• Nie Znaleziono Wyników

Thermodynamic characterization of two layers of CO2 on a graphite surface

N/A
N/A
Protected

Academic year: 2021

Share "Thermodynamic characterization of two layers of CO2 on a graphite surface"

Copied!
5
0
0

Pełen tekst

(1)

ContentslistsavailableatScienceDirect

Chemical

Physics

Letters

j o ur na l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / c p l e t t

Thermodynamic

characterization

of

two

layers

of

CO

2

on

a

graphite

surface

T.T.

Trinh

a

,

D.

Bedeaux

a

,

J.-M.

Simon

b

,

S.

Kjelstrup

a,c,∗

aDepartmentofChemistry,NorwegianUniversityofScienceandTechnology,Trondheim,Norway

bLaboratoireInterdisciplinaireCarnotdeBourgogne,UMR-6303CNRS-UniversitédeBourgogne,Dijon,France

cDepartmentofProcessandEnergyLaboratory,DelftUniversityofTechnology,Delft,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3July2014

Infinalform8August2014

Availableonline14August2014

a

b

s

t

r

a

c

t

Wefindbyexaminationofdensityprofilesthatcarbondioxideadsorbsongraphiteintwodistinctlayers. Wereporttheactivitycoefficient,entropyandenthalpyforCO2ineachlayerusingaconvenient

com-putationalmethod,theSmallSystemMethod,therebyextendingthismethodtosurfaces.Thisopensup thepossibilitytostudythermodynamicpropertiesforawiderangeofsurfacephenomena.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Phasetransformations[1],formationsofnanostructures[1,2], metastablephases[3]oragglomerations[4],aswellaschemical reactions[5]areallphenomenawhichbecomespecialatsurfaces. Asurfacecanalsoposeamajorbarriertotransport[6,7]. Thermody-namicdatawillimprovetheunderstandinganddynamicmodeling ofequilibriumandnonequilibriumstates.Butthermodynamicdata forsurfacesarenoteasilyavailablebyexperiments.Withthe intro-ductionoftheSmallSystemMethod[8,9]computationalresults havebecomefeasible.Thismethodhassofarnotbeenusedto studysurfaces.Inthisworkweextendthemethodtoatechnically importantprocess,thephysisorptionofCO2onagraphitesurface.

Graphiticmembranesarepromisingcheapcandidatemembranes forCO2separationpurposes[10].Theprocesscanbewritten:

CO2(g)+graphiteCO2(s) (1)

where (g) means gas phase and (s) means adsorbed gas. The purposeoftheworkistodemonstratehowthermodynamic infor-mationcanbegainedofanadsorbedstateusingthenewsimulation method.Weshallseethatadsorptiontakesplaceintwodistinct thermodynamiclayers,andthatthefillingintothelayerscanbe regardedasatrade-offbetweentheentropiesandenthalpiesfound foreachlayer.

∗ Correspondingauthorat:DepartmentofChemistry,NorwegianUniversityof

ScienceandTechnology,Trondheim,Norway.

E-mailaddresses:trinhthanhthuat@gmail.com(T.T.Trinh),

signe.kjelstrup@ntnu.no(S.Kjelstrup).

2. Methods

The Small System Method [8,9] makes use of the relation betweentheinverseofthermodynamiccorrectionfactorandthe fluctuationinparticlenumberN.Forasurface,therelationis

1  =



N2





N



2



N





T,,A (2) Fluctuationsaresampledinsmallopensystems(disks) with areaAinsideareservoir.Thereservoiriscreatedasalarge rect-angularboxwithperiodicboundaryconditions.Thetemperature, T,andthechemicalpotential,,inthereservoir arecontrolled. Thethicknessofthesamplingsystemissettothethicknessofthe surface(seebelow).Theareaofthesamplingsystemisvaried, vary-ingtheradiusofthedisk,L.Thesmallestradiususedissosmall thatitallowsonlyonemoleculeinsidethedisk;thelargestradius contains20–30molecules.Theinversethermodynamicfactorisa linearfunctionofthe1/L[11–13]inaparticularrange,tobefound foreachcase:

1  = 1 ∞,s



1+B L



(3) HereBisasmallsystemspecificconstantandsuperscript∞means thevalueinthethermodynamiclimit.Byextrapolatingthelinear regimetothethermodynamiclimit,weobtainthewantedquantity ∞,s.Lateronweuses=∞,sforsimplicity.

