• Nie Znaleziono Wyników

Experimental investigation of interference effects for high-speed catamarans

N/A
N/A
Protected

Academic year: 2021

Share "Experimental investigation of interference effects for high-speed catamarans"

Copied!
11
0
0

Pełen tekst

(1)

Ocean Engineering 76 (2014) 7 5 - 8 5

ELSEVIER

Contents lists available at ScienceDlrect

Ocean Engineering

j o u r n a l h o m e p a g e : www.elsevier.conn/locate/oceaneng

Experimental investigation of interference effects

for high-speed catamarans

Riccardo Broglia^'* Boris Jacob ^ Stefano Zaghi^ Frederick Stern ^, Angelo Olivieri^

= CNR-INSEAN, National Research Council-I^arine Teclinology Research Institute, via di Vallerano 139, 00128 Rome, Italy '' IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52241, USA

CrossMark

A R T I C L E I N F O

Article history:

Received 24 February 2013 Accepted 1 December 2013 Available online 22 December 2013 Keywords; High-speed catamaran Wave interference Total resistance Wave field Experimental investigation A B S T R A C T W e h a v e p e r f o r m e d a n e x p e r i m e n t a l i n v e s t i g a t i o n a i m e d a t assessing t h e r e l e v a n c e o f h u l l i n t e r f e r e n c e e f f e c t s o n t h e t o t a l r e s i s t a n c e o f a c a t a m a r a n m o d e l a d v a n c i n g i n c a l m w a t e r . To t h i s p u r p o s e , d r a g a n d a t t i t u d e m e a s u r e m e n t s h a v e b e e n c a r r i e d o u t f o r s e v e r a l v a l u e s o f t h e h u l l s e p a r a t i o n , as w e l l as f o r t h e m o n o h u l l , at c h a n g i n g t h e F r o u d e n u m b e r i n t h e r a n g e 0 . 1 - 0 . 8 . D a t a c o n c e r n i n g t h e t w o - d i m e n s i o n a l w a v e f i e l d a r o u n d t h e m o d e l s h a v e also b e e n c o l l e c t e d . O u r r e s u l t s i n d i c a t e t h a t , e x c e p t f o r a n a r r o w r a n g e o f c o n d i t i o n s w h e r e f a v o r a b l e i n t e r f e r e n c e is o b s e r v e d , t h e i n t e r a c t i o n b e t w e e n t h e c a t a m a r a n h u l l s u s u a l l y r e s u l t s i n a m a r k e d increase o f t h e t o t a l r e s i s t a n c e as c o m p a r e d t o t h e m o n o h u l l case. T h i s p e n a l i z a t i o n c a n b e as l a r g e as 30% f o r t h e n a r r o w e s t h u l l s p a c i n g a t Fr ^ 0.5. A t l a r g e r h u l l s p a c i n g s , t h e e f f e c t is a t t e n u a t e d a n d o c c u r s a t s m a l l e r F r o u d e n u m b e r s . I n t e r f e r e n c e e f f e c t s are less e v i d e n t b o t h i n t h e s m a l l a n d l a r g e F r o u d e n u m b e r r a n g e , n a m e l y w h e n Fr < 0.3 a n d F r > 0.7 r e s p e c t i v e l y . I n s i g h t i n t o t h e m e c h a n i s m s u n d e r l y i n g t h i s b e h a v i o r is o b t a i n e d b y e x a m i n i n g t h e r e l a t i o n a l d e p e n d e n c e b e t w e e n t h e r e s i s t a n c e v a r i a t i o n a n d t h e d a t a c o n c e r n i n g a t t i t u d e o f t h e vessel a n d w a v e - f i e l d e l e v a t i o n . © 2 0 1 3 E l s e v i e r L t d . A l l r i g h t s r e s e r v e d .

1. Introduction

M u l t i h u l l vessels are w i d e l y e m p l o y e d i n m i l i t a r y a n d c o m m e r c i a l applications at h i g h o p e r a d o n a l speeds, o w i n g t o c o m p e -d t i v e a-dvantages i n e.g., s t a b i l i t y an-d p a y l o a -d c a p a b i l i t y . As t h e need t o o p t i m i z e t h e p e r f o r m a n c e s o f these ships i n t e r m s o f resistance a n d seakeeping characterisdcs is b e c o m i n g c o m p e l -l i n g , a d d i t i o n a -l e f f o r t s are r e q u i r e d t o characterize i n m o r e d e t a i -l t h e i r salient h y d r o d y n a m i c s features (see, e.g., Faldnsen, 2 0 0 5 ) .

