• Nie Znaleziono Wyników

Elastic ep scattering and higher radiative corrections Part II

N/A
N/A
Protected

Academic year: 2021

Share "Elastic ep scattering and higher radiative corrections Part II"

Copied!
51
0
0

Pełen tekst

(1)

Elastic ep scattering and higher radiative corrections

Part II

Krzysztof M. Graczyk

Institute of Theoretical Physics Neutrino Physics Division

University of Wrocław Poland

December 6, 2011

(2)

Motivation

Jeśli nie przestaniecie udowadniać tego, co już zrobili inni, nabierać pewności, komplikować rozwiązań – po prostu dla przyjemności – wtedy, pewnego dnia rozejrzycie się, i stwierdzicie, że tego jeszcze nikt nie zrobił! To jest sposób zostania uczonym!

R. P. Feynman.

(3)

PT and Rosenbluth

There is a systematic discrepancy between ratio µpGE/GM data extracted from PT and cross section measurements!

Figure:

Taken from C. Perdrisat, V. Punjabi and M. Vanderhaeghen, Prog. Part.

Nucl. Phys. 59 (2007) 694.

(4)

PT and Rosenbluth

I The two-photon exchange (TPE) correction (Born-like) is responsible for that!

I The PT data is less affected by TPE correction than cross section

measurements! P. A. M. Guichon and M. Vanderhaeghen, Phys. Rev. Lett. 91 (2003) 142303, P. G. Blunden, W. Melnitchouk and J. A. Tjon, Phys. Rev. Lett.

91 (2003) 142304.

(5)

electron/positron scattering off proton

I At least two new experiments dedicated to the investigation of the TPE contribution!

σ(e+p → e+p)

σ(ep → ep) ≈ 1 −2∆C

σ

. (1)

I J. Arrington et al., Two-photon exchange and elastic scattering of electrons / positrons on the proton. (Proposal for an experiment at VEPP-3), arXiv:nucl-ex/0408020;

I Jefferson Lab experiment E04-116, Beyond the Born Approximation: A Precise Comparison of e+p and ep Scattering in CLAS, W. K. Brooks, et al., spokespersons.

(6)

The Proton Radius

I The Proton Radius is extracted from CODATA, as it has been already explained,

p

hr2i = 0.8768 ± 0.0069 fm (P. J. Mohr, B. N. Taylor and D. B. Newell, Rev.

Mod. Phys. 80, 633 (2008).) I Lamb shift in muonic atom,

p

hr2i = 0.84184 ± 0.00067 fm, R. Pohl, A.

Antognini, F. Nez et al., Nature 466, 213 (2010).

I The results are 5σ away of each other!

I The Lamb shift is a small difference in energy between two energy levels2S1/2 and2P1/2 of the hydrogen atom. According to Dirac, the2S1/2and2P1/2 orbitals should have the same energies. However, the interaction between the electron and the vacuum causes a tiny energy shift on2S1/2. (see e.g. K.

Pachucki, Phys. Rev. A60 (1999) 3593.)

Lexp = 206.2949 ± 0.0032 meV (2)

Lth = 209.9779(49) − 5.2262

p

hr2i + 0.00913

p

hr3i(2) (3)

where hr3i(2) is the third Zemach moment defined as:

hr3i(2)=

Z

d3rd3r0|r − r0|3ρ(r0)ρ(r) (4)

(7)

p

hr2i

LAMB = 0.84184 ± 0.00067 fm (5)

p

hr2i

CODATA = 0.8768 ± 0.0069 fm (6)

p

hr2i

dipole = 0.81 fm (7)

p

hr2

Ei

NN = 0.85 fm (8)

p

hrM2i

NN = 0.82 fm (9)

(10) NN from K.M. Graczyk, Phys. Rev. C 84, 034314 (2011).

(8)

Electron Scattering off Coulomb Potential

(9)

Electron Scattering off Coulomb Potential

Our attention is concentrated on the first and second order Born diagrams.

|M|2 ≈ |M(1)|2

| {z }

α2

+ 2Re M(1)∗M(2)



| {z }

α3

+ |M(2)|2

| {z }

α4

,(11)

d σcou.

d Ω = |p0| 16π2|p|·1

2

X

|M|2d σ(1)cou.

d Ω +d σ(2)cou.

d Ω +d σ(3)cou.

d Ω (12)

(10)

T-Matrix: 1st Born

hp0|iT(1)

fi |pi = hp0| −i

Z

d4xeψ(x )γµψ(x )Aµ(x ) | pi (13)