Thechemicalpotentialofagasadsorbedtoasurfaceinalayer iis: s i= 0,s i +RTlna s i= 0,s i +RTln s i Cs i C0,si (4) http://dx.doi.org/10.1016/j.cplett.2014.08.026

(2)

Here 0,si is thestandard chemical potential, as is the

(dimen-sionless)activityoftheadsorbedphase,Cs isthesurfaceexcess

concentration,andsistheactivitycoefficient.Thestandardstate

is thehypothetical idealstate havings=1 atlayer saturation,

C0,s (giveninparticlesper(nm2)).Theentropyfollowsfromthe

standardrelationSs=(ds/dT)andtheenthalpyofthelayerfrom

Hs i=

s i+TS

s

i. Weshallfindtheseproperties fortheadsorption

(1).Totalsurfaceexcessconcentrations(adsorptions)aredefined accordingtoGibbs[14,15]

Cs=



0

(C(z)−Cg(˛)(z˛))dz (5)

whereC(z)andCgaretheconcentrationsofadsorbedmolecules

andofmoleculesinthegasphase,respectively.Theintegrationis carriedoutfromtheequimolarsurfaceofgraphite(atz=0)tothe bulkgasphase(z=∞).TheHeavisidefunction,,isbydefinition unitywhentheargumentispositive,andzerowhentheargument isnegative.Fordefinitionoflayerconcentrations,seeSection3.The thermodynamicfactorisalsodefinedby:

s=1+

lns

lnCs

T,A (6) WecandeterminetheactivitycoefficientbyintegratingEq.(6) fromzeroadsorption,oncethethermodynamicfactorisknown fromtheSmallSystemMethod.Thisgives



s 1 dlns=



Cs 0 (s1)dlnCs (7)

WhenCs0,thereisnointeractionbetweenparticles,meaning

thats=1.Wealsohave

s−s=



s s ds=RT



Cs Cs sdlnCs (8)

meaningthatwecanfindthechemicalpotentialatany adsorp-tionrelativetoareferencestate(indicatedby)fromthisequation. Weshallusethisrelationtodeterminethestandardstate chem-icalpotential0,si byplottingthelefthandsideofEq.(8)versus ln(s

iC s i/C

0,s

i ),extrapolatingtothestatewherethisexpressionis

zero.

3. Simulationdetails

ThesystemconsistedofsheetsofgraphiteandCO2molecules.

Thegraphitewasmadefrom5sheetsof graphenewithoutany defects.We orientedthesheets in theboxsuchthat thesheet surfaceswereperpendiculartothez-axis.Thedistancefromthe graphitesurfacewasmeasuredalongthisaxis,takingthe equimo-larsurfaceofgraphiteaszero.Thegraphitelayerswerefixedin space,stillyieldinggoodresultsforadsorptionanddiffusionofgas onthesurface[16,17].Arigidbodymodel,TraPPE,wasusedfor CO2 [18].TheintermolecularpotentialbetweenCO2–CO2 wasa

shiftedandtruncated12-6Lennard–Jones(LJ)potential[19]with long-rangeCoulombinteractions,whichweredealtwithusingthe Ewaldsummationtechnique[19].TheinteractionbetweenCO2and

theC-atomsofgraphitewassimilarlydescribedbyaLJpotential. Detailsofparametersforthesimulationweregivenearlier[16]. Theyhavebeenconfirmedtoyieldanaccurateadsorptionenergy forCO2ongraphitesurface[16].