M a n y o f t h e aspects r e l a t e d t o t h e issue o f resistance have already been i n v e s t i g a t e d i n a n u m b e r o f n u m e r i c a l a n d e x p e r i -m e n t a l i n v e s t i g a t i o n s , w h e r e t h e r o l e o f d e s i g n p a r a -m e t e r s such as d e m i h u U separation a n d d i m e n s i o n , h u l l g e o m e t r y , b e a m - t o - d r a f t r a t i o , w a t e r d e p t h a n d Froude n u m b e r has been c r i t i c a l l y assessed. N o t a b l e e x p e r i m e n t a l w o r k has been c a r r i e d o u t i n p a r t i c u l a r by Insel a n d M o l l a n d ( 1 9 9 2 ) and M o U a n d e t al. (1996), w h e r e t h e i n f l u e n c e o f m a n y o f t h e above factors has been e x a m i n e d a n d tested against t h e o r e t i c a l p r e d i c t i o n s , a n d b y Souto-Iglesias et a l . ( 2 0 0 7 ) a n d SoutoIglesias e t al. (2012), w h e r e resistance m e a s u r e -m e n t s have been c o -m b i n e d w i t h q u a n t i t a t i v e observations o f t h e w a v e p a t t e r n w i t h t h e m a i n p u r p o s e o f e v a l u a t i n g t h e effects associated w i t h d e m i h u l l separation a n d test c o n d i t i o n s ( f i x e d o r f r e e a t t i t u d e o f t h e c a t a m a r a n ) .

• Corresponding author. Tel.; + 3 9 0650299297; fax; -1-39 065070619. £-mai7 address: nccardo.broglia(S>cnrit (R. Broglia).

0029-8018/$ - see f r o n t matter © 2013 Elsevier Ltd. All rights reserved. http;//dx.doi.org/10,1016/j.oceaneng.2013.12.003

F r o m t h e n u m e r i c a l p o i n t o f v i e w , t h e use o f steady a n d unsteady Reynolds Averaged N a v i e r - S t o k e s (RANS) based solvers i n recent studies such as those p e r f o r m e d b y He et a l . (2011), Zaghi et al. (2011), M i l l e r et al. ( 2 0 0 6 ) , M a k i et al. ( 2 0 0 7 ) , S t e r n et al. ( 2 0 0 6 ) a n d Campana et a l . ( 2 0 0 6 ) has a l l o w e d to e x t e n d e a r i i e r results based o n p o t e n t i a l f l o w techniques (e.g., T a r a f d e r a n d Suzuki, 2 0 0 7 ; M o r a e s et al., 2 0 0 4 ; L u g n i et al.. 2 0 0 4 ; Colicchio et al., 2 0 0 5 ) , a n d has a l l o w e d t o p r o v i d e valuable i n s i g h t i n t o t h e c o m p l e x f l o w s t r u c t u r e a r o u n d m u l t i - h u l l vessels.

As a r e s u l t o f t h e above i n v e s t i g a t i o n s , h u l l s e p a r a t i o n has b e e n clearly i d e n t i f i e d as t h e k e y p a r a m e t e r c o n t r o l l i n g c a t a m a r a n resistance i n a n o n t r i v i a l w a y v i a a n u m b e r o f e n t a n g l e d m e c h a n -isms. First o f all, h u l l separation d e t e r m i n e s t h e l e v e l o f n o n - l i n e a r i n t e r a c t i o n b e t w e e n i n d i v i d u a l w a v e systems p r o d u c e d b y each d e m i h u l l , and hence t h e m a g n i t u d e o f t h e w a v e - d r a g c o m p o n e n t . For a g i v e n c a t a m a r a n g e o m e t r y , b o t h d e s t r u c t i v e a n d c o n s t r u c t i v e interferences m a y o c c u r d e p e n d i n g o n t h e value o f t h e Froude n u m b e r , so t h a t i m p r e s s i v e r e d u c t i o n s o f the w a v e resistance can be o b t a i n e d i n p a r t i c u l a r c o n d i t i o n s (see t h e r e m a r k a b l e case r e p o r t e d i n Chen a n d Deo Sharma (1997) c o n c e r n i n g S-shaped catamarans a d v a n c i n g at s u p e r - c r i t i c a l speeds i n s h a l l o w w a t e r s ) . Also, h u l l s e p a r a t i o n affects t h e c a t a m a r a n resistance i n a m o r e i n d i r e c t a n d s u b t i e w a y , since t h e t o p o l o g y o f t h e f r e e - s u r f a c e o r i g i n a t e d f r o m w a v e i n t e r a c t i o n affects i n t u r n t h e f l o w a r o u n d each single h u l l . A t s u f f i c i e n t l y large values o f the w a v e steepness, f o r instance, s t r o n g w a v e - b r e a k i n g can occur a n d i n t e n s e shear-layers can f o r m b e n e a t h t h e f r e e - s u r f a c e . These h i g h - v o r t i c i t y