= −ieu(p0µu(p)

Z

d4xei (p0−p)xAµ(x ) (14)

= −ieu(p0µu(p)˜Aµ(p0− p) (15)

= −(2πi)δ(Ef − Ei)eu(p0µu(p)˜Aµ(p0− p) (16)

where we have assumed that Aµis time independent, and ˜Aµ(p0− p) is the Fourier transform:

A˜µ(p0− p) = (2π)δ(Ef− EiAµ(p0− p), (17) and

A˜µ(p0− p) =

Z

d3re−i(p0−p)·rAµ(r). (18)

(11)

T-Matrix: 2st Born

hp0| iT(2)| pi = −1 2hp0|

Z

d4xd4ye2ψ(x )γµΨ(x )Aµ(x )ψ(y )γνΨ(y )Aν(y ) | pi (19)

= − ie2

Z

d4l (2π)4

u(p0µ(ˆl + meνu(p) l2− m2e+ i 

A˜µ(p0− l)˜Aν(l − p)

(20)

(12)

Coulomb Potential and M-matrix Point-like Coulomb potential

Aµpoin(~r) = gµ0 Ze

4π|r|. (21)

A˜0poin(p0− p) =

Z

d3re−i(p0−p)·r Ze 4π|r| = Ze

4πq2

Z

d3r 4 e−i(p0−p)·r



1

|r|(22)

= Ze

4πq2

Z

d3re−i(p0−p)·r4



1

|r|



= −Ze

q2. (23)

Hence

hp0|iT(1)|pi = (2πi)δ(Ef − Ei)Ze2

q2 u(p00u(p). (24) hp0|iT(2)|pi = −(2πi)δ(p00− p0)Z2e4

Z

d3l (2π)3

u(p0)(γ0E + ~γ · l + me)u(p) (l2− p2+ i )(p0− l)2(l − p)2, (25) where we have integrated the energy component of dl0, namely

Z

dl0

2π(2π)δ(p00− l0)(2π)δ(l0− p0) = 2πδ(p00− p0).

and we substituted, l0= E as well as l2= l02− l2− m2e= p2− l2. Hence

γ0(ˆl + me0= γ00l0− ~γ · l + me0= γ0l0+ ~γ · l + me→ γ0E + ~γ · l + me (26)

(13)

Coulomb Potential and M-matrix

In order to compute the cross section one has to compute the M matrix,

hp0| iT | pi = M(2πi)δ(p00− p0). (27)

Similarly as in the case of the T matrix, the M matrix can be written in as the perturbative series:

M = M(1)+ M(2)+ ... (28)

I First order:

M(1)=Ze2

q2 u(p00u(p). (29)

I Second order:

M(2)= −Z2e4

Z

d3l (2π)3

u(p0)(γ0E + ~γ · l + me)u(p)

(p2− l2+ i )(p0− l)2(l − p)2. (30)

(14)

Arbitrary Potential – Form Factor

Suppose that the Coulomb potential is not point-like but has its own spherical distribution.

Aµ(~r) = gµ0φ(r), φ(r) = Z

Z

d3r0 ρ(r0)

|r − r0|, Z =

Z

d3r ρ(r) (31)

The Fourier transformation of the potential reads

A0(q) = Ze

Z

d3rd3r0e−iq·r ρ(r0)

|r − r0|= Ze 4πq2

Z

d3rd3r0e−iq·r4r

ρ(r0)

|r − r0|

= Ze q2

Z

d3rd3r0e−iq·rρ(r0(3)(r − r0)

= Ze q2

Z

d3re−iq·rρ(r) ≡ Ze q2 F (q)

|{z}

form factor

. (32)

F (q) =

Z

d3re−iq·rρ(r) ρ(r) =

Z

d3rei q·rF (q). (33)

(15)

Arbitrary Potential – Form Factor

d σ

d Ω = Z2α2 2p2sin4 θ2





1 − β2sin2



θ

2



, (34)

where

β2=|p2|

E2 = velectron2 . (35)

Notice that for β → 0 we have well known Mott scattering formula,

d σ(1)coul .

d ΩZ2α2

2p2sin4 θ2



. (36)

Notice that if instead of the point-like potential the one given by (31) is discussed the cross section in the first order Born approximation reads

d σ(1)

d Ω = α2

2p2sin4 θ2





1 − β2sin2



θ

2



F2(q). (37)

(16)