Classicalmoleculardynamics(MD)simulationswereperformed usingtheLAMMPSpackage[20].Asnapshotofthesystemisgiven in Figure1,showing graphiteat 500K withCO2 ina relatively

densegasandinanadsorbedstate.Periodicboundaryconditions wereusedforthereservoirinalldirections.Thesimulationwas donewithtime steps of 0.001ps. The initialconfigurationwas

Fig.1.SnapshotshowingCO2inthegasphaseatafluid-likedensityandadsorbed

onagraphitesurfaceat500K.ThenumberofCO2particlesinthesystemwasNCO2=

2800.Thegreenandredcolorsrepresentcarbonandoxygenatoms,respectively.

(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis

referredtothewebversionofthisarticle.)

constructedby randomlydistributing CO2 molecules above the

graphitesurface.Thesystemwasstabilizedduring2000psbyruns withconstantNtotVtotTusingNosé–Hooverthermostats[21].

InordertochecktherangeofvalidityofEq.(3),thereservoir sizewasvaried.Thereservoirhastobelargeenoughcomparedto thesamplingsystem.Forahardspheresystem,wefoundthata suitablereservoirhadalength20timesthehardsphereradiusL [12,13].Simulationboxsizesof(a=42 ˚A,b=54 ˚A,c=84 ˚A),(2a,2b, c),and(3a,3b,c)weretested.Thelargestsystemsgaveidentical results,sobox(2a,2b,c)wasused.

Weperformed2000psrunsinareservoiratthermal equilib-rium,varyingLfrom1.3to20 ˚A,samplingrandomly30disksacross thegraphitesurface.Thetotalnumberofframeswas10000.Hence, thevalueofsforeachLwasobtainedfromthestatisticsof300000

samples[11,13].Thesamplingwasdonefortemperaturesranging from300Kto550K,andforanumberofCO2particlesinthebox,

varyingfrom200to2800(correspondingtoapressurerangeof 1–60barat300K).

4. Resultsanddiscussion

4.1. Adsorptions

Wedescribefirsthowwefindtheadsorptions Cs

1 andC2s for

eachlayer.ThetotaladsorptionisthenCs=Cs

1+C2s.The

adsorp-tion(excessconcentration)ofCO2wasfoundusingtheresultsin

Figure2withthedefinition(5).Thefigureshowsthedensityof CO2 moleculesasafunctionofthedistancetothegraphite

sur-face,andisaquantificationofsnapshotsliketheoneshowedin Figure1.WeobserveinbothfiguresthatCO2canformtwolayers

onthegraphiticsurface.InFigure2,weseealayeraroundthefirst peakwhichextendsfromthegraphitesurfacetoposition␣,while asecondpeakextendsfrom␣to␤.WerefertotheintegralinEq. (5)duetothefirstpeakasthebottomlayeradsorption,whilethe correspondingintegralrelatedtothesecondpeak,iscalledthetop layeradsorptiononthegraphite.Thepositionofthefirstpeakat 5 ˚Acoversapproximatelyonemolecularlayer,asthelengthofthe moleculeis5.4 ˚A.Thesnapshotshowsthatmostofthecarbon diox-idemoleculesarelyingparalleltothesurface.Thisgivesaheight morelikethediameterofanoxygenion,3.6 ˚A.Athicknessof5 ˚A canbeinterpretedtoincludesomemoleculeswhicharestanding slightlytiltedwithrespecttothesurface,andsuchmoleculescan alsobefoundbyvisualinspectionofFigure1.Itisinterestingthat thepositionofplane␣isalwaysnear5 ˚A,independentofthe tem-perature.Thiscanreflectthatmoleculesareeitherlyingorstanding

(3)

Fig.2.ThedensityofCO2moleculesasafunctionofdistancetothesurfaceina

reservoirwithNCO2=2800.Thetemperaturesare500Kand350K.Wedistinguish

betweenthreezones,from0to␣:firstadsorbedlayer,␣to␤:topadsorbedlayer,

above␤:gasphase.Thebottomlayerextendstoaround5 ˚A.Thethicknessofthe

toplayerislargerat350Kthanthatat500K.

