEERING CHARACTERISTICS*)

by

L . A . v a n G u n s t e r e n * " ) a n d F . F . v a n G u n s t e r e n ' * ' ) .

A b s t r a c t .

A method is presented f o r p r e d i c t i n g how the s t e e r i n g c h a r a c t e r i s t i c s of a ship are affected by f i t t i n g a f i x e d nozzle. The presence of a nozzle u p s t r e a m appears to have a s i g n i f i c a n t e f f e c t on the r u d d e r f o r c e s . F u l l - s c a l e manoeuvring t r i a l s c a r r i e d out w i t h two t w i n - s c r e w tugs, one w i t h open p r o p e l l e r s and the other equipped w i t h nozzles, c o n f i r m the p r e d i c t e d t r e n d s . It is concluded that p r o p e l l e r , nozzle and rudder should be designed i n an integrated way to ensure that an o p t i m u m solution is obtained w i t h r e g a r d to both p r o p u l s i v e and s t e e r i n g q u a l i t i e s .

Introduction.

A f i x e d nozzle not only a f f e c t s the p r o p u l s i v e c h a r a c t e r i s t i c s of a ship but also i t s s t e e r i n g p r o p e r t i e s . A c c o r d i n g l y , when a nozzle is considered f o r i t s w e l l k n o w n p r o p u l s i v e f e a t u r e s -f or instance, an increase i n t h r u s t at low speeds-i t speeds-is speeds-i m p e r a t speeds-i v e to pay c a r e f u l attentspeeds-ion to the e f f e c t this w i l l have on the manoeuvring cha-r a c t e cha-r i s t i c s o f t h e ship. The pucha-rpose of this papecha-r i s to provide a means of p r e d i c t i n g how s t e e r i n g c h a r a c t e r i s t i c s w i l l be a f f e c t e d by f i t t i n g a nozzle, assuming the behaviour without a nozzle to be already known. P r o p e l l e r , nozzle and rudder can then be designed i n an integrated manner, taking account of both p r o p u l s i v e and manoeuvring r e -quirements.

Although the theory can also be used to p r e d i c t t r a n s v e r s e f o r c e s on s t e e r i n g nozzles w i t h or without s t a b i l i z e r s , we s h a l l confine ourselves here to f i x e d nozzles. F r o m a manoeuvring point of v i e w , the f i t t i n g of a nozzle i s comparable to i n c r e a s i n g the l a t e r a l area of skegs and the l i k e , t h i s having an adverse e f f e c t on the t u r n i n g d i a -m e t e r and a f a v o u r a b l e influence on response t i m e and s t a b i l i t y on a s t r a i g h t course.

T h i s can b e and g e n e r a l l y should b e c o m -pensated f o r by decreasing the l a t e r a l area of the a f t e r b o d y , p a r t i c u l a r l y d i r e c t l y i n f r o n t of the nozzle. A second e f f e c t of the nozzle is that i t influences the f l o w at nearby l i f t i n g s u r f a c e s , especially the f l o w and consequently the f o r c e s on the rudder downstream.

*) Paper presented at the Second International Tug Conference, London, October 25 - 28, 1971.

•*) Lips N . V . Propeller Works, Drunen, Holland. ***) Sea Transport Engineering N . v . , Amsterdam, Holland.

Since i t is not our intention to p r e d i c t the actual manoeuvring c h a r a c t e r i s t i c s , but only to d e t e r -mine the d i f f e r e n c e s i n s t e e r i n g c h a r a c t e r i s t i c s due to the presence of a nozzle, a r e l a t i v e l y s i m p l e m a t h e m a t i c a l model can be used, r e f e r e n c e [ 1 ] . The m o t i o n i n the h o r i z o n t a l plane is d e s c r i b e d by the l i n e a r i z e d equation of m o t i o n r e g a r d i n g moments w i t h respect to the centre of g r a v i t y (Nomoto's equation). The moments are s p l i t up i n t o :

1. Moments due to t r a n s v e r s e f o r c e s on the p r o p e l l e r -nozzle - r u d d e r c o n f i g u r a t i o n . 2. A l l other moments. A v a i l a b l e theory f o r the p r e d i c t i o n of l i f t f o r c e s on nozzles and r u d d e r s is l i m i t e d to an i s o l a t e d nozzle (without p r o p e l l e r , r e f e r e n c e [2] [ 3 ] , or w i t h p r o p e l l e r , r e f e r e n c e [4]) or r u d d e r . Since i t may be expected that coupling e f f e c t s between the nozzle and the rudder are s i g n i f i c a n t , a l i n e a r -ized theory has been developed which allows f o r these e f f e c t s . The theory is applied i n a computer p r o g r a m f o r p r e d i c t i n g l i f t f o r c e s on a n o z z l e -r u d d e -r c o n f i g u -r a t i o n at a -r b i t -r a -r y angles of attack. The r e s u l t s of calculations i n w h i c h the coupling t e r m s are d i s r e g a r d e d , are i n agreement w i t h known r e s u l t s of i s o l a t e d nozzles, r e f e r e n c e [ 3 ] , and r u d d e r s , r e f e r e n c e [ 5 ] . F u l l s c a l e m a n o e u v r -ing t r i a l s w i t h two t w i n - s c r e w tugs, one w i t h open p r o p e l l e r s and the other equipped w i t h nozzles, i l l u s t r a t e that the procedures given are indeed adequate f o r analysing how s t e e r i n g c h a r a c t e r -i s t -i c s are a f f e c t e d by f -i t t -i n g a nozzle.

