• Nie Znaleziono Wyników

Generalized Wagner model of water impact numerical conformal mapping

N/A
N/A
Protected

Academic year: 2021

Share "Generalized Wagner model of water impact numerical conformal mapping"

Copied!
8
0
0

Pełen tekst

(1)

C o n t e n t s l i s t s a v a i l a b l e a t S c i e i i o e D i r e c l

Applied Ocean Research

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a p o r

O C t A N

R E S E A R C H

Generalised Wagner model of water impact by numerical

conformal mapping

T.I. Khabakhpasheva*'*, Yonghwan Kim'', A.A. Korobkin'^

^r/ieorerica/ Department, Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia

^Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, Republic of Korea '^School of Mathematics, University of East Anglia, Nonvich, UK

Cro.ssMark

A R T I C L E I N F O

Article history: Received 17June 2013

Received in revised form 15 October 2013 Accepted 19 October 2013 Keywords: Water impact Wagner tlieory Conformal mapping A B S T R A C T A n u m e r i c a l m e t h o d t o solve t b e p r o b l e m o f s y m m e t r i c r i g i d c o n t o u r e n t e r i n g w a t e r v e r t i c a l l y at a g i v e n t i m e -d e p e n -d e n t spee-d is p r e s e n t e -d . T h e m e t h o -d is base-d u p o n t h e so-calle-d g e n e r a l i s e -d W a g n e r m o -d e l . W i t h i n t h i s m o d e l t h e b o d y b o u n d a r y c o n d i t i o n is i m p o s e d o n t h e a c t u a l p o s i t i o n o f t h e e n t e r i n g surface, t h e f r e e -s u r f a c e b o u n d a r y c o n d i t i o n -s are l i n e a r i -s e d a n d i m p o -s e d o n t h e p i l e - u p h e i g h t , w h i c h i-s d e t e r m i n e d a-s p a r t o f t h e s o l u d o n . T h e h y d r o d y n a m i c pressure is g i v e n b y t h e n o n - l i n e a r B e r n o u l l i e q u a d o n . T h e h y d r o d y n a m i c pressures w h i c h are b e l o w t h e a t m o s p h e r i c v a l u e are d i s r e g a r d e d . The c o n f o r m a l m a p p i n g o f t h e f l o w r e g i o n o n t o the l o w e r h a l f - p l a n e is used. The v e l o c i t y p o t e n U a l o f t h e f l o w is g i v e n i n a n a l y d c a l f o r m once t h i s m a p p i n g is k n o w n . The c o n f o r m a l m a p p i n g is c a l c u l a t e d n u m e r i c a l l y . The o b t a i n e d r e s u l t s are v a l i d a t e d w i t h respect to t h e k n o w n s o l u t i o n s f o r w e d g e a n d c i r c u l a r c y l i n d e r . The n o v e l t y a n d p r a c t i c a l i m p o r t a n c e o f t h e p r e s e n t a p p r o a c h are d u e to a special a c c u r a t e t r e a t m e n t o f t h e f l o w s a n d t h e pressures close t o t h e c o n t a c t p o i n t s b e t w e e n t h e e n t e r i n g b o d y a n d w a t e r f r e e s u r f a c e . This special t r e a t m e n t is r e q u i r e d f o r r e l i a b l e p r e d i c d o n o f t h e h y d r o d y n a m i c p r e s s u r e a l o n g the w e t t e d p a r t o f t h e c o n t o u r d u r i n g its i m p a c t o n t o t h e w a t e r surface a n d t h e s u b s e q u e n t e n t r y .

® 2 0 1 3 Elsevier Ltd. A l l r i g h t s r e s e r v e d .

1. Introduction

This paper deals w i t h the t w o d i m e n s i o n a l p r o b l e m o f the u n -steady l i q u i d f l o w caused by an i m p a c t on its f r e e surface. The s t u d y is m o t i v a t e d by the s l a m m i n g p r o b l e m f o r ships In severe sea, w h e n the b o w part o f the ship exits the w a t e r and t h e n subsequently en-ters It again. The r e s u l t i n g i m p a c t loads m a y cause h i g h - f r e q u e n c y v i b r a t i o n o f the ship h u l l . This p h e n o m e n o n is k n o w n as w h i p p i n g [ 1 ] . W h i p p i n g may c o n t r i b u t e to the w a v e - I n d u c e d v l b r a d o n o f the h u l l increasing the w a v e - i n d u c e d stresses In the h u l l by up to 20% [ 2 ] . The i m p a c t loads can be c o m p u t e d b y using the s t r i p t h e o r y f o r e l o n -gated ships such as container ships. Computations by the strip t h e o r y are questionable f o r the b o w part o f the ship, w h e r e the s l a m m i n g pressures are essentially three-dimensional. However, the s l a m m i n g loads p r e d i c t e d by t h e strip t h e o r y can be corrected (see H e r m u n d -stad and M o a n [ 3 ] ) b y using a f a c t o r w h i c h relates t w o - d i m e n s i o n a l and t h r e e - d i m e n s i o n a l s l a m m i n g loads. This factor Is p r o v i d e d by the t h r e e - d i m e n s i o n a l W a g n e r t h e o r y o f w a t e r i m p a c t (see Scolan and K o r o b k l n [4], Fig. 17). In the present paper w e restrict ourselves to the t w o - d i m e n s i o n a l p r o b l e m o n v e r t i c a l e n t r y o f a s y m m e t r i c s m o o t h section. This case corresponds to heave and p i t c h ship m o t i o n s In head seas.

I n i t i a l l y the l i q u i d Is at rest and occupies the l o w h a l f - p l a n e y < 0 (see Fig. 1 a). The l i n e y = 0 corresponds to the u n d i s t u r b e d p o s i t i o n o f the free surface. The shape o f a s y m m e t r i c t w o - d i m e n s i o n a l b o d y is described b y a f u n c t i o n / ( x ) , w h e r e / ( - x ) = / ( x ) , / ( O ) = 0 , / ( O ) = 0 and

f[x) > 0 f o r x / 0. Here the p r i m e stands f o r t h e x - d e r i v a t i v e . The b o d y

touches the f r e e surface y = 0 at a single p o i n t taken as the o r i g i n o f the Cartesian coordinate system Oxy. A t some Instant o f time, taken as i n i t i a l ( f = 0), the body starts to penetrate the l i q u i d v e r t i c a l l y w i t h the body v e l o c i t y h{t) being prescribed (see Fig. 1 b). Here the o v e r d o t stands f o r the t i m e d e r i v a t i v e and h{t) is the vertical d i s p l a c e m e n t o f the body. The p o s i t i o n o f t h e body at t i m e Instant t is g i v e n b y t h e e q u a t i o n y = f{x) - h{t). The region occupied by the l i q u i d changes In time. A t any time Instant t > 0 the l i q u i d b o u n d a r y consists o f t h e f r e e surface a n d the w e t t e d p a r t o f the m o v i n g body, w h i c h Is k n o w n as the contact region b e t w e e n the l i q u i d and the body surface. N o t e t h a t the jets at the p e r i p h e r y o f the contact region are n o t s h o w n i n F i g . l . The contact region starts to g r o w f r o m a single p o i n t I n the w a t e r Impact p r o b l e m , w e need to d e t e r m i n e the f l o w caused by the m o v i n g body, the pressure d i s t r i b u t i o n i n the contact r e g i o n and the contact region Itself. The p r o b l e m is c o m p l i c a t e d since the c o n t a c t region and the p o s i t i o n o f f r e e surface are u n k n o w n I n advance and s h o u l d be d e t e r m i n e d together w i t h the l i q u i d f l o w .

To s i m p l i f y the f o r m u l a t i o n o f the I m p a c t p r o b l e m , g r a v i t y a n d surface tension are neglected, and the l i q u i d is m o d e l l e d as i n v i s c i d • Corresponding auttior. Tel.: + 7 9607947219.