inthefirstlayer.Theattractiveforcesofthegraphite,notbeingable toreachabovethelayer,seemtobecentralforthislayer.Butthe factthatthetoplayerstartstobefilledbeforethebottomlayeris full,motivatesadivisionofthewholesurfaceintotwolayers.The toplayer,whichextendsfrom␣to␤,appearsalsoratherdifferent fromthefirst.WeseefromFigure2thatthepositionoftheplane␤ varieswithtemperature,unlikethepositionofplane␣.Forthe sys-temwith2800CO2molecules,␤issmallerat500Kthanat350K.

Thetoplayeristhusmorediffuse.Fewattractiveforcesareableto keepthemoleculeswithinthissurfacelayer,whenthemolecular kineticenergybecomeslarger.TheadsorptionofCO2ongraphiteis

alwayshigheratlowtemperatureinbothlayers,meaningthatthis kindoftrade-offbetweenkineticandpotentialenergiesappliesto bothlayers.

Wefindthatthebottomlayerhasalwaysmore thanhalfof thetotal adsorption, independentof temperature (not shown). Thefractionislarger,thelowerthetemperatureis,butdoesnot exceed0.9.Thefractiondecreaseswithincreasingtotaladsorption, becausethebottomlayerbecomessaturated,whilethetoplayer keepsgrowing.Fullcoverage(maximumadsorption)ofthe bot-tomlayerisobtainedat300KwithC10,s=12.5(molecules/nm2).

Wethereforechoseasstandardstate,theidealstatewithC10,s= 12.5(molecules/nm2), corresponding to0.31 CO

2 moleculeper

surfacecarbonatom.

4.2. Thethermodynamiccorrectionfactor

Resultsfortheinversethermodynamicfactor(s)−1were

plot-tedversus 1/L for the top and bottom layers separateand for theircombination (notshown).Thecurvesapproached unityas expected,when1/Lwasincreased.Thisisthesmallsystemlimit, whichhasatmostoneparticleinthesamplingsystem.Inorderto findthethermodynamiclimitvalue,weappliedlinearregression topointsintheinterval0.1<1/L<0.4andextrapolatedthelineto largeL.Theregionusedforextrapolationcoincidedwiththeregion foundearlier[11,13].

Thethermodynamiclimitvalueoftheinversethermodynamic correctionfactor(s)−1wasplottedasafunctionoftheadsorption

ineachsinglelayer,andinthecombinedlayers,forall temper-atures.AtypicalexampleisshowninFigure3forT=500K.The bottomlayerhadalwaysthesmallest(s)−1,whilethetotallayer

hadthebiggestvalueof(s)−1.Wefoundthat(s)−1decreased

more or less linearly with the adsorption. The results for the

Fig.3.Thermodynamiclimitvaluesfor(s)−1inthetop,bottomandtotalCO2layer

ongraphiteat500K.Astraightlineisfittedtotheresultsandforcedthrough1on

they-axis.

bottomlayerandthetwolayerscombined(thetotal layer) fol-lowedthestraightlinenicely,whilethescatterofresultsaround thelinedrawnforthetoplayerwaslarger.

Allcurvesmustextrapolatetoathermodynamiccorrection fac-torequal1,whentheadsorptiongoestozero.Thiswasfoundthe relationbetween(s)−1ofthetotallayerandthetotaladsorption

wasquitelinear.Theobservedlineardependenciesmeanthatthe inversethermodynamicfactorofthetotallayer,canbefoundby addingcontributionsfromthebottomandtoplayers.