(2)

Mathematical model of t u r n i n g .

hi o r d e r to p r e d i c t how t u r n i n g qualities are a f -fected by f i t t i n g a nozzle, we may describe the manoeuvre by the l i n e a r i z e d equation of moments about the centre of g r a v i t y i n the h o r i z o n t a l plane reference [ 1 ] :

I - r + Np • r = N g - 5 (1)

where:

I = mass moment of i n e r t i a , including h y d r o -dynamic e f f e c t s

r = r a t e of t u r n i n g

Ng • 5 = moment, due to the l a t e r a l f o r c e s on r u d d e r s and nozzles

NJ, • r = a l l other moments i n a steady t u r n . As explained i n the next section the r u d d e r -nozzle moment can be w r i t t e n :

Ng - 5 = C i a R - C 2 P (2)

where:

ctpj = angle of attack of the rudder

p = - OQ (p is positive i n steady turning) ajy = angle of attack of the nozzle

5 = rudder angle

If necessary, a c o r r e c t i o n f o r the s t r a i g h t e n i n g e f f e c t of the hull can be i n t r o d u c e d by taking a s m a l l e r value f o r C3 in equation (4) than f o l l o w s f r o m equation (5).

F o r the present purpose, X p c a n b e a p p r o x i m a t e d by:

X p = 0 . 75 L (6) where:

L = length of ship

Substitution of equations (3), (4) and (2) into equation (1) gives:

] r+r =[ „ . , „ „ . „ ] 5 Nr + ( C i + C 2 ) C 3 N r + ( C i + C2)C3

(7) T h i s is equivalent to Nomoto s equation:

T r + r = K 5 (8) where: I Nj, + ( C i + C 2 ) Cg (9) A c c o r d i n g to F i g u r e 1 , we have: 5 = aj^ + P (3)

The angle of attack at the rudder or r u d d e r -nozzle c o n f i g u r a t i o n i s p r o p o r t i o n a l to the r a t e of t u r n :

(4) The c o e f f i c i e n t C3 depends on the distance, X p , f r o m the r u d d e r - n o z z l e c o n f i g u r a t i o n to the pivotal point at which the centreline of the ship is perpendicular to the radius of t u r n , and on the axial velocity U at the r u d d e r n o z z l e c o n f i g u r a -t i o n , including -the e f f e c -t of -the p r o p e l l e r :

X p

^ 3 - I T (5)

K = C l (10)

Nr + ( C i + C 2 ) C3

When the rudder is moved f r o m z e r o to a c o n -stant angle SQ, the solution of equation (8) gives the t u r n i n g response as a f u n c t i o n of t i m e (see F i g u r e 2) :

- t / T

r = K 5 o ( l - e ) (11)

Figure 1. Definition of symbols.

The t u r n i n g m o t i o n is d e t e r m i n e d by two q u a n -t i -t i e s :

K , r e p r e s e n t i n g the t u r n i n g capacity

i . e . the r a t e of steady t u r n per degree of rudder angle, w h i c h is r e c i p r o c a l to the t u r n -ing d i a m e t e r .

T , r e p r e s e n t i n g the response t i m e

i . e. the t i m e taken to r e a c h 63% of the steady r a t e of t u r n .

A method w i l l now be given f o r c a l c u l a t i n g these two t u r n i n g q u a l i t i e s , ' t u r n i n g c a p a c i t y ' and 'response t i m e ' , f o r any r u d d e r n o z z l e c o n -f i g u r a t i o n considered, assuming that K or T i s known f o r an e x i s t i n g r u d d e r n o z z l e or n o n -shrouded c o n f i g u r a t i o n on a s i m i l a r h u l l .

(3)

T u r n i n g c a p a c i t y .

If the t u r n i n g capacity of a c e r t a i n rudder -nozzle c o n f i g u r a t i o n , K , is known the t u r n i n g capacity of a new r u d d e r - n o z z l e c o n f i g u r a t i o n . K . canbe calculated by applying equation ( 1 0 ) to both c o n f i g u r a t i o n s .

For the new c o n f i g u r a t i o n we have;

K

C l

(.12)

N,, + ( C i + C2) Cg

The t o t a l l e s s - r u d d e r - n o z z l e - m o m e n t coef¬ f i c i e n t , N j , , and Cg may be assumed to be i n -dependent of the rudder -nozzle configurations , at least f o r a f i s h i n g vessel h u l l design, r e f e r e n c e

[ 5 ] :

N , = N ,

C3 "C3

( 1 3 )

( 1 4 )

If necessary, c o r r e c t i o n s canbe introduced f o r d i f f e r e n c e s in hull design. The new t u r n i n g capa-city is obtained by substitution of equations ( 1 0 ) and ( 1 2 ) into equation ( 1 3 ) ;

-I K = K [ -_ -_

C l + K i Cg ( C l + Cg) - Cg ( C l + C2) i The c o e f f i c i e n t s C i and C2 can be calculated f o r both configurations w i t h the method given i n the next section.

R e s p o n s e t i m e .

The response t i m e can be calculated f o r a new r u d d e r - n o z z l e c o n f i g u r a t i o n f r o m one of the two known t u r ning q u a l i t i e s , K or T of a c e r t a i n c o n -f i g u r a t i o n by substitution o-f equation (7) or ( 8 ) into equation ( 1 3 ) , w h i c h gives;

If T is known; f = T [ ] ( 1 6 ) I + T i C g ( C i + C2) - C g ( C i + C 2 ) l If K i s known; I K C l + K ICg ( C l + C2) - Cg ( C l + C2)! ( 1 7 )

For the qualitative p r e d i c t i o n of the response t i m e , the mass moment of i n e r t i a is assumed to be independent o f t h e rudder-nozzle c o n f i g u r a t i o n .