E-mail address: tana@tiydro.nsc.ru (T.I. Khabal<hpasheva).

0141-1187/S - see front matter © 2013 Elsevier Ltd. All rigtits reserved. Iittp://dx.doi.org/10.1016/j.apor.2013.10.007

(2)

30 T.I. Khabakhpasheva et al. /Applied Ocean Research 44 (2014) 29-38

Fig. 1. Slcetclies of (a) initial configuration and (b) the flow caused by the impact.

a n d incompressible. The flow caused by I m p a c t is I r r o t a t i o n a l , t w o -d i m e n s i o n a l an-d s y m m e t r i c w i t h respect to the s y m m e t r y line x = 0. Presence o f the air above the w a t e r surface Is n o t taken into account. These assumptions are discussed b y Khabakhpasheva and K o r o b k l n [ 5 ] . These assumptions w e r e j u s t i f i e d and proved t o be reasonable b y c o m p a r i n g the obtained results w i t h e x p e r i m e n t a l data and the results predicted by CFD. Even i n such s i m p l i f i e d f o r m u l a d o n , the p r o b l e m o f w a t e r I m p a c t Is still c o m p l i c a t e d and its s o l u t i o n can be o n l y achieved by n u m e r i c a l methods [ 6 - 8 ] .

The p r o b l e m can be a d d i t i o n a l l y s i m p l i f i e d i f w e restrict ourselves to the i n i t i a l stage o f Impact w h e n the p e n e t r a t i o n o f the body Is small, a n d to b l u n t bodies w i t h [ f (x)| « 1 i n the contact region. The r e s u l t i n g a p p r o x i m a t e m o d e l o f w a t e r Impact Is k n o w n as the Wagner m o d e l [9 ]. W i t h i n this model, the w e t t e d part o f t h e body Is a p p r o x l m a t e d by an e q u i v a l e n t fiat disc, the b o u n d a r y conditions, b o t h i n the contact region and o n the free surface, are linearised and imposed o n the I n i t i a l l y u n d i s t u r b e d l i q u i d level, y = 0. The a p p r o x i m a t e b o u n d a r y value p r o b l e m w i t h respect to the c o m p l e x v e l o c i t y p o t e n t i a l Wo(z, t)

= (fix,y, t) + i X x , y , t ) , z = x + iy, has the s o l u t i o n

Wo(z, t) = / / ! ( f ) ( z - y z 2 - c 2 ( t ) ) , ( 1 ) w h e r e <p(x, y, t ) Is the v e l o c i t y p o t e n t i a l o f the Induced flow and fix,

y, t ) Is the stream f u n c t i o n (see Oliver [ 1 0 ] ) . Here the f u n c t i o n c(t)

describes the w i d t h o f the contact region, - c ( t ) < x < c(t). This f u n c t i o n Is d e t e r m i n e d by the so-called W a g n e r c o n d i t i o n , w h i c h requires that the elevation o f the free surface at the contact points x = ± c ( t ) Is equal to the vertical coordinate o f the b o d y s u r f a c e / ( c ) - h{t) at these points. This c o n d i t i o n can be reduced to t h e e q u a t i o n (see K o r o b k l n [111)

J"^ / [ c ( t ) s l n 0 ] d ( 9 = | f t ( f ) (2)

w h i c h does n o t require any k n o w l e d g e about the flow. In the con¬ tact region, t h e s o l u t i o n (1) provides <pix. 0, t ) = -h{t)y/c^ -x^. The pressure p(x, 0, f ) o n the w e t t e d part o f the b o d y is given b y the linearised B e r n o u l l i equation p = -p(pt(.x, 0, f ) , w h e r e p is the l i q u i d density. The h y d r o d y n a m i c force Fo(t) acting o n the entering body Is g i v e n b y f ( f ) = tl{ma(.t)h{t))/dt w i t h i n the W a g n e r theory, w h e r e 'na(t) = {K/2)pc'^{t) is the added mass o f the flat disk a p p r o x i m a t i n g the w e t t e d area o f the body. I t Is w e l l k n o w n that the Wagner theory overpredlcts the h y d r o d y n a m i c force f o r moderate deadrise angles o f the body b u t provides a reasonable a p p r o x i m a t i o n f o r small deadrise angles, arctan(/'(x)) < 2 0 ° , w h e n the loads are very h i g h .

To I m p r o v e the performance o f the W a g n e r model, i t was m o d i f i e d by I n c l u d i n g nonlinear terms b u t o n l y i n the B e r n o u l l i equation for the pressure (see K o r o b k l n [12]). The c o r r e s p o n d i n g m o d e l is k n o w n as the m o d i f i e d Logvlnovlch m o d e l ( M L M ) . This m o d e l was validated against n u m e r i c a l and e x p e r i m e n t a l results on w a t e r e n t r y o f b o t h s i m p l e shapes (wedge, circular c y l i n d e r ) and ship sections. It was no-ticed i n [ 1 3 ] that the M L M can be used i n calculations o f s l a m m i n g loads f o r ship sections w h i c h are n o t t h i n ( b o w sections). For m o r e general shapes, such as bulbous ship sections, the so-called gener-alised W a g n e r m o d e l was r e c o m m e n d e d .

The generalised Wagner m o d e l ( G W M ) was i n t r o d u c e d by Zhao et al. [ 6 ] . W i t h i n this m o d e l the b o d y b o u n d a r y c o n d i t i o n Is Imposed on the actual p o s i t i o n o f the e n t e r i n g surface, the free-surface boundary c o n d i t i o n s are linearised and Imposed o n the p i l e - u p height, w h i c h

is d e t e r m i n e d as p a r t o f the solution. The h y d r o d y n a m i c pressure Is given b y the nonlinear Bernoulli equation. The m o d e l was I n -vestigated by M e l , L i u and Yue [14] using the c o n f o r m a l m a p p i n g technique. The c o n f o r m a l m a p p i n g was used to t r a n s f o r m the flow region I n t o the l o w e r half-plane. The w e t t e d p a r t o f a s y m m e t r i c section was d e t e r m i n e d b y the Wagner c o n d i t i o n . The c o r r e s p o n d -ing Integral e q u a t i o n was solved by us-ing Chebyshev p o l y n o m i a l s . This m e t h o d was f u r t h e r developed by M a l l e r o n et al. [ 1 5 | , w h o ac-counted f o r singularities o f the c o n f o r m a l m a p p i n g at the i n t e r s e c t i o n points b e t w e e n t h e free surface and the m o v i n g body. Nevertheless, they n o t i c e d that the predictions o f the h y d r o d y n a m i c forces acting on e n t e r i n g bodies by G W M are not as good as those b y M L M , w h e n w e compare the theoretical forces w i t h the measured ones. This re-sult is n o t logical because f o r m a l l y G W M Is superior w i t h respect to M L M . However, i n b o t h the original Wagner m o d e l ( G W M ) and in M L M the integrations o f the calculated pressures are p e r f o r m e d rather accurately i n contrast to the G W M , in w h i c h calculations are done n u m e r i c a l l y w i t h o u t account for b o t h the flow and pressure singularities at the contact points. G W M predicts the pressures m u c h better t h a t M L M w h e n compared w i t h the f u l l y n o n - l i n e a r p o t e n t i a l s o l u t i o n but, strangely, the total h y d r o d y n a m i c force b y M L M bet-ter fits available e x p e r i m e n t a l data. A possible e x p l a n a t i o n o f this strange result was g i v e n by Malenica and K o r o b k l n [ 1 6 ] w h o h i g h -l i g h t e d t h a t G W M m a t h e m a t i c a -l -l y Is m o r e c o m p -l e x t h a n b o t h O W M , w h i c h a l l o w s analytical solutions and has no d i f f i c u l t i e s w i t h n u m e r i -cal treatments because computers actually are n o t i n v o l v e d , and f u l l y n o n - l i n e a r p o t e n t i a l m o d e l , i n w h i c h there are no contact points due to j e t flows i n a p r o x i m i t y o f the body surface and the v e l o c i t y field and the pressure d i s t r i b u t i o n are s m o o t h over the w e t t e d p a r t o f the e n t e r i n g body. G W M by Zhao et al. [6] j u s t looks s i m p l e b u t It is n o t so. Intensive theoretical t r e a t m e n t of this m o d e l Is needed to increase the p o t e n t i a l o f G W M to be used i n practical n u m e r i c a l calculations. I n the present study, analytical calculations o f the flow a n d pres-sure d i s t r i b u t i o n s are e m p l o y e d m u c h deeper t h a n i t has been done so far. Singular components o f the flow v e l o c i t y a n d the pressure are distinguished and treated carefully. The original p r o b l e m is reduced to t w o n o n - l i n e a r i n t e g r a l equations, w h e r e one o f t h e m serves to evaluate the c o n f o r m a l m a p p i n g o f the flow region and the o t h e r one to c o m p u t e the p o s i t i o n o f the contact p o i n t B o t h equations are s i n -gular b u t t h e i r solutions can be obtained w i t h g o o d accuracy. W e use the c o n f o r m a l m a p p i n g technique as in Mel et al. 114] a n d M a l l e r o n et al. [ 15|. Singularities o f the corresponding c o n f o r m a l m a p p i n g w e r e studied b y K o r o b k l n and i a f r a t i [ 1 7 ] . The o b t a i n e d s o l u t i o n s p r e d i c t accurately the h y d r o d y n a m i c forces for b l u n t sections s i m i l a r to M L M but a d d i t i o n a l l y t h e y give access to the pressure d i s t r i b u t i o n s w h i c h is n o t available w i t h i n M L M and can be used for bulbous b o w sections. Calculations o f the forces and the pressures by the present v e r s i o n o f the G W M are as q u i c k as i n M L M but require precalculations w h i c h depend o n l y on the body shape b u t not o n the b o d y m o t i o n .