I Point-like static potential:

d σ

d Ω= α2E

4E3sin4 θ2



. (38)

I Spatial-charge distribution but still static:

d σ

d Ω= α2E 4E3sin4 θ2



F

2(q2). (39)

I Proton with spin 1/2:

d σ

d Ω= α2E0 4E3sin4 θ2 ·



cos2θ 2+ Q2

2M2sin2θ 2



, (40)

(recoil correction,spin 1/2 correction)

I Proton with spin 1/2, and magnetic anomalous moment

d σ d ΩLAB

= α2E0 4E3sin4 θ2 ·



cos2θ 2



F12+ Q2 4M2F22



+ Q2 2M2sin2θ

2(F1+F2)2



(41) (γµ,σµν).

(17)

Notice that for Q2→ 0, sin2 θ2→ 0, cos2 θ2 → 1 the static potential F (q2) form factor has the same meaning as F1(Q2), and GE because GE= F1− τ F2.

(18)

Photon Mass

M(2) = −Z2e4

Z

d3l (2π)3

u(p0)(γ0E + ~γ · l + me)u(p)

(p2− l2+ i )(p0− l)2(l − p)2 (42)

= Z2e4u(p0) (γ0E I1+ ~γ · I2) u(p) (43)

I Long-range character of the Coulomb forces → infrared singularities I One has to extract the divergent term from the amplitude

I R. H. Dalitz Proc. R. Soc. Lond. A206, 509 (1951).

1 q2 → 1

q2+ µ2. (44)

It corresponds to the screened Coulomb interaction

Aµ(r ) = gµ0Zeexp(−µ|r|) 4π|r| = −

Z

d4q (2π)3

δ(q0)

q2− µ2eiq·r (45) The problem is seen already in QM, if the potential V (r ) does not converge faster then 1/r then the partial wave solution can not be obtained. For potential 1/r distorted wave functions are obtained!

(19)

Properties of the integrals I1and I2

Notice that I1and I2are symmetric under exchange p ↔ p,

I1=

Z

d3l (2π)3

1

(l2− p2− i)(p0− l)2(l − p)2, I2=

Z

d3l (2π)3

l

(l2− p2− i)(p0− l)2(l − p)2 (46) hence I2∼ p + p0. Notice that u(p0, s0)~γu(p, s) = χs0(p + p0+ i q × τ )χs.

Feynman’s Identity 1

(a + λ)(b + λ) = −

∂λ

Z

1 0

d α 1

αa + (1 − α)b + λ= −

Z

1 0

d α

∂(αa)

1 αa + (1 − α)b + λ

(47) Then

I1 = −

Z

1 0

d α

∂µ2

Z

d3l (2π)3

1

(l2− p2− i)((l − P)2+ M02) (48)

= −

Z

1 0

d α

∂M02

Z

d3l (2π)3

1

(l2− p2− i)((l − P)2+ M02) (49)

Ik2 =

Z

1 0

d α



2∂Pk − Pk

∂M02

 Z

d3l (2π)3

1

(l2− p2− i)((l − P)2+ M02)(50) where

(20)

Properties of the integrals I1and I2

I1 = −

Z

1 0

d α

∂M02I (52)

Ik2 =

Z

1 0

d α



2∂Pk − Pk

∂M02



I (53)

I =

Z

d3l (2π)3

1

(l2− p2− i)((l − P)2+ M02) (54) Notice that

I ∼

Z

d3l l4

(21)

|M|2

|M|2≈ |M(1)|2+2 Re M(1)∗M(2)



| {z }

+ |M(2)|2, (55)

X

spin

∗ = Z3e6

|q|2

X

spin

u(p00u(p)





I1E u(p00u(p) + I2· u(p0)~γu(p)

= Z3e6

|q|2

"

I1E Tr(ˆpγ0pˆ0γ0) +

3

X

k=1

Ik2Tr(ˆ0pˆ0γk)

#

= Z3e6

|q|2



4I1E3(1 + β2cos θ) + 4E I2· (p + p0)



(56)

= 4Z3e6E3cos2 θ2 q2



(1 + β2cos θ)

cos2 θ2 I1+I2· (p + p0) E2cos2 θ2



(57)

(22)

|M|2: useful expressions

Trˆ0pˆ0γ0 = 4



2EiEf − p · p0



(58)

= 4(E2+ p · p0) = 4E2(1 + β2cos θ) (59) Trˆ0pˆ0γk = 4



pkE + p0kE



(60)