R u d d e r - n o z z l e f o r c e c o e f f i c i e n t s ( C l , C 2 ) .

The r u d d e r - n o z z l e moment can be w r i t t e n as; Ns - S = C L , ^ ^ ^ • y . p U 2 ( D l + b c ) • X f ( 1 8 ) i n which; ' L T O T ^R L D (19) V , p U 2 ( l D + b c )

l i f t f o r c e on the rudder (positive i n t u r n i n g c i r c l e ) .

l i f t f o r c e on the nozzle (negative i n t u r n i n g c i r c l e ) . 1 = length of nozzle. D = diameter of nozzle, b = height of r u d d e r , c = chord length of r u d d e r . X f = distance f r o m the r u d d e r - n o z z l e f o r c e to the centre of g r a v i t y of the ship. U = velocity at rudder -nozzle c o n f i g u r a t i o n

including e f f e c t of p r o p e l l e r (see next section).

P = density.

The f o r m u l a f o r C^^.^^^ can be w r i t t e n i n the - ] ( 1 5 ) f o r m ; C L T O T " ^ ""1^^ """o " ^ i " R ^ where; d C LR be d C LD bc + l D H I D d a j 3 b c + l D ( 2 1 ) ( 2 2 ) d C Here- LR d a (b/c) and d C LD d a (1/D) are the l i f t D

gradients f o r the isolated r u d d e r and nozzle r e -s p e c t i v e l y , and can be obtained f r o m r e f e r e n c e -s [ 5 ] and [ 3 ] . The c o e f f i c i e n t s a i and b i r e p r e s e n t down-wash t e r m s due to the i n t e r a c t i o n between nozzle and r u d d e r . The i n f l u e n c e of the d o w n -s t r e a m l i f t i n g -surface on the u p -s t r e a m l i f t i n g surface i s s m a l l , but the r e v e r s e i s not the case. Consequently, b i may be neglected i n approximate c a l c u l a t i o n s . The c o e f f i c i e n t a i depends on the aspect r a t i o of the duct and the distance to the r u d d e r , but the influence of both these p a r a m e t e r s is s m a l l (see Table 1 ) . A c c o r d i n g to equations

(4)

Table 1

Down-wash coefficients a^ and bi-Fiudder aspect ratio

b/c =1. 52 b/D =1. 00

Nozzle aspect ratio

1/D ^1

.40 . 73 . 0945 2 a / D = .1183 . 50 . 80 . 0935 . 60 . 86 . 0905 2a/D = l . 00 . 50 . 85 . 020

( 2 ) , (18) and ( 2 0 ) the c o e f f i c i e n t s C i and C2 a r e : C i = X f • y , p u 2 ( l D + b c ) ( a o + b o b i ) - N R ( 2 3 ) C 2 = X f • V . p U 2 ( l D + bc)(bo-aoao) • N Q ( 2 4 ) where; N R = number of r u d d e r s N Q = number of nozzles r . K ^ . ( l . -''s

^

^

Figure 2. Turning rate as a function of time.

P r e d i c t i o n of l i f t forces on rudder and n o z z l e .

In the t h e o r e t i c a l p r e d i c t i o n of the t r a n s v e r s e f o r c e s on p r o p e l l e r , nozzle and r u d d e r , the f o l l o w i n g assumptions are made (see also r e f -erence [ 7 ] ) :

- The f l u i d i s i n c o m p r e s s i b l e and n o n - v i s c i d . - Body f o r c e s are neglected.

- The f l o w i s steady.

- Thickness e f f e c t s may be neglected.

F o r our purpose we may neglect the p r o p e l l e r -nozzle i n t e r a c t i o n and use the s u p e r p o s i t i o n model. Then the l i f t of the duct i s o v e r - e s t i m a t e d , but t h i s i s compensated f o r by neglecting the

t r a n s v e r s e f o r c e on the p r o p e l l e r , thus y i e l d i n g an approximately c o r r e c t t o t a l l i f t (see r e f e r e n c e

[ 4 ] ) .

This reduces the p r o b l e m to the p r e d i c t i o n of the l i f t f o r ces on a nozzle without p r o p e l l e r at an angle of attack a-^ (= - (3) due to the yaw and d r i f t of the ship, and a r u d d e r at an angle of attack O R , w h i c h r e p r e s e n t s the rudder angle c o r r e c t e d f o r the e f f e c t of yaw and d r i f t . The m a i n s t r e a m v e l o c i t y U is taken to be; U = V S ( 1 - W ) - ( 1 + F ( C T ) ) ( 2 5 ) where; Vg = speed of ship, w = wake f r a c t i o n . F (C^Y) = c o r r e c t i o n on the m a i n s t r e a m a l l o w ing f o r the a x i a l v e l o c i t y due to the p r o -p e l l e r .

The c o r r e c t i o n on the m a i n s t r e a m extends the v a l i d i t y of the method to m o d e r a t e ' p r o p e l l e r loadings. In the case of a nozzle, the v e l o c i t y f a r downstream i s taken to be r e p r e s e n t a t i v e and according to the a x i a l m o m e n t u m t h e o r y d e s c r i b -ed i n r e f e r e n c e [8] t h i s y i e l d s ; F ( C T ) = - 1 ( 2 6 ) 2 ( - 1 + V 1 + T C T ) where: C T = t h r u s t c o e f f i c i e n t ; T T C T = 9 TT o y , p U ^ - D ^ 4

T'p -- total t h r u s t of p r o p e l l e r and nozzle. T = r a t i o of p r o p e l l e r t h r u s t to t o t a l t h r u s t .