(2)

regions t y p i c a l l y e x t e n d deep i n t o t h e f l u i d a n d i n t e r a c t w i t h the b o u n d a r y layers d e v e l o p i n g over t h e h u l l s , p o s s i b l y l e a d i n g t o t h r e e - d i m e n s i o n a l separations. Note t h a t t h i s process m a y be r e l e v a n t f o r h i g h - s p e e d catamarans e v e n at s m a l l Froude n u m b e r s , due to t h e t y p i c a l l y l o w value o f t h e i r d r a f t .

Finally, aside f r o m its b e a r i n g o n the f r e e - s u r f a c e g e o m e t r y , h u l l s e p a r a t i o n d e t e r m i n e s the e x t e n t t o w h i c h t h e f l o w a r o u n d each h u l l is p e r t u r b e d b y t h e a d j a c e n t one, t h u s f i x i n g t h e degree o f a s y m m e t r y o f t h e v e l o c i t y f i e l d a b o u t each h u l l axis. As f a r as the s h i p resistance is concerned, this e f f e c t can be c o n v e n i e n t l y p a r a m e t r i z e d i n t e r m s o f an a p p r o p r i a t e c o r r e c t i o n f a c t o r account-i n g f o r t h e account-increase o f w a t e r v e l o c account-i t y b e t w e e n t h e h u l l s , as d o n e account-i n Insel a n d M o l l a n d ( 1 9 9 2 ) a n d A r m s t r o n g ( 2 0 0 3 ) .

Despite t h e i m p o r t a n t research progress a c h i e v e d i n t h e p r e -v i o u s w o r k s , e x p e r i m e n t a l k n o w l e d g e o n t h e f l o w s t r u c t u r e a r o u n d m u l t i - h u l l vessels s t i l l r e m a i n s i n c o m p l e t e , essentially because m o s t results are r e s t r i c t e d t o g l o b a l q u a n t i t i e s (e.g., overall resistance) a n d t o t h e i r d e p e n d e n c e o n some o f the g e o m e t r i c a l p r o p e r t i e s o f t h e ship. I n t h e p r e s e n t paper, w e w i s h t o p a r t i a l l y f i l l t h i s gap b y c o n t r i b u t i n g t o u n d e r s t a n d i n t e r f e r e n c e effects f o r n o n s t a g g e r e d catamarans w i t h s y m m e t r i c h u l l s a d v a n -c i n g i n -c a l m w a t e r To t h i s purpose, t h e b e h a v i o r o f a -catamaran ( D e l f t 372 m o d e l ) has b e e n i n v e s t i g a t e d i n a t o w i n g basin at c h a n g i n g t h e values o f h u l l separation a n d Froude n u m b e r .

The p a p e r is o r g a n i z e d as f o l l o w s : i n Section 2, t h e details o f t h e e x p e r i m e n t a l s e t u p and o f t h e m e a s u r e m e n t s y s t e m are r e p o r t e d . I n Section 3, data c o n c e r n i n g the t o t a l resistance and t h e a t t i t u d e o f t h e c a t a m a r a n models, as w e l l as t h e t o p o l o g y o f t h e w a v e f i e l d , are p r e s e n t e d i n c o m p a r i s o n w i t h t h e c o r r e s p o n d -i n g -i n f o r m a t -i o n p e r t a -i n -i n g t o t h e m o n o h u l l . The d-iscuss-ion o f t h e set o f results is p r o v i d e d i n Section 5. Finally, Section 6 s u m -marizes s o m e o f t h e m a i n findings o f the w o r k a n d the f u t u r e perspectives.