3

X

k=1

IkTrˆ0pˆ0γk = 4E I2· (p + p0) (61)

(62)

(p + p0)2E = 2|p|(p2+ p · p0) = 4|p|3 β cos2θ

2 (63)

p2+ 2p · p0 = |p|2(4 cos2θ

2− 1) (64)

(23)

I

I(p2, P, M02) =

Z

d3l (2π)3

1

(l2− p2− i)((l − P)2+ M022)) (65)

=

Z

1

−1

dt

Z

0

dl (2π)2

l2 (l2− p2− i)

1

l2− 2tPl + P2+ M02 (66)

= 1

2

Z

1

−1

dt

Z

0

dl (2π)2

l2 (l2− p2− i)

1

l2− 2tPl + P2+ M02

+1 2

Z

1

−1

dt

Z

0

dl (2π)2

l2 (l2− p2− i)

1

l2+ 2tPl + P2+ M20(67)

t → −t,

Z

1

−1

dt →

Z

1

−1

dt (68)

(69)

(24)

I

I = 1

2

Z

1

−1

dt

Z

0

dl (2π)2

l2 (l2− p2− i)

1

l2− 2tPl + P2+ M02

+1 2

Z

1

−1

dt

Z

0

−∞

dl (2π)2

l2 (l2− p2− i)

1

l2− 2tPl + P2+ M02,(70)

l → −l ,

Z

0

dl →

Z

0

−∞

dl (71)

I = 1

2

Z

1

−1

dt

Z

−∞

dl (2π)2

l2 (l2− p2− i)

1

l2− 2tPl + P2+ M02 (72)

l2− p2− i = (l − p − i )(l + p + i ) (73)

= 1

2

Z

1

−1

dt

Z

−∞

dl (2π)2

l2

(l − p − i )(l + p + i )(l − l+)(l − l)(74), where

l± = Pt ± i

p

(1 − t2)P2+ M02 (75)

M02 = p2+ µ2− P2= µ2+ 4α(1 − α)q2 (76)

(25)

I

Z

−∞

(...)

| {z }

+

Z

R

(...)

| {z }

= 2πi

X

Res(top semicircle) (77)

(26)

I

I = ip

Z

1

−1

dt 1

p2− 2tPp + P2+ M02+ 1

Z

1

−1

dt l+2

(l+2− p2)

 p

(1 − t2)P2+ M02



(78)

= i

16πP



ln p2+ 2Pp + P2+ M02



− ln p2− 2Pp + P2+ M02



+1

Z

1

−1

dt l+2

(l+2− p2)

 p

(1 − t2)P2+ M02



, (79)

In the second integral we do the change of the variables, t → l+, indeed

dl+= − iPl+dt

p

(1 − t2)P2+ M20

(80)

where 1

Z

1

−1

dt l+2

(l+2− p2)

 p

(1 − t2)P2+ M02



=

i 8πP

Z

dl+

l+

(l+2− p2) = i

16πPln(l+2−p2) (81)

(27)

I

I = i

16πP



ln p2+ 2Pp + P2+ M02



− ln p2− 2Pp + P2+ M02



+ i 16πP



ln((P + iM0)2− p2) − ln((P − iM0)2− p2)



, (82)

= i

8πPln



p + P + iM

0

p − P + iM0



(83)

(28)

I1

I1= −

Z

1 0

d α 2M0∂M0

I (84)

Hence

I1 = 1

Z

1 0

d α 2PM0

h

1

p + P + iM0

− 1

p − P + iM0

i

= − 1

Z

1 0

d α 1 M0

1

(p + iM0)2− P2 (85)

= − 1

Z

1 0

d α 1 M0

1

−µ2+ i 2pM0

(86)

= 1

8πµ2

Z

1 0

d α M0

− 1

8πµ2

Z

1 0

d α 2pi

−µ2+ i 2pM0

(87)

(29)

I1

M02 = q2α(1 − α) + µ2=



q2 4 + µ2

 

1 − q2

q2 4 + µ2



α −1 2



2



(88)

α0 = 2|q|

p

q2+ 4µ2



α −1 2



(89)

Now,

Z

d α M0

= 1

|q|

Z

d α0

p

1 − α02

= 1

|q|arcsin(α0)= 1

|q|arcsin 2|q|

p

q2+ 4µ2



α −1 2



!

(90)

Z

1 0

d α M0

= 2

|q|arcsin |q|

p

q2+ 4µ2

!