4.3. Theactivitycoefficientsforcarbondioxideinthesurfaces Asetoftypicalactivitycoefficients,obtainedat500KfromEq. (7),areshowninFigure4.Thecoefficientsapproach1asexpected atlowdensity,somewithmorenoisethanothers.Theincreasein thecoefficientforthebottomlayerislargerthanforthetoplayer andthereforelargerthanforthetotallayer.Thisreflectsthatthe moleculesarefurtherapartinthetoplayerthaninthefirst,making repulsiveforceslessrelevantinthetopthaninthebottomlayer. Themoleculesdonotadsorb,unless thesurfacebindingenergy canovercometherepulsion,however.Thetotallayeractivity coef-ficientwasexpressedasafunctionoftotalsurfaceadsorptionat differenttemperatures,witharegressioncoefficient0.99orbetter: s

i =1+aCis+b(Cis) 2

(9)

Fig.4.Activitycoefficientofbottom,topandtotallayerasafunctionofthelayer

(4)

Table1

ParametersthatdescribethetotallayeractivitycoefficientintheempiricalEq.(9).

Theregressioncoefficientwas0.99orbetter.

T(K) b a 300 0.0060 0.0005 350 0.0059 0.0054 400 0.0055 0.0066 450 0.0059 0.0233 500 0.0057 0.0320 550 0.0067 0.0216

Fig.5. ChemicalpotentialofCO2onagraphitesurfaceasafunctionofln(sCs/C0,s)

atdifferenttemperatures.ThestraightlineisfittedtoEq.(4).

ParametersaandbaregiveninTable1.Theseresultsmaybe usefulforthermodynamicmodelingofthetotalCO2adsorbedona

graphitesurface(Fig.5).

4.4. Thechemicalpotentialofthesurfaceadsorbedgas

Thechemical potentialof theadsorbed staterelative tothe chemicalpotentialatthelowestadsorptionwasfoundfromEq. (8). The chemical potential difference for the total layer was plotted vs the right hand side for the different temperatures used.UsingtherelevantactivitycoefficientandC10,s=C20,s=C0,s=

12.5molecules/(nm2), we next used Eq. (4) to plot the same

data.Theslope ofthelinear fit gaveRTas expectedwithgood accuracy.Thestandardstatevalue,0,s,wasfoundforeach

tem-peraturefromthiscurvesettinglns i(C

s i/C

0,s

i )=0. Forthetotal

layer,weobtained0,s(T0)=−7.6kJ/molat298K.Thetemperature

variationofthechemicalpotentialwasusedtofindthestandard entropy S0,s=10.6J(molK). It was constant in the temperature

intervalused.Thestandardenthalpyat298Kwasthencalculated toH0,s=−4.4kJ/mol.Dataforthetotalandseparatelayersaregiven

inTable2.

Inordertocheckthattheresultsfortheseparatelayerswere internallyconsistent,weexpressedthechemicalpotentialsofthe topandbottomlayersofCO2 byEq.(2).Atequilibrium,wehave

s

1=s2,wherethesubscriptdenoteslayernumber.Byintroducing

expression(2)intothisequilibriumcondition,weobtained

Cs 1 Cs 2

=

s 2 s 1

e(0,s2 − 0,s 1 )/RT (10)

By plotting the left hand side versus the ratio of activity coefficients,fittingtheplottoastraightline,wecalculated0,s2 − 0,s1 fromtheslopeasafunctionoftemperature.Thedifferencein thestandardchemicalpotentialswasconsistentwiththedifference obtainedfromthedatainTable2.

Thethermodynamicdatathatwehavedeterminedforthetotal layerofadsorbedgas,arereasonable.Thestandardchemical poten-tialandtheenthalpyarebothnegative,indicatingthatadsorption is favorable in the standard state,in spite of a largereduction in the entropy from the gas phase tothe surface, a reduction whichislargerthanthatfromthegastotheliquidstate.Wehave furthermoreseenthatwecandistinguishbetweentwoseparate thermodynamically defined layersof carbondioxidewithin the wholelayeronthegraphitesurface.Eachlayerhasitsown ther-modynamicproperties.WeseefromTable2,thatthebottomlayer entropyisrelativelysmallcompared tothegasentropyofCO2.