As f a r as the r u d d e r is concerned t h i s i s a good a p p r o x i m a t i o n , but w i t h r e g a r d to the nozzle approximately half t h i s value w o u l d be c o r r e c t . An estimate of the e r r o r s i n t r o d u c e d by a l l o w i n g f o r p r o p e l l e r loacUng i n t h i s r a t h e r crude way may t h e r e f o r e be made by r e c a l c u l a t i n g w i t h F

half as l a r g e as i n equation ( 2 6 ) . I t i s only i f l i t t l e d i f f e r e n c e i s found that the r e s u l t s are t r u s t -w o r t h y . I n the case of an open p r o p e l l e r -we have

(see r e f e r e n c e [ 9 ] ) :

X / R

F ( C ^ ) =V2(-1+ V l + C-p)(l + -)Fj^(x/R) V 1 + ( x / R ) 2

(5)

where:

X = downstream distance to p r o p e l l e r plane F , = f a c t o r according to F i g u r e 3

I , , . .

O -,5 - IO - 15 - 2 0

Vn

Figure 3. Factors for calculation of axial velocity U.

The l i f t f o r c e s on nozzle and r u d d e r are c a l -culated w i t h the quarter point method i n which the l i f t i n g surface is r e p l a c e d by a single, c o n -centrated bound v o r t e x at the % c h o r d point, and the l i n e a r i z e d boundary condition i s s a t i s f i e d at the % c h o r d point. In o r d e r to estimate the a c -curacy of the method, we assume i n our computer p r o g r a m that the l i f t i n g surface r e p r e s e n t i n g the r u d d e r is s p l i t up into an a r b i t r a r y number of v e r t i c a l s t r i p s w i t h a concentrated bound v o r t e x at the '4 c h o r d point, and p i v o t a l points i n which the boundary condition is s a t i s f i e d at the c h o r d point of each s t r i p . F o r the sake of s i m p l i c i t y the d e r i v a t i o n is given f o r the case of only one concentrated bound v o r t e x on the r u d d e r . F r o m the l i n e a r i z e d theory of ducts i n oblique flow, r e f e r e n c e [ 3 ] , i s known that the l i f t c o e f f i c i e n t per degree of angle of attack on the duct depends only on the c h o r d diameter r a t i o . The camber and d i f f u s e r angle have no e f f e c t on the net l i f t f o r c e . The p r o b l e m can now be f o r m u l a t e d as f o l l o w s .

G i v e n :

D = diameter of c y l i nd er r e p r e s e n t i n g the duct; D = 2 R .

1 = c h o r d length of the duct, b = span of the rudder, c = chord of the r u d d e r .

a = distance f r o m t r a i l i n g edge of duct to leading edge of rudder (d = a + % 1 c ) .

a j ) = angle of attack of duct. OR = angle of attack of r u d d e r . Required: ^ L D l^^t c o e f f i c i e n t of duct; _ l i f t on duct C L D H p U ^ l R Cj^R = l i f t c o e f f i c i e n t of r u d d e r ; l i f t on rudder ^ L R = ^ y, p c b

In order to f i n d these, the strength of the bound v o r t e x d i s t r i b u t i o n s must be calculated. The r e q u i r e d l i f t c o e f f i c i e n t s then f o l l o w f r o m the K u t t a -Joukowsky l a w . The rectangular coordinates x , y, z, and the c y l i n d r i c a l coordinates x , r , e , are introduced as indicated i n F i g u r e 4. The bound c i r c u l a t i o n of the duct is expressed i n a F o u r i e r s e r i e s . The s e r i e s contains only cosine t e r m s having angles 6, 3e, 5 6 . . . , as can be d e r i v e d f r o m s y m m e t r y considerations:

r D ( 0 ) = 2 1 U ^ 2 ^ A i n C O S [ ( 2 m - l ) 9 ] (28)

S i m i l a r l y , the c i r c u l a t i o n of the rudder can be w r i t t e n as: r j ^ ( H ; ) = 2 c U ^ | ^ B j j ^ s i n [ ( 2 m - l ) H ^ ] (29) where: HJ=Glauert coordinate; b y = : - - c o S H ^ (30)

F r e e r e c t i l i n e a r v o r t i c e s are shed downstream f r o m the duct having a strength per u n i t a r c length according to the law of c o n t i t u i t y of v o r t e x

(6)

strength: 1 clrj3(e) >'D(6) = - ^ de (31) w h i c h gives w i t h equation (28): (6) = - 21U 2 ( 2 m - l ) A m S i n [ ( 2 r a - l ) e ] ^ (32) S i m i l a r l y , the f r e e r e c t i l i n e a r v o r t i c e s shed

downstream f r o m the rudder have a strength per unit of span of:

d r ^ (33) r R ( y ) R d y ^ R ' ^ ^ = - ^ J^ ( 2 m - l ) B ^ c o s [ ( 2 m - l ) ^ ] (34) To apply the boundary condition at the duct, we have to consider the r a d i a l v e l o c i t y v^ ( 1 / 2 , R , 6) at the % c h o r d point of the duct induced by the e n t i r e v o r t e x s y s t e m . W i t h r e g a r d to the rudder the upwash Vg (d + c / 2 , y , 0) must be considered. Because of s y m m e t r y , only p i v o t a l points i n the f i r s t quadrant of the nozzle and i n the upper half of the rudder need be taken into account. A f t e r some m a n i p u l a t i o n , application of the B i o t and Savart law gives the f o l l o w i n g r e s u l t s . W h e r e necessary, coordinates r e f e r r i n g to v o r t e x elements are distinguished f r o m p i v o t a l point coordinates by the s u b s c r i p t v . The symbol <^ i n -dicates that the i n t e g r a l has to be taken i n the sense of the Cauchy p r i n c i p a l value.