2. Formulation of the problem

W i t h i n the generalised W a g n e r m o d e l the l i q u i d flow Is g o v e r n e d by the equations v 2 ^ = 0 ( y < ƒ ( X ) - / 1 ( f ) , |x| < c ( t ) ) u ( y < H ( t ) , | x | > c ( t ) ) , ( 3 ) V = 0 ( y = H ( t ) , | x | > c ( t ) ) . ( 4 ) S , ( x , t ) = v > y ( x , H ( t ) , 0 ( | x | > c ( f ) ) , ( 5 ) <Py = f'W'P.-hiC) ( y = / ( x ) - / i ( t ) , | x | < c ( t ) ) , ( 6 ) V ^ O ( x 2 + y 2 _ o o ) , (7) H ( t ) = / [ c ( f ) ] - / i ( t ) . (8)

(3)

S{X,0) = 0. c ( 0 ) = 0 . (9)

Position o f the section e n t e r i n g w a t e r is given b y the equation y =J{x)

- hit), w h e r e the s m o o t h even f u n c t i o n ; ( x ) describes the shape o f the

secdon. Position o f t h e l i q u i d free surface after the impact, y = S{x, f), S{-x, t) = S{x, t), S(x, 0 ) = 0, a n d the h o r i z o n t a l size o f the contact region, - c ( f ) <x< c(t), b e t w e e n t h e l i q u i d and the body are u n k n o w n in advance and have t o be d e t e r m i n e d as part o f the solution. The f r e e -surface b o u n d a r y conditions (4) and (5) are linearised and imposed on the line y = Hit), \x\ > c(t), w h e r e H ( t ) = S[c(t), t ] . The body boundary c o n d i t i o n (6) is taken i n its o r i g i n a l f o r m and is imposed on the actual position o f the body surface.

If the f u n c t i o n c(f) is k n o w n , t h e n one can calculate H( t ) by using (8) and solve the boundary-value p r o b l e m (3), (4), ( 6 ) and (7). Then one integrates the k i n e m a t i c c o n d i t i o n ( 5 ) subject to the i n i t i a l conditions (9), evaluates S[c(t), f ] = Hit) and checks Eq. (8). If the f u n c t i o n c(t) was g i v e n correctly, Eq. (6) is I d e n t i c a l l y satisfied at any time instant f.

Once the boundary-value p r o b l e m ( 3 ) - ( 9 ) has been solved, the h y d r o d y n a m i c pressure p(x, y, f ) i n the f l o w region is c o m p u t e d by using the non-linear and unsteady Bernoulli equation

pix,y.t) = ^p(^Vt+l\^'P\^y (10)

Gravity a n d surface tension effects are n o t taken i n t o account w i t h i n this approach, as w e l l as the presence o f the air.

Note that the conditions (4) and (6) do not m a t c h each o t h e r at the contact points, x = ± c(t). As a result, the f l o w velocity is singular at these points and the pressure ( 1 0 ) tends to - o o w h e n the contact points are approached. In the present version o f G W M , o n l y positive pressures matter.

The p r o b l e m ( 3 ) - ( 1 0 ) Is m u c h more complicated than b o t h the O W M and M L M . This is due to the fact that the flow region changes in time w i t h i n G W M b u t n o t w i t h i n O W M and M L M . As a result, the c o m p l e x velocity p o t e n t i a l (1) cannot be used w i t h i n G W M a n d the flow should be c o m p u t e d at each time instant. Eq. (2) for t h e coor-dinates o f the contact points x = ± c ( f ) also cannot be used i n the G W M a n d the f u n c t i o n c(f) is c o m p u t e d by using the original W a g n e r c o n d i t i o n t h r o u g h i n t e g r a t i o n o f the kinematic boundary c o n d i t i o n (5). Note that this m o d e l cannot be derived f r o m the f u l l y n o n l i n e a r potential model, w h i c h is resembled by G W M b u t has no f o r m a l rela-tion w i t h i t . Nevertheless, the pressure d i s t r i b u t i o n s p r o v i d e d by the G W M (3 ) - ( l 0) are v e r y close to those by the f u l l y nonlinear p o t e n t i a l m o d e l f o r all shapes studied so far.

Despite o f a significant d i f f e r e n c e between G W M and the O W M , the s o l u t i o n o f w h i c h Is given by ( 1 ) , some Ideas and finding f r o m the o r i g i n a l Wagner m o d e l can be applied to the p r o b l e m ( 3 ) - ( 9 ) i f a c o n f o r m a l m a p p i n g o f the flow region onto the l o w e r h a l f - p l a n e is k n o w n .

3. Conformal mapping

The v e l o c i t y p o t e n t i a l <pix, y, t) is d e f i n e d i n the region i2(c) s h o w n in Eq. (4). Note that this region is d i f f e r e n t f r o m the flow region, w h i c h is bounded by the f r e e surface y = S(x, t ) . The region fi(c) depends o n the coordinates o f t h e contact points x = ± c(t) and the shape o f the section, b u t not on the t i m e f d i r e c t l y . I t is convenient to I n t r o d u c e a u x i l i a r y complex plane ( = ^ + it} and the c o n f o r m a l m a p p i n g z = z ( f ) o f the l o w e r half-plane ;/ < 0 o n t o the region i2(c) i n t h e z - p l a n e as (see Fig. 2 f o r b o u n d a r y correspondence)

z = i H ( t ) + F ( f , c ) , (11) w h e r e F ( f , c) is an analytic f u n c t i o n i n < 0, such that F( ± 1, c) = ±c

a n d F ( f , c ) ~ F o c ( c ) i : as \(\ c o . A r e a l f u n c t i o n F:,c(c) is the c o e f f i c i e n t in the f a r - f i e l d asymptotics o f the c o n f o r m a l m a p p i n g (11). The real and i m a g i n a r y parts o f the analytic f u n c t i o n s F ( f , c) o n the b o u n d a r y Ï; = - 0 , - (X)< f < -F oo are denoted a s X ( f , c) and y(?, c). The intervals

©

Fig. 2. Tlie boundaiii correspondence for the conformal mapping z = z(i;, c).