2. Experimental procedures

2.1. Catamaran model

The e x p e r i m e n t s r e p o r t e d here have been c a r r i e d o u t at CNR-INSEAN i n t h e t o w i n g basin # 1 , w h i c h is a 470 m l o n g , 13.5 m w i d e and 6.5 m deep f a c i l i t y . The m o d e l used i n o u r i n v e s t i g a t i o n is a 3.0 m fiberglass D e l f t 372 catamaran ( v a n ' t Veer, 1998b, 1998a). This t y p i c a l h i g h - s p e e d m u l t i - h u l l vessel has b e e n e x t e n s i v e l y characterized i n a n u m b e r o f recent e x p e r i m e n t a l a n d c o m p u t a -t i o n a l ac-tivi-ties, w h e r e d i f f e r e n -t aspec-ts such as i n -t e r f e r e n c e (He et al., 2 0 1 1 ; Z a g h i et al., 2011), m a n e u v e r a b i l i t y i n deep a s h a l l o w w a t e r ( Z l a t e v et al., 2 0 0 9 ; M i l a n o v et al., 2010, 2011), w a t e r j e t p r o p u l s i o n ( M i l a n o v a n d Georgiev, 2010; M i o z z i , 2011), h u l l f o r m o p t i m i z a t i o n (e.g.. Peri et al., 2012), sea k e e p i n g (Castiglione e t al., 2 0 1 1 ; Bouscasse et al., 2013) a n d a d v a n c e m e n t i n steady d r i f t (Broglia et al., 2012) have b e e n c o n s i d e r e d . A s u m m a r y o f t h e e x p e r i m e n t a l a c t i v i t y c o n d u c t e d w i t h t h i s m o d e l at CNR-INSEAN is p r e s e n t e d i n Broglia et al. (2011).

The m o d e l is d e p i c t e d i n Figs. 1 and 2, a n d t h e r e l e v a n t g e o m e t r i c a l i n f o r m a t i o n is s u m m a r i z e d i n Table 1. N o t e i n p a r t i -cular t h a t t h e n o m i n a l gap b e t w e e n h u l l s is H = 0 . 7 0 m , w h i c h corresponds t o a d i m e n s i o n l e s s h u l l separation H / L = 0.167. This figure c o u l d h o w e v e r be changed b y s l i d i n g t h e h u l l clamps a l o n g t h e c o n n e c t i n g transverse bars (see Zaghi et al., 2 0 1 1 ; B r o g l i a et al., 2011) i n o r d e r t o assess t h e relevance o f i n t e r f e r e n c e p h e n o m e n a . M o r e precisely, c o m p a r a t i v e tests have been p e r f o r m e d at t h e d i f f e r e n t values o f h u l l separation r e p o r t e d i n Table 2, as w e l l as w i t h a m o n o h u l l ( c o r r e s p o n d i n g to H = o o ) .

Each h u l l w a s e q u i p p e d w i t h t u r b u l e n c e s t i m u l a t o r s i n t h e f o r m o f s m a l l c y l i n d r i c a l studs ( 4 m m i n h e i g h t a n d 3 m m i n d i a m e t e r ) spaced 3 0 m m apart f r o m each o t h e r a n d located 7 0 m m b e h i n d t h e b o w edge.

(3)

R. Broglia et ai. / Ocean Engineering 76 (2014) 75-85 B H A F T F O R W A R D » B 10 t2 M \6 , 0 20 Fig. 2. Basic geomelrry definition and body plan of the Delft 372 catamaran model.

Table 1

Main dimensions of the Delft 372 catamaran model (CNR-INSEAN model number-2554).

Table 2

Summary of the investigated geometrical configurations.