Infactitcancomparetothecarbonentropyinagraphitelattice. ThenegativeentropydifferencerepresentedbytheorderingofCO2

whenitisadsorbedmustbeovercomebyarelativelylargeenthalpy foradsorptionintothelayer.Thetoplayerentropyislargerthan theentropyofthebottomlayer.Itisnotgas-like,butfourtimes higherthanthatofthebottomlayervalue.Thislayercantherefore bestabilizedwithasmallerenthalpy.Thetotallayerpropertiescan besaidtomaskthepropertiesofthesinglelayers,asthetotallayer hasstandardentropyclosertothetoplayer,andanenthalpymore likethebottomlayer.Informationoftheseparatelayersobtained fromthesimulationwillthereforeaddinsighttothesystem.Such insightcannotbeeasilyobtainedbyexperiments,asitisdifficult todistinguishbetweenthelayersinanadsorptionexperiment.It ishoweverrathersimpletocompareanexperimentallyobtained adsorptionisothermtotheadsorptionisothermderivedherefor thetotaladsorption.

5. Conclusion

WehaveshownthatarecentlydevelopedSmallSystemMethod canbeusedtocalculateaconsistentsetofthermodynamicdatafor surfacesfromoneMolecularDynamicssimulation.Forcarbon diox-ideadsorbedtographite,wedeterminedthechemicalpotential, theactivitycoefficient,theentropyandenthalpydirectly.Closer inspectionofdensityprofilesrevealedthatwecanspeakoftwo, notonelayerofadsorbedgas.Thethermodynamicanalysesreveal adistinctionbetweenthelayers.Thegashaslargerentropyinthe topthaninthebottomlayer,ismoremobileinthislayer.Thetwo layersareinequilibriumwithoneanother,meaningthata lower-ingoftheentropycantakeplace,iftheenthalpycancompensate forthechangeinentropywhenatopparticlemovestothebottom layer.Suchinformationisinvaluableinthemodelingand expla-nationofsurfaceprocesses.Extensionstoothersurfacesshouldbe straightforward.

Table2

ThermodynamicdataforstandardstateadsorptionofcarbondioxideatagraphitesurfaceatT=298K.Theuncertaintyinthedeterminationsisontheaverage3%.

Correspondingvaluesforgraphiteandcarbondioxidegasarealsogiven.

T=298K Totallayer(thiswork) Bottomlayer(thiswork) Toplayer(thiswork) Graphitea CO2gasa

0,s i (kJ/mol) −7.6 −9.8 −5.1 – – S0,s i (J/molK) 10.6 4.1 13.7 5.74 213.78 H0,s i (kJ/mol) −4.4 −8.6 −1.0 1.05 9.36

(5)

Acknowledgments

TheauthorsacknowledgeTheResearchCouncilofNorwayRCN projectno209337andTheFacultyofNaturalScienceand Technol-ogy,NorwegianUniversityofScienceandTechnology(NTNU)for financialsupport.ThecalculationpowerisgrantedbyThe Norwe-gianMetacenterforComputationalScience(NOTUR).ETHZürichis thankedforguestprofessorshipstoSKandDB.

References

[1]L.P.H.Jeurgens,Z.M.Wang,E.J.Mittemeijer,Int.J.Mater.Res.100(2009)1281.

[2]F.Costache,S.Kouteva-Arguirova,J.Reif,Appl.Phys.A79(2004)1429.

[3]R.BradleyShumbera,H.H.Kan,J.F.Weaver,Surf.Sci.601(2007)235.

[4]D.J.Srolovitz,M.G.Goldiner,JOM:J.Min.Met.Mater.Soc.47(1995)31.

[5]M.P.Cox,G.Ertl,R.Imbihl,J.Rustig,Surf.Sci.134(1983)L517.

[6]I.Inzoli,J.M.Simon,S.Kjelstrup,Langmuir25(2009)1518.

[7]I.Inzoli,J.M.Simon,D.Bedeaux,S.Kjelstrup,J.Phys.Chem.B112(2008)14937.