^ < - 1 and f > 1 o f the boundary = 0 correspond t o the lines y =

Hit), \x\ > c(t) i n the z-plane. Therefore, y ( § , c) = 0, w h e r e |$| > 1. The

i n t e r v a l - 1 < ^ < 1 , = 0 corresponds to the w e t t e d p a r t o f the body surface, w h e r e y =Jix) - hit), w h i c h gives

y ( ? . c ) = / [ X ( t c ) ] - / ( c ) ( l f l < l ) . ( 1 2 ) Eq. (12) indicates that the boundary-value p r o b l e m w i t h respect to the

analytic F(<;, c) is nonlinear and can be solved f o r d i f f e r e n t c separately. I t is seen that the c o n f o r m a l m a p p i n g is k n o w n i f the f u n c t i o n X ( f , c), w h e r e |?| < 1, i n (12) is k n o w n . W e shall derive an i n t e g r a l equation w i t h respect to the d e r i v a t i v e X f ( f , c).

Let us consider the f u n c t i o n G ( c , c) = i ( F ^ ( f . c) - Fy,ic))y/^^ - 1, w h i c h is analytic i n the l o w e r half-plane <; < 0 e n d decays as f oo. Here ^ _ i ~ < as |cl ^ oo and ^i;^ - 1 = w h e r e f = ^ - iO and t > 1, ^ f ^ - 1 = - - / ^ ^ - 1, w h e r e ^ = § - (0 and f < - 1 ,

- 1 = - i V l --§2, w h e r e f = ^ - iO a n d |?| < 1. The real part o f the f u n c t i o n G ( f , c) on the boundary f = ^ - lO is

[ 0 ( I ^ I > 1 ) .

9 A [ G ( ^ - I O , C ) ] =

[ ( X f ( ? , c ) - F ^ ( c ) ) y i - f 2 im<\) a n d i m a g i n a r y part is

J [ C ( ? - ! 0 . c)] = y f ( ? . c ) y i - f 2 ,

w h e r e |^| < 1. The real and imaginary parts o f the analytic i n ;/ < 0 f u n c t i o n are related by the H i l b e r t f o r m u l a [18], w h i c h gives

n ( f . c ) y w 2 = i P . v . | \ x f ( r , c ) - F , , ( c ) ) ^ ^ Ï ^ J ^ . ( 1 3 ) w h e r e the integral Is understood as the Cauchy p r i n c i p a l value i n t e -gral a n d - 1 < f < T i n f o r m u l a (13), the d e r i v a t i v e y f ( f , c) is calculated b y using (12), Yf (^, c) = ƒ [ X ( f , c)|X{($, c), and

P.v.f ^ ï ^ ^ = -.^ ( R K l ) .

I t is seen t h a t i t is convenient to i n t r o d u c e a n e w u n k n o w n f u n c t i o n

Uil;, c) = X t ( f . c j ^ l - ?2/F^(c), I f l < 1, w i t h respect to w h i c h Eq.

(13) takes the f o r m

f [ X ( f . c ) ] U ( f , c ) - l Uir,c)dr ( | f | < l ) . (14)

This is a singular nonlinear integral e q u a t i o n w i t h respect to the f u n c -tion U ( f , c). The f u n c t i o n U ( f , c) is an even f u n c t i o n o f f f o r s y m m e t r i c shapes. The s o l u t i o n o f Eq. (14) should satisfy the e q u a l i t y

1 / ' ^ ^ ^ = 1. ( 1 5 )

w h i c h f o l l o w s f r o m (14) and the c o n d i t i o n t h a t X ^ ( f , c ) \ / l - f ^ _ i . Q

as If I ^ 1. The latter c o n d i t i o n comes f r o m the local analysis o f the c o n f o r m a l m a p p i n g near the contact points [ 1 7 ] . The local analysis provides i n the present notations

F ; « . C ) = c , ( i : - 1 ) - ' - " " ' / ' - F C , ( ? _ I ) ' - 2 > * ) / - T + q |-(^ _ l y - K o / . T j ( i g )

as f - i - 1, w h e r e Ci(c) and C2(c) are real u n d e t e r m i n e d f u n c t i o n s a n d

yic) is the deadrise angle at the contact p o i n t , yic] = t a n ^ ' [ f ( c ) ] . The

a s y m p t o t i c f o r m u l a (16) shows that U ( f , c) = 0 [ ( 1 - f / " ' ^ " ' ' f ^ " ' " ] as f 1 w h i c h j u s t i f i e s t h e c o n d i t i o n ( 1 5 ) . The local analysis also shows

(4)

34 T.I. Khabakhpasheva et al./Applied Ocean Research 44 (2014) 29-38

and the s o l u d o n o f the i n t e g r a l equation ( 1 4 ) is g i v e n by

-1/2 ( / ' ^ + l ) c o s ) / - f 2 / t S ( f , c ) = 4;^2(c) ( l + f ) » *

-[1 + +2iL cos y f

(53)

S ( l , c ) = 4;<2(c) 2 - ' ' o - ' / 2 c o s K , M = ( | ^ )

The f u n c t i o n m(c, CQ) i n Eq. (38) is g i v e n f o r the circular c y l i n d e r by the f o r m u l a

2 c g ( l + . ) ( c ^ c g ) - ' - ' - ' ° '

ko^c^>W(c + C o ) ' * ' ^ « ) ( l - X ) ^ ' C + Co

J

(54)

Both Eq. ( 5 4 ) and Eqs. (39) and (53) p r o v i d e 2 i - i / / f o ( c )

m(c, c) =

6.2. Numerical integration of the integral equation (14)

The i n t e g r a l e q u a t i o n ( 1 4 ) is solved b y iterations f o r a g i v e n value o f c. As a first guess w e t a k e X < ° ' ( f , c) = cf and c o m p u t e the s o l u t i o n [ / ( f , c). Then w e calculate F ^ ( c ) and the next a p p r o x i m a t i o n o f X ( i ) ( f , c) b y ( 1 9 ) . The o b t a i n e d f u n c t i o n X ( i ' ( f , c) Is s u b s t i t u t e d In ( 1 4 ) and the e q u a t i o n is solved again. A t each step o f i t e r a t i o n s j, j > 1, w e c o m p u t e

s = m a x X t J J ^ . c )

-o<«<i ' X " - " ( f , c )

Iterations stop w h e n S Is smaller than a prescribed value S>. The p r o -cedure consists o f t w o steps: (1) n u m e r i c a l s o l u t i o n o f Eq. ( 1 4 ) f o r a g i v e n X ( f , c); ( i i ) i n t e g r a t i o n s i n (19). The results o f calculations are v a l i d a t e d w i t h respect to the k n o w n solutions f o r w e d g e and c i r c u l a r cylinder.

For a g i v e n f u n c t i o n X ( f , c) l e t us d e n o t e / [ X ( t , c)] i n (14) b y y ( f ) . The dependence o f the s o l u t i o n o n c Is d r o p p e d i n this subsection. W e use the f a c t t h a t U ( f ) is an even f u n c t i o n . Then Eq. (14) can be w r i t t e n as

Jr J 0

r-F?

U ( r ) d r = f ( 0 < f < l ) . ( 5 5 ) The f u n c t i o n U ( f ) is sought i n the f o r m (17) w i t h S ( f ) being a n e w u n k n o w n s m o o t h f u n c t i o n w h i c h has a c e r t a i n value S ( l ) at f = 1.