Feature Symbol Value Units

Length (overall)

i-OA 3.11 m

Length between perpendiculars L 3.00 m

Beam (overall) B 0.94 m

Beam ( d e m i h u l l ) b 0.24 m

Hull separation ( n o m i n a l ) H 0.70 m

Hull gap (nominal) s 0.0 m

Draught T 0.15 m

Wetted surface s 1.945

Displacement A 87.07

l<S

Vertical center o f gravity K G 0.34 m

Longitudinal center o f gravity L C G 1.41 m

Block coefficient CB 0.403 _

I n t h e discussion o f t h e results b e l o w , w e w i l l r e f e r t o a c o o r d i n a t e system m o v i n g w i t h t h e ship i n w h i c h the x-, y- a n d z- axis have f i x e d o r i e n t a t i o n s a n d p o i n t i n the f r e e - s t r e a m , transverse and v e r t i c a l d i r e c t i o n s respectively (see Fig. 2 ) . The o r i g i n o f t h e c o o r d i n a t e s y s t e m is located i n the s y m m e t r y p l a n e o f t h e m o d e l at the i n t e r s e c t i o n o f t h e s t i l l w a t e r level w i t h t h e f o r w a r d p e r p e n d i c u l a r . A c c o r d i n g l y , t h e sinkage o f the m o d e l is H ( c m ) H/L s/L 50 0.167 0.087 60 0.200 0.120 70 0.233 0.153 80 0.267 0.187 90 0.300 0.220 c o n s i d e r e d as p o s i t i v e w h e n t h e c e n t e r o f g r a v i t y m o v e s u p w a r d , w h i l e t h e t r i m is p o s i t i v e w h e n t h e b o w moves u p w a r d .

2.2. Attitude and resistance measurements

A t t i t u d e a n d resistance tests have b e e n p e r f o r m e d w i t h t h e c a t a m a r a n m o d e l s attached to t h e c a r n a g e o f t h e b a s i n i n such a w a y t h a t rigid m o t i o n s w e r e a l l o w e d o n l y i n t h e v e r t i c a l plane, i.e., t h e m o d e l s w e r e f r e e to heave a n d p i t c h w h i l e y a w was n o t p e r m i t t e d . For m o n o h u l l tests, an a d d i t i o n a l c o n s t r a i n i n g m e c h a n -i s m w a s used t o -i n h -i b -i t r o l l -i n g d -i s p l a c e m e n t s . T h e catamaran m o d e l s w e r e t o w e d h o r i z o n t a l l y w i t h a p u l l e y a c t i n g t h r o u g h t h e c e n t e r o f g r a v i t y . The t o t a l resistance Rt w a s i n f e r r e d f r o m the t e n s i o n i n t h e cable by means o f a O m e g a LC 214 v a r i a b l e -r e l u c t a n c e d i s p l a c e m e n t t -r a n s d u c e -r Resistance time-se-ries w e -r e

(4)

Fig. 3. Scliematic drawing indicating the wave probe locations.

c o l l e c t e d at a s a m p l i n g rate o f 2 0 0 H z w i t h a 1 6 - b i t A / D board, and t h e a c q u i r e d data w e r e t i m e - a v e r a g e d t o p r o v i d e m e a n values f o r each r u n . T h e v e l o c i t y o f t h e t o w i n g carriage w a s measured b y m e a n s o f a n encoder w i t h u n c e r t a i n t y b e t t e r t h a n 1 m m / s over t h e e n t i r e range o f velocities. The sinkage a n d t r i m o f t h e m o d e l s w e r e c o m p u t e d f r o m t h e m e a s u r e m e n t s o f t h e v e r t i c a l d i s p l a c e m e n t s o f t w o reference p o i n t s o f t h e vessel, as r e g i s t e r e d b y t w o p o t e n t i -o m e t e r s . The reference p -o i n t s w e r e l-ocated -o n t h e l -o n g i t u d i n a l axis o f t h e c o n n e c t i n g beams o f t h e catamaran, respectively at x = 0 . 4 6 9 m a n d at x = (0.469-1-2.512) m (see Fig. 1).

T h e u n c e r t a i n t y has been e s t i m a t e d f o r b o t h resistance a n d a t t i t u d e measurements. Precision i n d i c e s ( C o l e m a n a n d Steele, 2 0 0 9 ) f o r sinkage, t r i m a n d t o t a l resistance c o e f f i c i e n t have been e s t i m a t e d f r o m r e p e a t a b i l i t y tests o n selected cases ( n a m e l y , at F r = 0 . 5 0 , 0.60 a n d 0.75, a n d H / L = 0.167 a n d 0.233, a n d f o r the m o n o h u l l Broglia et al., 2011), a n d w e r e f o u n d t o be less t h a n 6.0%, 1.6% and 0.5% o f t h e m a x i m u m m e a s u r e d v a l u e . W h e n t h e bias e r r o r s are i n c l u d e d , the u p p e r b o u n d s f o r t h e u n c e r t a i n t y o n t h e m e a s u r e m e n t s are respectively equal t o 6.9%, 2.0% a n d 1.0%.