= 2

|q|arcsin

1

q

1 +q22

π

|q| (91)

where

√ 1 ≈ 1 +x

, arcsin(1 + x ) ≈ π (1 + x )

(30)

I1

Z

1 0

d α 1

−µ2+ i 2pM0

= 1

2p

Z

1 0

d α 1

µ2p2 + iM0

(92)

= 1

2p

Z

1

0

d α 1

µ2

2p + i

p

µ2+ α(1 − α)q2

(93)

= 1

p|q|

Z

12

0

d α0 1

2p|q|µ2 + i

q

1 4+µ2

q2 − α02 (94)

α0 = α −1

2 (95)

From Mathematica

Z

dx

−B + i

A2− x2 = −i arctan



x

A2− x2



+ (96)

−iB tanh−1



Bx

−A2−B2

A2−x2



+ B arctan



x

−A2−B2



−A2− B2

(31)

∗ =

Z

12

0

d α0 1

2p|q|µ2 + i

q

1

4+µq22− α02

(97)

= 1

µ2

−i arctan



|q|



i2p|q|µ2

q

1 4+µ2

q2 + µ4

4p2q2

arctan

i 2

q

1 4+µ2

q2 + µ4

4p2q2

−i tanh−1i µ 4p



1 +2 q2 + µ4

p2q2



12

!#)

(98)

= −i π 2− 1

p|q|tanh−1



1 +2 q2 + µ4

p2q2



12

!

=−i π 2− 1

p|q|lnp sinθ2

µ (99)

tan(−iz) =1

i tanh(z), tanh(iz) = i tan(z)



1 +2 q2 + µ4

p2q2



12

≈ 1 −1 2



2 q2 + µ4

p2q2



≈ 1 −2

q2 (100)



2 µ4



12

!

1

 

2



1 q2 2p sinθ

(32)

I1

I1 = 1



π

|q|µ22i

|q|



i π 2 − 1

p|q|ln2p sinθ2 µ



(101)

= i

4πq2pln2p sinθ2

µ (102)

= i

16π sin2 θ2p3ln2p sinθ2

µ (103)

It is divergent when µ → 0, but does not contribute to the spin averaged interference term 2Re(M(1)M(2)∗)

(33)

I2

p · I2 =

Z

d3l (2π)3

p · l

(l2− p2− i)((p0− l)2+ µ2)((l − p)2+ µ2) (104) p0· I2 =

Z

d3l (2π)3

p0· l

(l2− p2− i)((p0− l)2+ µ2)((l − p)2+ µ2). (105) Notice that

1

(l − p)2+ µ2 − 1

(l2− p2− i) = 2l · p − 2p2− µ2

(l2− p2− i)((l − p)2+ µ2) (106) 1

(l − p0)2+ µ2 − 1

(l2− p2− i) = 2l · p0− 2p2− µ2

(l2− p2− i)((l − p0)2+ µ2) (107) hence

l · p

(l2− p2− i)((l − p)2+ µ2) = 1 2

h

1

(l − p)2+ µ2 1

(l2− p2− i)+ 2p2+ µ2 (l2− p2− i)((l − p)2+ µ2)

i

l · p0

2− p2− i)((l − p02 2 = 1

h

1

02 2 1

2− p2− i)+ 2p2+ µ2 2− p2− i)((l − p02 2

i

(34)

I2

p · I2 = 1

2

Z

d3l (2π)3

1 ((p0− l)2+ µ2)



1

(l − p)2+ µ2)

1

(l2− p2− i)



+



p2+µ2 2



I1

= 1

2(A − Ba) +



p2+µ2 2



I1 (108)

p0· I2 = 1 2

Z

d3l (2π)3

1 ((p − l)2+ µ2)



1

(l − p0)2+ µ2 1 (l2− p2− i)



+



p2+µ2 2



I1

= 1

2(A − Bb) +



p2+µ2 2



I1 (109)

where

A =

Z

d3l (2π)3

1

((p0− l)2+ µ2)(l − p)2+ µ2) (110)

Ba =

Z

d3l (2π)3

1

((p0− l)2+ µ2)(l2− p2− i) (111)

Bb =

Z

d3l (2π)3

1

((p − l)2+ µ2)(l2− p2− i) (112)

It is easy to show that Ba= Bb≡ B.