Duct s e l f - i n d u c e d : 1+- 2R [ ( ^ ) ^ + 2 - 2 c o s ( e - e v ) ] ' ' ' ^ (36) s i n g u l a r i t y at: 9 = e v Rudder s e l f - i n d u c e d : ^ (d+ c / 2 , y . 0) U R c 2 b " s i n v ^ ^ ^ ^ B ^ s i n [ ( 2 m - l ) H > ] ^ ^ 0 [(c/2)2+y2+(^cosiv)2+ybcoS4j]3/2 (37) Vz ( d + c / 2 . y , 0 ) U yR TT 2 ^ ( 2 m - l ) Bjj^cos[(2m-l)^v](y+-coSMj) 2TT ^ 0

1+-[y2+ (—cos^j)2+y b cos^jj] 2 c/2 [ ( c / 2 ) 2 + y2 + (-c0S4;)2+ybC0Si|;f''= 2 d^i^ (38) s i n g u l a r i t y at: y = - -costp 2 Induced by duct on r u d d e r : V z ( d + c / 2 , y , 0 ) U D I R (d+c/2) T T/ 2 ƒ - T T/ 2 v , , ( l / 2 , R U D - 7 W ' ^ T (3 5) c o s ( e - e v ) A j ^ c o s [ ( 2 m - l ) e v ] [ ( ^ ) ^ + 2 - 2 c o s ( e - e v ) ] 3 / 2 V r ( l / 2 , R , 0 ) ^ ^ 2T s i n ( e - e y ) ^ ( 2 m - l ) A ^ sin [ ( 2 m - 1 ) 6^] [ l - c o s ( 9 - e v ) ] 2 A ^ c o s [ ( 2 m - l ) e l cose m = l ™ [(d+ c / 2 ) 2 + y 2 + R 2 _ 2 y R s i n e ] 3/2 de (39) Vz ( d + c / 2 , y , 0 ) U ^ D = T T/ 2 I ( 2 m - l ) A ^ s i n [ ( 2 m - l ) e ] ( y - R sine) J_ ƒ m = l ^ TT - T T/ 2 [ 1 + -(y2 + R 2 - 2 y R sinf (d+ c/2) ,de [(d+ c/2)2 + y 2 + R 2 - 2 y R sine]'''' (40) Induced by r u d d e r on duct:

(7)

V r ( l / 2 , R , e ) b ( d - 1/2)c TT U 4T T 2 ^ B j j ^ s i n [ ( 2 m - l ) e ] sinnjcosf m = l [ ( d - 1/2)2+R2+ cosiij)2+R b cosn;sine]3/2 dif (41) , (1/2 , R , 9) c b TT U 1 ( 2 m - l ) cos [ ( 2 m - l ) y ] cos^i^cosf m = l o b 2 [R + (-costal) + R b c o S 4 ; s m e | 2 ( d - 1 / 2 ) [ ( d - 1/2)2+(^coSHj)2+RbcoS4J sine]'''^ (42) We truncate the s e r i e s at N t e r m s : m = l , 2 N

N p i v o t a l points have to be selected i n the f i r s t quadrant of the nozzle and N p o v i t a l points on the upper half of the r u d d e r , f o r instance at:

m 2 N m m = 1,2 N f o r the duct (43) TT m - 1 v m = i ( i + - i r ) b y m = - 2 ° o ^ ^ m m= 1. 2 . . . . N f o r the rudder (44) The boundary concUtions g i v e :

V r ( 1 / 2 , R , 9in) on the duct: U ^ D ' ^ D ' ^ R ' ^ R ^ Vz(d+ c / 2 , y j ^ , 0 ) on the r u d d e r : U " D cos e m (45) ^ D ' ^ D - ' ^ R ' ^ ' R " - p (46) Equations (45) and (46) f o r m a set of 2 N l i n e a r equations f r o m w h i c h the 2 N unlcnown c o e f f i c i e n t s Aj^.^ and B^^ ( m = l , 2 . . . . N) can be obtained. B e -cause of the s i n g u l a r i t y at 9=eyin equation (36), a s m a l l i n t e r v a l around the s i n g u l a r i t y should be excluded f r o m the i n t e g r a t i o n :

e-A9 e+Ae 2TT

f . . . . d 9 v + ƒ . . . . d 9 y + ƒ . . . . d 9 y 0 9-Ae e+Ae

It can be shown that the middle t e r m does not contribute to the induced v e l o c i t y , p r o v i d e d A9 is taken s m a l l enough ( f o r instance Ae = 0.05 radians). Equation (38) should be evaluated i n a s i m i l a r way. Once the c o e f f i c i e n t s A m and B ^ i have been f o u n d , the l i f t on nozzle and r u d d e r f o l l o w f r o m the Kutta-Joukowsky l a w :

l i f t on duct:

2TT

L n = 2 p l u 2 R [ 2 A..^ cos [ ( 2 m - 1 ) 9 ] • cos9 d9

U • 1 I I I 0 (47) l i f t on r u d d e r : TT L R = p c U 2 b ƒ 2 B i n S i n [ ( 2 m - l ) y ] • sin^j dn^ _ m = 1 0 (48)

Only the f i r s t t e r m of the F o u r i e r s e r i e s c o n -t r i b u -t e s -to -the l i f -t , so -tha-t -the l i f -t c o e f f i c i e n -t s become; L D 'LR^ f u ^ l R = 4T TA I L R I n ^ b c rB-, (49) (50) Table 2

Comparison of calculations for isolated nozzles and rudders with known results.