The i n t e r v a l 0 < f < 1 is d i v i d e d I n t o N subintervals [ f j , f j + , ], w h e r e f j = i i - \ )/N, 1 < J < N . The f u n c t i o n S ( t ) is a p p r o x i m a t e d by a constant Sj w i t h i n the i n t e r v a l f j < f < f j + , . The constants Sj are u n k n o w n . There are N such u n k n o w n constants. They are d e t e r m i n e d by c o l l o c a t i o n m e t h o d . Collocation points Xj are placed In the Intervals [ f j , f j + 11 i n such a w a y t h a t Xj = f j -i- aj, w h e r e aj, 0 < a ; < 1 / N are parameters o f the c o l l o c a t i o n m e t h o d . I n the present calculations aj = 1/(2N). This is, the c o l l o c a t i o n points are placed at the m i d d l e o f the intervals [ f j , f_,- + , ] .

Eq. ( 5 5 ) leads to N algebraic equations

w h e r e

/

tnin +l r - X i r + Xj ( l - r j ^ d r .

(56)

(57)

The i n t e g r a l i n (57) has been reduced to a p o w e r series, coefficients o f w h i c h ffi decay as w h e n i ^ oo. In calculations 100 terms i n the series w e r e retained.

Fig. 3. The function S(i;, c) calculated for c = 0.125, 0.25 and 0.5 (lines 1-3) as the solution of the integral equation (14) for the unit circular cylinder (solid line) and by formula (53) (dashed line).

S u b s t i t u t i n g (17) i n t o (19), w e a r r i v e at the f o r m u l a e f o r F^{c) and Xixj. c) X[Xj.c)=F^{c) J - 1 J2S"l''"-Ln+^] + S j { L j - L { X j ) ) (58) (59) w h e r e Ln = L (?n) L{xj) =

j

(1 - r)''dr

72

o~xj)^j2

m=0 am m+l<o

the coefficients am are calculated b y the recurrence r e l a t i o n

2 m -

1

2 m ao = 1.

N e x t w e calculate y{Xj) = f'[X{xj, c ) l and solve the system (56) again. The iterations stop w h e n S < c/lOON. Usually less t h a n five steps o f iterations are needed.

Validation for unit circular cylinder. The n u m e r i c a l a l g o r i t h m o f

this subsection is validated against the k n o w n s o l u t i o n (51), (53) f o r the circular cylinder. I n the present case, 0 < c < 1. The f u n c t i o n S(f, c) f o r several fixed values o f c is s h o w n i n Fig. 3 f o r N = 40 i n (56). I t is seen t h a t the n u m e r i c a l s o l u t i o n oscillates near the centre o f the contact region. However, close to the c o n t a c t points, w h e r e the pressures are expected to be m u c h h i g h e r t h a n at the centre, the agreement is v e r y good. For finer mesh i n f w i t h N = 100 these oscillations disappear. However, calculations w i t h N = 100 do n o t p r o v i d e s i g n i f i c a n t i m p r o v e m e n t In terms o f S ( l , c) and the c o e f f i c i e n t

Focic) s h o w n i n Fig. 4.

Validation for the wedge of 45'. I t was s h o w n t h a t the proposed

a l g o r i t h m w e l l reproduces the a n a l y t i c a l s o l u t i o n ( 5 0 ) f o r the wedge. The analytical f o r m u l a e (50) p r e d i c t t h a t the f u n c t i o n S(f, c) is I n -d e p e n -d e n t o f c. W e fin-d exact value S ( l , c) = 0.8409 an-d n u m e r i c a l values S ( l , c) ^ 0.8483 f o r N = 40 ( r e l a t i v e e r r o r is 0.9%) and 0.8440 f o r N = 100 (relative e r r o r Is 0.4%). The f u n c t i o n S(f, 0.5) is s h o w n i n

(5)

\

[

"—' i J L . , ^ f

.(0 /

\

. L _ _ _

Fig. 4. Tlie function S( 1, c) calculated as tlie solution of the integral equation (14) w i t h N = 100 for the unit circular cylinder (solid line) and by formula (53) (dashed line) and the coefficient F^[c) calculated by formula (19) and the solution of integral equation ( 1 4 ) w i t h N = 100 forttie unit circular cylinder (solid line) and by formula (51) (dashed line).

S(£.0.5)

^^^^^^

ü

0

i

i

C b )

Fig. 5. (a) The function S(f, 0.5) predicted by the integi-al equation (14) for the wedge of 45 degrees w i t h N = 100 (solid line) and by formula (50) (dashed line), (b) The coefficient f ^ ( c ) calculated by formula (19) w i t h N = 40 (solid line) and by formula (49) (dashed line).

Fig. 5a w i t h JV = 100 and the c o e f f i c i e n t F x ( c ) i n Fig. 5b w i t h N = 40. It is seen, t h a t the agreements are v e r y good.

6.3. Integral equation (38) and its solution

Accurate calculation o f the size o f the c o n t a c t region, w h i c h is described b y the f u n c t i o n c(f), is crucial f o r the success o f the pressure p r e d i c t i o n . I n equation (38), the shape f u n c t i o n / ( c ) and the power/£-(c) are k n o w n , and the f u n c t i o n m(c, CQ) depends o n l y on the c o n f o r m a l m a p p i n g .

The f u n c t i o n ni(c, CQ) is given by f o r m u l a ( 5 4 ) f o r the u n i t circular c y l i n d e r a n d calculated by the m e t h o d described i n Section 5. The a n a l y t i c a l and n u m e r i c a l results are c o m p a r e d I n Fig. 6. I t is seen t h a t the a g r e e m e n t is very good.

The I n t e g r a l equation (38) is solved by the c o l l o c a t i o n m e t h o d w i t h CniB.v b e i n g the m a x i m u m value o f the f u n c t i o n c(t) and Nc the n u m b e r o f the collocation points q = iAc, w h e r e 1 < i < Nc. Ac =

Fig. 6. The function m(c, co) computed by the piesent numerical method (solid lines) and by the analytic formula (54) for c = 0.25,0.5 and 0 7 5 (lines 1-3).

Cmax/Nc. Eq. (38) provides

f(Ci) =

m ( C j , C o ) d c o

2 if.2

o/'-i

, » ( Q ) ' ( 6 0 )

w h e r e C j _ i = 0 at j = 0 and 1 < / < Nc. The p r o d u c t s N{cQ)m{cu CQ), w h e r e Cj _ i < CQ < c,-, are a p p r o x i m a t e d by linear f u n c t i o n s

N(r,i)ra(r,.r,i)=N(rj i ) m ( r , . r j , ) + | N ( C j ) m ( r i . r , ) - N (r, i ) m ( r , . r , i ) | ( r „ ^ c , , ) / A r . (61)

S u b s t i t u t i n g ( 6 1 ) i n (60) and rearranging terms, w e o b t a i n A c / ( Q ) - E > ' i N j m i . j |cj+,Si.j+, - Cj_,S,.j + P(j - Pi.j+i 1 Hi = N,- = N ( C i ) . ' I.J ƒ -m,., |Pi,, -c,_,S,., ] mi,j =m{Ci.Cj).

codco

(62)

f i

dCn ^ - ' ( l - c 2 / c ? ] The coefficients S j j and Pij are calculated by f o r m u l a e

: C i 2 ' - 2 ' ' i 2 ( 1 - / ^ i ) • C j - i 2Ci

V

2ci .2\ ' - ' ' i w h e r e the f u n c t i o n i((z) is ( 6 3 ) ( 6 4 ) (65)

For the u n i t c i r c u l a r c y l i n d e r the calculated f u n c t i o n N(c) Is s h o w n i n Flg.7 by the s o l i d line. I n the calculations c,„ax = 1 and Nc = 50.

The dashed line is f o r this f u n c t i o n predicted by the W a g n e r t h e o r y f o r equivalent parabolic c o n t o u r y = ( 1 / 2 ) x 2 . I n the W a g n e r t h e o r y

N{c) = ( l / 2 ) c . It is seen t h a t the W a g n e r theory can be used i n c o m b i

-n a t i o -n w i t h the a p p r o x i m a t i o -n o f the circular c y l i -n d e r by a parabolic c o n t o u r f o r 0 < c < 0.4.