(35)

A

We use the Feynman’s trick,

1 AB=

Z

1 0

dx [Ax + B(1 − x )]2

A =

Z

d3l (2π)3

1

((p0− l)2+ µ2)(l − p)2+ µ2)=

Z

1 0

dx

Z

d3l (2π)3

1



l2− 2l · (x p + (1 − x )p0) + µ2



2

=

Z

1 0

dx

Z

d3l (2π)3

1



l2− 2l · (x p + (1 − x )p0) + p2+ µ2



2, l

0= l − (x p + (1 − x )p0) (113)

=

Z

1 0

dx

Z

d3l0 (2π)3

1



l0 2+ M02



2, M

2

0= µ2+ q2x (1 − x ) (114)

=

Z

1 0

dx

Z

−∞

dl 2

l2



l2+ M20



2 =

1

Z

1 0

dx M0 = 1

Z

1 0

dx

p

µ2+ q2x (1 − x )

(115)

= 1

8|q| (116)

(36)

I2

Analogically w obtain

B = i 8πp



ln



2p

µ



− iπ 2



= I(p2, p0, µ2) (117)

hence

(p + p0) · I2 = A − B + 2p2I1= 1 8|q|

i 8πp



ln



2p

µ



− iπ 2



+ ip

4πq2ln2p sinθ2

µ (118)

= 1 − sinθ2 8|q|

i

16πp



2 ln



2p

µ



1

sin2 θ2 ln2p sinθ2 µ



| {z }

divergent

(119)

(37)

σ(2)

d σcou(2)

d Ω = 1

16π2

X

spin

Re M(1)∗M(2)



(120)

= 1

16π2 Z3e6

|q|2



4ReI1E3(1 + β2cos θ) + 4E ReI2· (p + p0)



(121)

= 2Z3πα3E

|q|3



1 − sinθ 2



(122)

= Z3πα3 q2β



1 − sinθ 2



(123)

Rcoul .(2) =σcoul .(2) σ

= πZαβ 1 − sinθ2



1 − β2sin2 θ2



sin

θ

2 (124)

(38)

0 0.002 0.004 0.006 0.008 0.01 0.012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 R(2) cou.

sin(θ/2) rel

non-rel

(39)

0 0.002 0.004 0.006 0.008 0.01 0.012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 R(2) cou.

ε

rel, Q2=0.01 non-rel, Q2=0.01

(40)

Form-Factors: Time-like-Region

Interesting property:

ImF1,2= p3t

tΓ1,2(t) (125)

ptpion momentum in the crossed (t−)channel, Γ1,2– P-amplitudes for the ππ − NN.

(41)

Form-Factors: Time-like-Region

F (q2) = 1 2πi

I

C dt F (t)

t − q2 = 1 2πi

Z

4m2π

dt F (t − i ) t − q2− i+

Z

4m2π

dt F (t + i ) t − q2+ i 

!

(126)

= 1

π

Z

4m2π

dtImF (t + i )

t − q2 , F (s) = F(s) (127)

= F (0) +q2 π

Z

4m2π

dtImF (t + i )

t(t − q2) (128)

hr2i = 6 π

Z

4m2π

dtImF1p(t) t2

| {z }

≈0.65 fm2

+ F2p(0) 4M2

|{z}

3κp 2M2≈0.12 fm2

(129)

Cytaty

Powiązane dokumenty

Ostatnia powieść Proulx, Drwale z 2016 roku, to dzieło najbardziej ambitnie zakrojone; rozciągająca się na trzy stulecia saga o losach dwóch rodzin jest

[r]

The basic problem is that electron scattering measures transition matrix elements between states of composite system that have different momenta and transition densities between

It features an easy Fortran, C++, and Mathematica interface to the scalar one-loop functions of FF and in addition provides the 2-, 3-, and 4-point tensor coefficient functions.

Pamiętajcie jednak, że możecie zostać ocenieni tylko jeśli prawidłowo się podpiszecie korzystając z platformy (imię + pierwsza litera nazwiska lub nazwisko).

Najlepiej jest wtedy stosować się do pewnego schematu i po uważnym przeczytaniu treści pokonywać kolejne etapy rozwiązywania zadania:.. Ustal niewiadomą w zadaniu, oznacz

Wskazani uczniowie, gdy wykonają zadania, muszą niezwłocznie przesłać wyniki przez komunikator na e-dzienniku, lub mailem na adres:.. matematyka2LOpm@gmail.com skan

Wskazani uczniowi, gdy wykonają zadania, muszą niezwłocznie przesłać wyniki przez komunikator na e-dzienniku, lub mailem na adres:!. matematyka2LOpm@gmail.com skan