1 / D = 0. 8 C L D / « D O

reference [ 3 ] 0. 1 2 1 5 present method

(3 Fourier terms) 0 . 1 2 1 6

b/c = 1. number of lifting lines

reference [5] 0. 0 2 5

-present method 0. 0 2 5 1 4 1 (3 Fourier terms) 0. 0 2 5 5 1 2

0. 0 2 5 6 9 5

Nu m e n c a l res m i l s

A computer p r o g r a m based on the theory o f t h e preceeding section has been developed to p r e d i c t the l i f t f o r c e s on nozzle and r u d d e r . The input consists of the p a r a m e t e r s " R , , 1 / R , c / R , b / R , a / R , t h e number of F o u r i e r t e r m s and the n u m

(8)

-Figure 5. Influence of nozzle on rudder lift characteristics.

ber of concentrated bound v o r t i c e s on the r u d d e r . The output consists of the F o u r i e r c o e f f i c i e n t s

and B j ^ and the l i f t c o e f f i c i e n t s C L R and . Results of calculations f o r isolated nozzles and rudders are compared w i t h k n o w n r e s u l t s , r e f e -rences [ 3 ] , [ 5 ] , i n Table 2 which also shows the e f f e c t of the number of l i f t i n g l i n e s on the r u d -der. It can be concluded that the agreement is good and that the number of l i f t i n g l i n e s on the rudder has l i t t l e i n f l u e n c e . Two l i f t i n g lines have t h e r e f o r e been talcen throughout a l l the c a l -culations.

Results of calculations p e r t a i n i n g to the c o n -f i g u r a t i o n s o-f the -f u l l -scale tests d e s c r i b e d i n the next section are given i n F i g u r e s 5 and 6 . The i n t e r f e r e n c e e f f e c t s appear to be s i g n i f i c a n t . The response t i m e is c h a r a c t e r i z e d by the l i f t gradients at z e r o yaw given i n F i g u r e 7. It can be seen that the presence of the nozzle reduces the l i f t f o r c e of the rudder to some extent, but that the t o t a l l a t e r a l f o r c e is i n c r e a s e d , thus y i e l d i n g an i m p r o v e d response t i m e . A n i m p r e s -sion of the l a t e r a l f o r c e s on nozzle and r u d d e r

(9)

9, i n which the l i f t gradient of the i s o l a t e d rudder

has also been i n d i c a t e d . In o r d e r to v e r i f y our method f o r the p r e d i c t i o n of t u r n i n g qualities f o r v a r i o u s r u d d e r - n o z z l e c o n f i g u r a t i o n s , f u l l s c a l e manoeuvring e x p e r i -ments w e r e conducted w i t h two t w i n - s c r e w tugs, one w i t h open p r o p e l l e r s and the other equipped w i t h nozzles (see Figures 10 and 11).

(10)

Figure 9. Lift forces on rudder and nozzle for (3 = 1 0 ° .

Table 3 Particulars of the tugs.

Tug 1 Tug 2 Length o.a. [m] 37. 70 33.65 Length b. p. [m] 35. 00 30. 25 Breadth mid. [m] 9. 15 8. 90 Draught, mean[m] 4. 00 3.39 Power [HP] 2 X 1600 2 X 1400 Propeller diameter [m] 2.600 2. 135 Number of blades 4 4 Pitch ratio . 82 . 975

Blade area ratio . 55 . 58

Propeller rotational speed [r. p. m. ] 237. 5 260 during tests 150 170 Rudder area (1 rudder) [m^] 4.32 2. 98

Rudder aspect ratio 1. 565 1. 52

Number of rudders 2 2

Nozzle diameter [m] - 2. 28

Nozzle length [m] - 1. 37

T u r n i n g c i r c l e t e s t s

A f t e r putting the rudder i n a c e r t a i n p o s i t i o n , the f o l l o w i n g quantities were measured on b o a r d d u r i n g steady t u r n i n g at given t i m e i n t e r v a l s :

- c o u r s e angle i . e . d i r e c t i o n of the ship w i t h respect to an axis of r e f e r e n c e .

- distance f r o m the ship to a buoy l a i d before the experiment; this distance was measured w i t h a coincidental distance m e t e r and by r a d a r . - heading r e l a t i v e to the buoy.

I k J

Figure 10. Stern arrangement of Tug 1.

(11)

i

1 9 -/ -/ yy y y^ / / —y \ y y T TIME

Figure 12. Determination of response time. By p l o t t i n g the ship's p o s i t i o n as a f u n c t i o n of t i m e on polar paper, the r a t e of t u r n per degree of rudder angle, i . e . the p a r a m e t e r K , and the d r i f t a n g l e t u r n i n g r a t e r a t i o , C3, can be o b -tained. The response t i m e T was g r a p h i c a l l y d e t e r m i n e d by p l o t t i n g the course angle as a f u n c t i o n of t i m e .

Integration of equation (11) gives the yaw angle

- t / T M J = K 5 o ( t - T ) + K 5 Q T e A f t e r some t i m e , say: t > 3 T we have: K 5 Q ( t - T ) » K 5 Q T ! : and: H . = K 5 o ( t - T ) (51) - t / T (52) The g r a p h i c a l d e t e r m i n a t i o n of T is indicated i n F i g u r e 12.