Table 3

Wave probe location as a function o f hull separation H.

H ( c m ) Series # 1 Series # 2 y / ( s / 2 ) y (cm) y / ( s / 2 ) y ( c m ) 1.00 13.00 1.00 13.00 0.77 10.00 0.77 10,00 0,50 6.50 0,50 6,50 0.23 3.00 0.23 3,00 0.57 13.00 1.00 13,00 0.43 10.00 0.77 10,00 0.28 6.50 0.50 6.50 0.13 3.00 0.23 3.00 0.39 13.00 1.00 13.00 0.30 10.00 0.77 10.00 0.20 6.50 0.50 6.50 0.09 3.00 0.23 3.00 2.3. Wave-field measurements I n o r d e r to characterize t h e w a v e f i e l d a r o u n d t h e m o d e l s , the d i s p l a c e m e n t o f t h e free-surface f r o m its u n d i s t u r b e d reference l e v e l w a s m e a s u r e d r e d u n d a n t l y w i t h t w o series o f s t a t i o n a r y capacitance probes. Each p r o b e r e g i s t e r e d t h e t i m e - h i s t o r y o f t h e w a v e e l e v a t i o n at t h e p r o b e l o c a t i o n . T h e sensors w e r e designed at t h e Electronics L a b o r a t o r y o f CNR-INSEAN, a n d c o n s i s t e d i n a n i n s u l a t e d electric w i r e s t r e t c h e d v e r t i c a l l y across t h e a i r - w a t e r i n t e r f a c e b y means o f a s m a l l suspended w e i g h t . T h e electrical capacitance o f the p r o b e depends o n t h e s u b m e r g e d p o r t i o n o f the w i r e , so t h a t the d i s p l a c e m e n t o f t h e f r e e - s u r f a c e w i t h respect t o t h e s t i l l w a t e r l i n e c o u l d be r e t r i e v e d b y m e a n s o f a static c a l i b r a t i o n p e r f o r m e d p r i o r t o each test r u n . Extensive character-i z a t character-i o n o f t h e p r o b e b e h a v character-i o r has s h o w n t h a t t h e w a v e h e character-i g h t c o u l d be d e t e r m i n e d w i t h a n accuracy b e t t e r t h a n 1 m m a n d a d y n a m i c response b e t t e r t h a n 50 Hz, (see e.g. O l i v i e r i et al., 2001). T h e m a x i m u m g l o b a l u n c e r t a i n t y w h i c h accounts also f o r statis-t i c a l d i s p e r s i o n is a b o u statis-t 3% o f statis-t h e range.

T h e p o s i t i o n o f t h e probes is s h o w n s c h e m a t i c a l l y i n Fig. 3. A f i r s t series o f sensors w e r e p o s i t i o n e d o n a transverse rack a t t a c h e d t o t h e basin w a l l i n o r d e r t o m o n i t o r t h e w a v e p a t t e r n i n t h e r e g i o n e x t e r n a l to t h e c a t a m a r a n . A second series o f probes w e r e used instead t o d e t e r m i n e t h e e l e v a t i o n f i e l d i n t h e spatial

d o m a i n c o n f i n e d by t h e t w o h u l l s . It consisted i n a set o f sensors a r r a n g e d i n 2 transversal r o w s a n d s u p p o r t e d b y a p y l o n r e s t i n g o n t h e b o t t o m o f t h e basin, as o r i g i n a l l y p r o p o s e d b y Souto-Iglesias et a l . ( 2 0 0 7 ) . The p o s i t i o n o f t h e probes c o u l d b e a d j u s t e d i n d e p e n d e n t l y f r o m each o t h e r so t h a t , w h e n t h e s e p a r a t i o n b e t w e e n h u l l s was changed, e i t h e r t h e absolute d i s t a n c e y o f each sensor f r o m t h e h u l l side was k e p t f i x e d ( f o r probes b e l o n g i n g t o t h e f i r s t series) o r t h e d i m e n s i o n l e s s distance y / ( s / 2 ) c o u l d r e m a i n c o n s t a n t ( f o r probes o f the second series). The sensor a r r a n g e m e n t f o r each e x p e r i m e n t a l c o n d i t i o n is s u m m a r i z e d i n Table 3.