6.4. Pressure distribution and the total force

The h y d r o d y n a m i c pressure i n the w e t t e d area, 0 < x < c o f t h e body is g i v e n by Eqs. ( 2 5 ) - ( 2 7 ) w h i c h yield

p = />/i2 / l , ( f , c ) ( l ~ f ) -k{c) _ ' 4 2 ( t . C ) ( l - f ) -2k{c:

+

( 6 6 )

(6)

36 T.I. Khabakhpasheva et al. /Applied Ocean Research 44 (2014)29-38

0 0,1 0 2 0.3 0.7 0.9 O.ït

Fig. 7. Tlie function N(c) for the unit circular cylinder predicted by Eq. (38) (solid line) and by the Wagner theory (dashed line).

1

!

1 " " 5 0,1 0.15 0 2 0,25 0.1 !

1

!

_ J

]

——

r

1 " ]

r

1 "

1

1

i

j 0 0 1 0 2 Ö.3 0 4 0 5 0 6 0.7 0 3 0.0

Fig. 8. The functions P,{x, c) (solid line) and P„(x, c) (dashed line) f o r the unit circular cylinder at c = 0.3 (a) and c = 0.6 (b). Calculations are performed w i t h N = 200 and Nc = 100.

W h e r e t h e f u n c t i o n s / l i ( f , c), / l 2 ( f . c), P „ ( f , c) and /13(c), 744(c) are s m o o t h , d e p e n d e n t o n l y o n the shape o f the body a n d can be p r e -c o m p u t e d . The values o f the f u n -c t i o n s 7 4 , ( f , -c), / l 2 ( f , -c), P,v(f, -c) are calculated at the c o l l o c a t i o n points f = Xj o f Eq. (14). The derivadves W i t h respect to c In / 4 , ( f , c) and 743(c) are calculated b y the finite d i f f e r e n c e m e t h o d . A t points d i f f e r e n t f r o m the c o l l o c a t i o n points, the f u n c t i o n s are calculated by linear i n t e r p o l a t i o n . The f u n c t i o n s Pv(f, c) a n d Pvv(f, c), w h e r e x =X{l, c), d e p e n d o n l y o n the b o d y shape. These f u n c t i o n s o f x are d e p i c t e d f o r the u n i t circular c y l i n d e r In Figs. 8 and 9 f o r c = 0.3 and c = 0.6. Details o f the f u n c t i o n s Pvix, c) close to the c o n t a c t p o i n t x = c, w h e r e Pv - c o , are n o t s h o w n i n these figures. It is seen t h a t P^ix, c) is rather small d u r i n g t h e i n i t i a l stage w h e n c « 1.

P

1 T \ / !

y r

1 1 . - - ' 1 L

/ / / / / f ^ / i i

i

/ / / \

1

1-—-T

i

i

1 1 i

i

Fig. 9. The added mass of the unit circular cylinder M„(c)/p. Solid line is for N = 150, Nc = 100, crosses are for N = 50, Nc = 40, and dashed line is f o r the added mass of "equivalent flat plate", Mo/p = ( j r / 2 ) c ' .

Fig. 10. The funcdon £(c) f o r the unit circular cylinder: Solid line is f o r N = 150, Nc •¬ 100, crosses are for N = 50, Nc = 40.

The h y d r o d y n a m i c force F(t) is g i v e n b y the f o r m u l a (28), w h e r e o n l y p o s i t i v e pressures are integrated. W i t h i n the a p p r o a c h b y M e l et al. [14], w i t h f . ( t ) = 1 i n (28), the force Is g i v e n b y (29) and does n o t r e q u i r e calculations o f the pressure d i s t r i b u t i o n . I n (29), Ma(c) is the added mass o f the b o d y and £ ( c ) Is a f u n c t i o n o f the size o f the w e t t e d region c. The f u n c t i o n s Ma(c)//) and £ ( c ) f o r the u n i t c i r c u l a r c y l i n d e r are s h o w n i n Figs. 9 and 10. It Is i m p o r t a n t to n o t i c e t h a t E(c) is negative and tends to a non-zero value as c ^ 0. Therefore, the second t e r m In (29) provides an i m p o r t a n t c o n t r i b u t i o n to t h e total force F„,/j,(t) f o r s m a l l times. W i t h i n the W a g n e r t h e o r y o f " f l a t -disk a p p r o x i m a t i o n " the h y d r o d y n a m i c force Fw(t) is g i v e n by the first t e r m In (29), w h e r e Ma{c) = {jr/2)pc\t) and c ( t ) = 2 ^ / m . For constant speed V o f the cylinder, the W a g n e r m o d e l provides F,v(f) = 2;7-p\/2R.

A better a p p r o x i m a t i o n o f the force is given by t h e second-order W a g n e r t h e o r y [19], w h e r e , F it) pV^R By using Eqs. (51 £ ( c ) ^ - ^ R 2;r - 2 (TT -F 2) y V t / R .

(53) f o r a circular cylinder, one can s h o w t h a t

as c 0. Thus, the m e t h o d by M e l et al. [14] u n d e r p r e d i c t s the force a t t = 0 b y 2 5 % .

The forces calculated b y the positive pressure i n t e g r a t i o n a n d b y the m e t h o d o f M e i et a l . [ 1 4 ] are s h o w n i n Fig. 1 1 . For c o m p a r i s o n , e x p e r i m e n t a l results by A r m a n d and Cointe [19] and M L M p r e d i c t i o n [ 1 2 ] are also s h o w n . I t is seen t h a t the forces by G W M and M L M are v e r y close to each o t h e r f o r 0 < f < 0.2. The f o r m u l a ( 2 9 ) u n d e r p r e d i c t s

(7)

pV-R ,

1

1

i .1

: ! - . .

i i

I I I i ; i

1

i i . 1 ' : I'l/R Fig. 1 1 . Tlie force acting on tlie circular cylinder of radius R entenng water at constant speed V. The non-dimentional force given by the generalised Wagner model (28) w i t h integration of the positive pressures is shown by the solid line, by the method of Ivlei et al. | 1 4 | by the dashed line. Crosses are for experimental results by Cointe and Armand [20|, and pluses are for MLM 112].

the force o n this i n t e r v a l . However, f o r 0.2 < f < 0.45 the p r e d i c t i o n by G W M is very close to t h a t by ( 2 9 ) b u t M L M u n d e r p r e d i c t s t h e force o n this i n t e r v a l . The deadrise angle at the contact points at Vt/R = 0.2 is estimated as 70". One m a y conclude that M L M can be used for shapes w i t h deadrise angles smaller than 70=.

6.5. Summary of the numerical algorithm

In this subsection, w e s u m m a n s e the steps o f the described algor i t h m to h e l p a algoreadealgor w i t h its i m p l e m e n t a t i o n . The a l g o algor i t h m p algor o -vides the pressure d i s t r i b u t i o n a l o n g the w e t t e d part o f an s y m m e t r i c section e n t e r i n g w a t e r v e r t i c a l l y , and the total h y d r o d y n a m i c force F(t) a c t i n g o n this section. The n u m e r i c a l procedure consists o f f o u r steps. First t w o steps do n o t require the m o t i o n o f t h e b o d y b u t o n l y its s h a p e / ( x ) .

Step 1. Numerical conformal mapping.

A t this step w e specify the h o r i z o n t a l p o s i t i o n x = c o f the c o n t a c t point, 0 < c < Cmax, and solve n u m e r i c a l l y the integral e q u a t i o n ( 1 4 ) w i t h respect to the regular f u n c t i o n S(?, c) i n t r o d u c e d b y (17). Note t h a t i n t h e present a l g o r i t h m w e proceed b y steps i n c b u t n o t i n time t. The dependence c = c ( f ) w i l l be recovered at the end o f the n u m e r i c a l calculations f o r a prescribed m o t i o n o f the body.