[8]X.Liu,S.K.Schnell,J.M.Simon,D.Bedeaux,S.Kjelstrup,A.Bardow,T.J.Vlugt,J. Phys.Chem.B115(2011)12921.

[9]P.Krüger,S.K.Schnell,D.Bedeaux,S.Kjelstrup,T.J.Vlugt,J.-M.Simon,J.Phys. Chem.Lett.4(2012)235.

[10]X.He,J.ArvidLie,E.Sheridan,M.-B.Hägg,EnergyProcedia1(2009)261.

[11]S.K.Schnell,X.Liu,J.-M.Simon,A.Bardow,D.Bedeaux,T.J.H.Vlugt,S.Kjelstrup, J.Phys.Chem.B115(2011)10911.

[12]S.K.Schnell,T.J.H.Vlugt,J.-M.Simon,D.Bedeaux,S.Kjelstrup,Chem.Phys.Lett. 504(2011)199.

[13]S.K.Schnell,T.J.H.Vlugt,J.-M.Simon,D.Bedeaux,S.Kjelstrup,Mol.Phys.110 (2011)1069.

[14]J.W.Gibbs,TheScientificPapersofJWGibbs,vol.1,Dover,NewYork,1961.

[15]J.W. Gibbs,OntheEquilibriumofHeterogeneousSubstances,Connecticut AcademyofArtsandSciences,1877.

[16]T.T.Trinh,T.J.Vlugt,M.B.Hagg,D.Bedeaux,S.Kjelstrup,Front.Chem.1(2013) 38.

[17]T.S.vanErp,T.T.Trinh,S.Kjelstrup,K.Glavatskiy,Front.Phys.1(2013)30.

[18]J.J.Potoff,J.I.Siepmann,AIChEJ.47(2001)1676.

[19]M.P.Allen,D.J.Tildesley,ComputerSimulationofLiquids,OxfordUniversity Press,1989.

[20]S.Plimpton,P.Crozier,A.Thompson,LAMMPS–Large-scaleAtomic/Molecular MassivelyParallelSimulator,SandiaNationalLaboratories,2007.

[21]G.J.Martyna,M.L.Klein,M.Tuckerman,J.Chem.Phys.97(1992)2635.

[22]J.Cox,D.D.Wagman,V.A.Medvedev,CODATAKeyValuesforThermodynamics, Chem/Mats-Sci/E,1989.

Cytaty

Powiązane dokumenty

Artykuł umieszczony jest w kolekcji cyfrowej bazhum.muzhp.pl, gromadzącej zawartość polskich czasopism humanistycznych i społecznych, tworzonej przez Muzeum Historii Polski

the enhanced electric field can also affect the bond strength and orientation of adsorbed molecules, we see no change in the CO peak position upon illumination at any applied

4 Zestawienie dyfraktogramów dla wyjściowej próbki topionej DZ.T oraz próbek po badaniu hydratacji DZ.T N-nadziarno i DZ.T P-

Po obróceniu stolika należy skontrolować czy głośnik nie przesunął się na stoliku oraz czy przewód nie zawija się wokół głośnika.  W sprawozdaniu wykonać

Kiedy w grę wchodzą rozważania o przyszłości ludzkiego gatunku i tworzonej przezeń cywilizacji, kiedy stawia się pytania o naturę wszechświata i miejsce w nim istot rozumnych,

Można też sądzić, że ta postać ze swoimi atrybutam i mocy i uczucia, możliwością niesienia „iskry niebiańskiej miłości pomię­ dzy człowiecze plem ię”

Drugi obok kom paratystyki istotny nurt działalności naukowej profesora M agnuszew skiego stanowiły folklorystyka oraz badania nad piśm iennictw em ni­ skiego obiegu

Stoimy bowiem na stanowisku, że kategorii „rasy” warto przyjrzeć się bliżej i że sama lektura monografii z hi- storii nauk, które podejmują wątek „rasy” nie jest