It can be concluded that K , T and - p r o v i d e d the measurements are s u f f i c i e n t l y accurate - also C3 canbe obtained by s i m p l e t u r n i n g c i r c l e tests. The r e s u l t s of the t u r n i n g experiments are given i n Table 4.

Table 4 E x p e r i m e n t a l r e s u l t s . T u g Run Date Rudder

angle [degrees] Speed [knots] Rate of t u r n [ d e g r e e s / s e c ] K 1 1 1 4 / 7 / 7 1 5 SB 8. 60 0. 78 0. 155 1 2 - 10 SB 8.35 1. 55 2 3 2 4 / 9 / 7 1 7 PS 8. 8 0. 938 2 4 - 4. 5 SB 9. 0 0. 650 0. 138 2 5 - 7. 5 SB 8. 7 0. 915 0. 138 2 6 - 12. 5 PS 8.4 1. 840 Table 5

Comparison of measured and calculat-ed t u r n i n g q u a l i t i e s .

Tug 1 Tug 2

measured calculated measured

K ' 1.17 0. 68 0. 84

T' 2. 08 1.32 1. 62

D i s c u s s i o n .

The t u r n i n g qualities of tug 2, equipped w i t h nozzles, calculated according to the present procedure f r o m the test r e s u l t s f o r tug 1 w i t h open p r o p e l l e r s , are compared w i t h the f u l l - s c a l e test r e s u l t s f o r tug 2.

The influence of the ship's size is allowed f o r by using the non-dimensional c o e f f i c i e n t s :

V s T' K' = L C l T ( Y ) C' =-L V s C2 C^ c ^ L V 3 2 Vs C 3 ( T )

The r e s u l t s are given i n Table 5.

Although the e f f e c t of a nozzle on the t u r n i n g quality indices K and T i s o v e r - e s t i m a t e d by the calculations, i t can be concluded that the f u l l -scale manoeuvring t r i a l s c o n f i r m the p r e d i c t e d trends i . e . a considerable decrease i n t u r n i n g capacity K and response t i m e T .

A p p a r e n t l y , nozzles have the same e f f e c t on t u r n i n g capacity as p r o p e l l e r s and skegs: 'They tend to r e s i s t any t u r n i n g of the s t e r n , having a decided objection to being moved sideways , r e f e r e n c e [ 1 0 ] .

Conclusions.

1. A method is given f o r p r e d i c t i n g how the s t e e r i n g c h a r a c t e r i s t i c s of a ship are a f f e c t e d by f i t t i n g a f i x e d nozzle.

2. F u l l - s c a l e manoeuvring t r i a l s c o n f i r m the p r e d i c t e d t r e n d s .

(12)

3 . The f i t t i n g of a f i x e d nozzle r e s u l t s i n : - reduced t u r n i n g capacity

- better response t i m e

- increased s t a b i l i t y on a s t r a i g h t course 4. P r o p e l l e r , nozzle andrudder shouldbe

designed i n an integratdesigned way to ensure that an o p t i m u m solution is obtained r e g a r d i n g both p r o -pulsive and s t e e r i n g q u a l i t i e s .

Acknowledgement.

The authors w i s h to express t h e i r appreciation to the owner of the two tugs: T e r m i n a t e s , C . A . , M a r a c a i b o , Venezuela, to the s h i p b u i l d e r s : D . W . K r e m e r Sohn, E l m s h o r n , Germany, and especially to: Jonker & Stans, H e n d r i k Ido Ambacht, Holland f o r t h e i r cooperation i n the manoeuvring t r i a l s .

Nomenclature.

Sy m b o l s

A F o u r i e r c o e f f i c i e n t s f o r the nozzle c i r c u l a t i o n ,

distance f r o m t r a i l i n g edge of nozzle to leading edge of r u d d e r ; a = d - y j - v , c l i f t gradient f o r the i s o l a t e d r u d d e r ; L R a i B ^0 = • ~ p U 2 (b c + 1 D ) c o r r e c t i o n t e r m due to down-wash of nozzle F o u r i e r c o e f f i c i e n t s f o r the rudder c i r c u l a t i o n span of rudder

l i f t gradient f o r the i s o l a t e d nozzle;

c C C R D 1 , C 2 , C 3 UQ -% P U 2 (b c + 1 D )

c o r r e c t i o n term; due to down-wash of rudder

chord length of rudder c o e f f i c i e n t s of t u r n i n g l i f t c o e f f i c i e n t of nozzle; ^ L R " L D -y . p U ^ l R l i f t c o e f f i c i e n t of r u d d e r ; C L R ^R D F ( C T ) F l ( x / R ) K m N N D N R N r Ns R t U v Vs w x t h r u s t c o e f f i c i e n t ; T h r u s t O TT O H p U ^ - D ^ p r o p e l l e r diameter nozzle diameter

axial distance between quarter points of nozzle and rudder

f a c t o r f o r mean induced v e l o c i t y f a c t o r r e l a t i n g mean induced v e l o c i t y i n p r o p e l l e r s l i p s t r e a m to v e l o c t i y induced at the centreline by actuator disc

h o r i z o n t a l mass moment of i n e r t i a of the ship, including hydrodynamic e f f e c t s t u r n i n g capacity; length of ship length of nozzle l i f t f o r c e on nozzle l i f t f o r c e on rudder F o u r i e r t e r m index number of F o u r i e r t e r m s number of nozzles number of r u d d e r s

total less - rudder - nozzle - moment c o e f f i c i e n t rudder c o e f f i c i e n t p r o p e l l e r radius nozzle r a d i u s t u r n i n g r a t e r a d i a l coordinate response t i m e ; V . T' T ( f ) t h r u s t t i m e a x i a l v e l o c i t y at the r u d d e r - n o z z l e c o n f i g u r a t i o n induced velocity speed of ship wake f r a c t i o n downstream distance to p r o p e l l e r plane

distance f r o m the r u d d e r - nozzle f o r c e to the centre of g r a v i t y of the ship