The integral e q u a t i o n ( 1 4 ) is discretised leading to the system o f equations (56), w h e r e k = ( 1 / 2 ) - ( y ( c ) / j r ) and y ( c ) is the dead-rise angle o f the body at x = c, tan / ( c ) = ƒ ( c ) . The coefficients Aj„ i n the sys-t e m are g i v e n by insys-tegrals ( 5 7 ) w h i c h are evaluasys-ted n u m e r i c a l l y . The coefficients / ( x j ) i n ( 5 6 ) depend o n the s o l u t i o n , y{Xj) = f'[X{xj.c)],

this is w h y the system ( 5 6 ) is solved by Iterations. As the i n i t i a l guess w e t a k e X ( 0 ) ( f , c) = c f , w h i c h gives Y^°\xj) = f'{cxj). The linear sys-tem (56), w h e r e y ( X j ) is a p p r o x i m a t e d by ƒ ( c X j ) , is solved by the Gauss m e t h o d w i t h respect to Sj = S ( f , c), f j < f < f j + i .

N e x t w e calculate F ^ ( c ) by the f o r m u l a ( 5 8 ) and the first I t e r a t i o n X ( i ' ( X j , c) o f the c o n f o r m a l m a p p i n g by ( 5 9 ) . If the i n i t i a l guess X<°'(Xj, c) = cXj a n d the result o f the first i t e r a t i o n X(''(x,-, c) are close to each other, iterations are t e r m i n a t e d and w e proceed to the n e x t value o f the c o o r d i n a t e o f the contact p o i n t c + Ac, w h e r e Ac is a prescribed step In c. I f the result o f the first i t e r a t i o n is n o t satisfactory, w e c o n t i n u e w i t h iterations s e t t i n g y{Xj) = / ' [ X ' i ) ( X j . c)] a n d s o l v i n g the linear system (56) once again. Then w e c o m p u t e n e w a p p r o x i m a t i o n s of Foc(c) a n d X^^1{Xj, c) b y (58), ( 5 9 ) and c o n t i n u e w i t h iterations i f X ( ' ' ( X j , c) and X<^'(Xj, c) are n o t close e n o u g h to each other.

At the e n d o f step 1 w e c o m p u t e d the m a p p i n g X ( f , c) f o r a certain mesh i n 0 < f < 1 and f o r d i f f e r e n t values o f c. W e c o m p u t e d also the regular f u n c t i o n S ( f , c) w h i c h is p r o p o r t i o n a l to the d e r i v a t i v e X f ( f . c) = S ( f , c ) . F ^ ( c ) • (1 - f ) ^ - ( ' / 2 ) ( i + 5 ) - ( V 2 ) ^ 0 < f < 1. Note

t h a t negative values o f f and X ( f , c) are n o t considered due to the s y m m e t r y o f the flow d o m a i n . In a d d i t i o n , the d e r i v a t i v e X c ( f , c) is c o m p u t e d by n u m e r i c a l d i f f e r e n t i a t i o n .

Step 2. The Wagner condition by integral equation.

At this step w e c o m p u t e the ratio N(c) = h{t)/c{t) o f the v e r t i c a l speed /7(f) o f the body and the h o r i z o n t a l speed c(C) o f the c o n t a c t p o i n t b e t w e e n the f r e e surface and the m o v i n g b o d y surface. It is i m p o r t a n t t h a t this r a t i o depends on the shape o f the b o d y b u t n o t on its m o t i o n w i t h i n the generalised W a g n e r m o d e l (see Section 5), and I t is governed by the integral e q u a t i o n ( 3 8 ) . This e q u a t i o n is solved n u m e r i c a l l y by f o r m u l a e ( 6 2 ) - ( 6 5 ) . These f o r m u l a e r e q u i r e the f u n c t i o n m(c, CQ), w h i c h is d e f i n e d by ( 4 0 ) t h r o u g h the c o n f o r m a l m a p p i n g c o m p u t e d at step 1. C o m p u t a t i o n o f the f u n c t i o n m(c, CQ) has been reduced to the i n t e g r a t i o n o f the o r d i n a r y d i f f e r e n t i a l e q u a t i o n (47) w i t h the I n i t i a l c o n d i t i o n f = 1 at c = CQ. The d i f f e r e n t i a l e q u a t i o n (47) was integrated by the f o u r t h - o r d e r R u n g e - K u t t a m e t h o d f o r the values o f CQ w i t h step A c The step o f the i n t e g r a t i o n was also equal to A C Note t h a t this is the f u n c t i o n JW(f(c CQ), CQ) o n the right-hand side o f Eq. (47), w h i c h w e need to c o m p u t e m ( c CQ) by ( 4 6 ) b u t n o t the f u n c t i o n f ( c CQ) i t s e l f The f u n c t i o n /W(f, CQ) is c o m p u t e d by ( 4 5 ) n u m e r i c a l l y at each step o f the i n t e g r a t i o n .

Step 3. Elements of tlie hydrodynamic pressure.

The pressure d i s t r i b u t i o n i n the contact region o f the e n t e r i n g body, 0 < X < c, Is g i v e n i n the p a r a m e t r i c f o r m ( 2 5 ) - ( 2 7 ) together w i t h the c o n f o r m a l m a p p i n g x = X ( f , c), w h i c h was c o m p u t e d at step 1. The c o m p u t a t i o n s o f step 2 enter these f o r m u l a e o n l y t h r o u g h the f u n c t i o n N(c) i n (26). Regular elements i n ( 2 5 ) - ( 2 7 ) , w h i c h are n o t singular, are d i s t i n g u i s h e d in f o r m u l a (66). These e l e m e n t s are p r e -c o m p u t e d as f u n -c t i o n s o f f and -c

The m o t i o n o f the b o d y is described by the p e n e t r a t i o n d e p t h h{t) w h i c h m u s t be prescribed i n the present a l g o r i t h m . Note t h a t the f u n c t i o n N(c) provides the r e l a t i o n b e t w e e n the p e n e t r a t i o n d e p t h h and coordinate o f the contact p o i n t c b y

c

h = j N{c)dc.

0

C o m p a r i n g the latter r e l a t i o n w i t h the g i v e n f u n c t i o n h = /i(t), w e c o m p u t e the f u n c t i o n c = c ( f ) and finally the pressure d i s t r i b u t i o n p(x, t ) at any p o i n t o f the w e t t e d area u s i n g i n t e r p o l a t i o n b e t w e e n the nodes Xj and the c o n f o r m a l m a p p i n g f r o m step 1.

Step 4. Hydrodynamic force.

The h y d r o d y n a m i c force F(t) is c o m p u t e d n u m e r i c a l l y by u s i n g the Integral (28). The u p p e r l i m i t f > ( t ) In this i n t e g r a l is i m p o r t a n t f o r accurate p r e d i c t i o n o f the force by the generalised W a g n e r m o d e l . The f u n c t i o n f ' ( f ) is the r o o t o f the pressure (25), w h i c h is the closest to f = 1. To c o m p u t e the root, w e need the regular e l e m e n t s o f t h e pressure and the f u n c t i o n c = c(t) f r o m step 3. The e q u a t i o n p ( f , ( t ) , t ) = ph^ ( f ) Pv ( f , ( f ) . c ( f ) ) + ph"{t) P „ ( f , ( t ) . c ( f ) ) = 0 is solved by the b i s e c t i o n m e t h o d w i t h respect to f - ( f ) at each time i n s t a n t t. Finally the force F(t) is evaluated n u m e r i c a l l y using (28).

7. Conclusion

The generalised W a g n e r m o d e l o f w a t e r i m p a c t w a s i n v e s t i g a t e d by m a t h e m a t i c a l means. Both the v e l o c i t y field and pressure d i s t r i b u -t i o n p r e d i c -t e d by -this m o d e l are singular a-t -the c o n -t a c -t poin-ts. These singularities w e r e d i s t i n g u i s h e d and separated. The regular parts o f the pressure d i s t r i b u t i o n w e r e c o m p u t e d . The w a t e r i m p a c t p r o b l e m was reduced to t w o singular i n t e g r a l equations, n u m e r i c a l solutions of w h i c h w e r e c o m p a r e d w i t h available analytical results f o r wedges and c i r c u l a r cylinders. The n u m e r i c a l a l g o r i t h m s o f s o l v i n g these t w o integral equations w e r e described i n d e t a i l .

I t was s h o w n that, once the n u m e r i c a l confornnal m a p p i n g is k n o w n , b o t h the v e l o c i t y field and the pressure d i s t r i b u t i o n are g i v e n

(8)

38 T.I. Khabakhpasheva et al. /Applied Ocean Research 44 (2014) 29-38

b y a n a l y t i c a l f o r m u l a e w i t h singular and regular elements b e i n g separated. The l a t t e r helps to i n t e g r a t e the pressure accurately, to d e t e r -m i n e t h e t o t a l h y d r o d y n a -m i c force.

I t was s h o w n t h a t the m e t h o d o f [ 1 4 ] , i n w h i c h b o t h negative a n d p o s i t i v e pressures are i n t e g r a t e d , u n d e r p r e d i c t s the f o r c e d u r i n g t h e e a r l y stage b u t is r a t h e r accurate a t the l a t e r stages. W i t h i n this m e t h o d t h e c a l c u l a t i o n o f t h e force is r e d u c e d t o evaluations o f t w o integrals I n f o r m u l a ( 2 9 ) . I t is I n t e r e s t i n g to n o t i c e t h a t the p r e d i c t i o n o f the f o r c e b y M L M is v e r y close to t h a t b y t h e o r i g i n a l G W M f o r deadrise angles s m a l l e r t h a n 7 0 ° .

The a p p r o a c h o f this paper can be generalised to a s y m m e t r i c c o n tours e n t e r i n g c a l m w a t e r w i t h b o t h v e r t i c a l a n d h o r i z o n t a l c o m p o -nents o f t h e b o d y v e l o c i t y . The approach is a p p l i c a b l e o n l y t o m o t i o n s w i t h p r o v i d e m o n o t o n i e e x p a n s i o n o f t h e c o n t a c t r e g i o n I n b o t h d i -rections.

References

[1] Kawakami M , Michimoto J, Kobayashi K. Prediction o f longterm whipping v i -bration stress due to slamming of large full ship in rough seas. International Shipbuilding Progress 1977;24:83-110.

[21 Senjanovic I, Vladimir N, Tomic IVI, Hadzic N, IVlalenica S. Some aspects of struc-tural modelling and restoring stiffness in hydroelastic analysis of large container ships. Ships and Offshore Structures 2013:1-19.

|3] Hermundstad OA, [vloan T. Numerical and experimental analysis of bow are slamming on a Ro-Ro vessel in regular oblique waves. Journal of Marine Science and Technology 2005:10(3):105-22.

[4] Scolan Y-M, Korobkln AA. Three-dimensional theory of water impact. Part 1. Inverse Wagner problem. Journal of Fluid Mechanics 2001 ;440:293-326. [5] Khabakhpasheva Tl, Korobldn AA. Elastic wedge impact onto a liquid surface:

Wagner's solurion and approximate models. Journal of Fluids and Structures 2013:36:32-49.

| 6 | ZhaoR.FalrinsenO.AarsnesJ.Waterentryofarbitrarytwo-dimensionalsecUons w i t h and w i t h o u t o w separadon. In: Proc. 21th symposium on naval hydrody-namics, Trondheim, Norway. 1996.

| 7 ] Battistin D, Iafrati A. Hydrodynamic loads during water entry o f t w o -dimensional and axisymmetric bodies. Journal o f Fluids and Structures 2003;17:643-64.

[8] W u GX, Sun H, He YS. Numerical simulation and experimental study o f wa-ter entry o f a wedge in free fall motion. Journal of Fluids and Structures 2004;19(3):277-89.

|91 Wagner H. Über Stoss- und Gleitvergange an der Oberflache von Fliissigkeiten. Zeitschrift f u r Angewandte Mathemadk und Mechanik 1932; 12(4): 193-235. [10] Oliver JM. Water e n t i y and related problems. D.Phil, thesis. University of

Ox-ford; 2002.

| l l j Korobkln AA. Water impact problems in ship hydrodynamics. In: M Ohkusu (Ed.), Advances in marine hydrodynamics. Southampton, Boston: Computa-donal Mechanics Publicarions; 1996, pp. 3 2 3 - 7 1 .

[12] Korobkln AA. Analytical models of water impact. European Journal of Applied Mathematics 2004;15:821-38.

|13] Tuitman JT. Hydro-elastic response o f ship structures to slamming included w h i p p i n g . PhD thesis. Delft University of Technology; 2O10.

[14] Mei X, Liu Y, Yue DKP. On the water impact of general two-dimensional secrions. Applied Ocean Research 1999;21:1-15.

115] Malleron N, Scolan Y - M , Korobkin AA. Some aspects of a generalized Wagner model. In: Proc. 22nd intern, workshop on water waves and oating bodies, Plitvice, Croatia. 2007.

(16] Malenica S, Korobkin AA. Some aspects o f slamming calculations i n seakeep-ing. In: Proc. 9th international conference on numerical ship hydrodynamics, University of Michigan, USA. 2007.

(17] Korobkin AA, Iafrati A. Hydrodynamic loads during inidal stage of oating body impact.Journal Fluids and Structures 2005;21(4):413-27.

118] Gakhov FD. Boundary value problems. Oxford: Pergamon Press Ltd.; 1966,564 pp.

(19] Korobkin AA. Second-order Wagner theory of wave i m p a c t Journal o f Engineer-ing Mathematics 2007;58(l-4):121-39.

|20] Cointe R, Armand J-L Hydrodynamic impact analysis o f a cylinder. Journal of offshore Mechanics and Arctic Engineering 1987;109:237-43.

Cytaty

Powiązane dokumenty

o skardze na naruszenie prawa strony do rozpoznania sprawy w postępowaniu sądowym bez nieuzasadnionej zwłoki (Dz.U. 1843), rozpoznawanej przez Sąd Najwyższy w sprawie cywilnej,

The analysis starts with an estimation of the hydraulic conductivity in the field, which is the distribution of hydraulic conductivity characterised by its mean, stan- dard

Zostaây one ukazane na tle sĊdów innych specjalistów na temat specyfiki nauczania języka polskiego jako obcego (dalej: JPJO). Przyjęte przez Miodunkę zaâoůenia moůna

Segmental challenge with the individual top-dose of 100 μg carbon nanoparticles showed a significant relative increase of neutrophils (p = 0.05) in peripheral blood as compared

W celu zabezpieczenia się przed kon- sekwencjami uroków rzucanych przez czarownice zbierające się o pół- nocy na sabat, podczas wielu świąt trzaskano z bicza.. Miało to znacze-

Ponadto przy doborze składów uwzględniono wartość współczynnika tolerancji Goldschmidta (tak, by była ona zbliżona do jedności), róż- nicę elektroujemności

– nie każdy program do authoringu zaakceptuje każdy z formatów 7.1 5.1 7.1 2 5.1 8 Maksymalna liczba kanałów 1.3 Mb/s 1.5 Mb/s 912 kb/s 384 kb/s 448 kb/s 6.144 Mb/s Maksymalna

Given the range of the Reynolds numbers of interest for AWE and the specific topology of the LEI kite airfoil, the flow separation on the suction side may occur already from a