(13)

X p distance between p i v o t a l point and r u d d e r - n o z z l e c o n f i g u r a t i o n

x , y , z C a r t e s i a n coordinates x , r , e c y l i n d r i c a l coordinates

a-Q angle of attack of the nozzle

apj angle of attack of the r u d d e r

(3 - «D (P i s p o s i t i v e i n steady t u r n i n g )

r c i r c u l a t i o n

y v o r t e x s t r e n t h per unit length

5 r u d d e r angle e angular coordinate P density T r a t i o of p r o p e l l e r t h r u s t to t o t a l t h r u s t y G l a u e r t coordinate; b y = - 2 c°SH^ yaw angle S u b s c r i p t s . D nozzle (duct) R r u d d e r V v o r t e x element

f j ) due to bound v o r t i c e s of duct

TR due t o bound v o r t i c e s of r u d d e r

y-Q due to f r e e v o r t i c e s of duct

y-p due to f r e e v o r t i c e s of r u d d e r

B a r r e d symbols i n d i c a t e new c o n f i g u r a t i o n . Symbols w i t h apostrophe indicate n o n d i m e n s i o n -a l c o e f f i c i e n t s .

A dot on a s y m b o l i n d i c a t e s t i m e d e r i v a t i v e .

R e f e r e n c e s .

1. G e r r i t s m a , J . ,'Lecture notes on manoeuvring and

steering of ships', Technological University, Delft, 1967.

2. Weissinger, J . , ' Z u r Aerodynamik des Ringflilgels, l . D i e Druckverteilung dUnner,fast drehsymme-trischer Flügel in Unterschallströmung', Deutsche Versuchsanstalt fiir Luftfahrt, E . V . , Bericht Nr. 2, Mülheim, September 1955. 3. Morgan, W . B . and Caster, E . B. ,'Predictionof the

aerodynamic characteristics of annular airfoils', David Taylor Model Basin, Report No. 1830, January 1965.

4. Greenberg, M . D . , O r d w a y , D . E . and L o , C . F . , ' A three -dimensional theory for the ducted propeller at angle of attack', T H E R M Inc. T A R - T R 6509, December 1965.

5. Wicker, L . F . and Fehlner, L . F . , ' F r e e stream characteristics of a family of low aspect ratio control surfaces', David Taylor Model Basin, Report 933, May 1958.

6. Bardarson, R . R . , Wagner Smitt, L . and Chislett, M. S. , 'The effect of rudder configuration on turning ability of trawler forms. Model and f u l l -scale tests with special reference to a conversion to purse-seiners , Transactions of the Royal Institution of Naval Architects, V o l . I l l , 1969, p. 283-310.

T . G o r d o n , S . J . and Tarpgaard, P . T . ,'utilization of propeller shrouds as steering devices', Marine Technology, V o l . 5, No. 3, July 1968.

8. Manen, J . D . van, and Oosterveld, M . W . C . , 'Ana-lysis of ducted propeller design', Transactions of the Society of Naval Architects and Marine Engineers, V o l . 74, 1966.

9. Gunsteren, L . A . van, 'Eine Analyse des Einflusses der Dickenverteilung von FlUgelschnitten auf Kavitationseigenschaften', Schiffstechnik, Band 18, Heft 90, 1971.

10. Watts, P . , ' T h e steering qualities of the Y a s h i m a ' , Transactions of the Institution of Naval A r c h i -tects, V o l . 40, 1898.

(14)

Cytaty

Powiązane dokumenty

Porównanie badań na wahadle balistycznym z metodą bloku ołowianego W tabelach 1 i 2 przedstawiono wyniki oznaczania zdolności MW do wykonania pracy przy użyciu

Визнання на рівні Конституції України людини як найвищої соціальної цінності, законодавче забезпечення широкого кола особистих немайнових

niniejszego artykułu są natomiast przekłady poezji Gregora Strnišy, jakich doko‑ nała Katarina Šalamun -Biedrzycka, która dotychczas najszerzej zaprezentowała twórczość

Jest rzeczą niezm iernie charakterystyczną, że datujące się od n ajdaw ­ niejszych czasów prym ityw ne definicje gleby wywodzące się praw ie w y­ łącznie

Książka Mikołaja Mazanow- skiego (z 1900 r.) mimo zalet jest już przestarzała wobec ogłoszenia korespondencyi poety. 1831, pozostaje ostatnim wyrazem naszej

(kantora katedralnego krakow skiego Fr. D ow odzący garnizioineim gen. Podobnie, ale cytując tę korespondencję K.. oficjalne poszukiw ania we W łodzim ierzu. W krótce

Termodynamika rozprzestrzeniania się informacji i wiedzy 97 podlega dyfuzji normalnej zaś rozprzestrzenianie się wiedzy jest superpozycją procesów dyfuzyjnych. Drugi

Jest chyba oczywiste, że obsługa prawna trzech lub czterech jednostek gospodarki uspołecznionej, która się sprowadza do zastępstwa prawnego przed sądami i