3. Calm-water tests: results

C a l m - w a t e r tests, c o n s i s t i n g o f d r a g and a t t i t u d e m e a s u r e m e n t s , have been p e r f o r m e d at c h a n g i n g the Froude n u m b e r Fr=U/(gLf'^ i n t h e range f r = 0 . 1 - 0 . 8 w i t h i n c r e m e n t s AFr = 0.05. For each value o f t h e Froude number, several g e o m e t r i c a l c o n f i g u r a t i o n s o f the c a t a m a r a n - c o r r e s p o n d i n g t o the values o f h u l l s e p a r a t i o n H listed i n Table 2 - have b e e n investigated i n a d d i t i o n to t h e m o n o h u l l case. Table 4 p r o v i d e s a s u m m a r y o f t h e r e l e v a n t f l o w parameters f o r t h e ensemble o f test c o n d i t i o n s .

(5)

R. Broglia et al. / Ocean Engineering 76 (2014) 75-85 79

Table 4

Main flow parameters computed at each experimental condition.

Fr U(mls) Re 0.10-0.80 0.07-0.54 0.542-4.339 1.429 X 10'5-1.143 X 10' K.l. = 0 167 V t R = 0 200 7 H.L = 0.233 ^ H I = 0.267 .3 H.L=0.30ö « 2xM;nDliul

Fig. 4. Calm-water tests: The total resistance Rr as a f u n c t i o n of Froude number Fr for each hull separation H. Note that the resistance data have been reseated to the standard reference temperature 1 = 1 5 ' in order to c o m p l y w i t h the ITTC procedures.

3.3. Total resistance coefficient

Let us f i r s t discuss t h e b e h a v i o r o f t h e m o d e l resistance, i n t e r m s o f b o t h t o t a l resistance Rj a n d n o n - d i m e n s i o n a l c o e f f i c i e n t

CT ( d e f i n e d as the r a t i o o f t h e t o t a l resistance RT to the reference

q u a n t i t y ^pU'^S). The t o t a l resistance a n d t h e resistance c o e f f i c i e n t are s h o w n versus Froude n u m b e r i n Fig. 4 a n d i n Fig. 5 f o r the d i f f e r e n t g e o m e t r i c a l c o n f i g u r a t i o n s . The results c l e a r l y i n d i c a t e t h a t large d i f f e r e n c e s b e t w e e n t h e m o n o h u l l a n d t h e catamarans e x i s t over t h e e n t i r e range o f Froude n u m b e r s , i.e., i n t e r f e r e n c e effects are always present. Such e f f e c t s are p a r t i c u l a r l y r e l e v a n t f o r Froude n u m b e r s i n t h e range b e t w e e n 0.35 a n d 0.7, w h e r e t h e resistance c o e f f i c i e n t o f t h e c a t a m a r a n is f o u n d to l a r g e l y exceed t h e c o r r e s p o n d i n g v a l u e o f t h e m o n o h u l l . D i f f e r e n c e s are o n the c o n t r a r y less m a r k e d i n the l o w Froude n u m b e r range ( n a m e l y , f o r F r < 0.3) as w e l l as at t h e e x t r e m e e n d o f the i n v e s t i g a t e d speed i n t e r v a l (i.e., f o r f r > 0.7).

From the analysis o f the v a r i a t i o n o f the t o t a l resistance RT, s h o w n i n Fig. 4 ( f o r comparison purposes, the resistance f o r the m o n o h u l l is m u l t i p l y by t w o ) , i t can be clearly seen t h a t f o r the m o n o h u l l the resistance m o n o t o n i c a l l y increases w i t h t h e advancement speed, whereas, the presence o f h u m p s are e v i d e n t f o r the catamaran c o n f i g u r a t i o n .

The analysis o f t h e v a r i a t i o n o f t h e resistance c o e f f i c i e n t f o r t h e catamarans shows t h a t a l l t h e c o r r e s p o n d i n g Cr curves e x h i b i t a local m i n i m u m at F r s » 0.35 a n d t w o d i s t i n c t local m a x i m a , located r e s p e c t i v e l y a t Fr^ 0.3 a n d at Fr^ 0.5. T h e c o m p a r i s o n b e t w e e n t h e curves evidences t h a t h u l l s p a c i n g has l i t t i e i n f l u e n c e o n t h e m a g n i t u d e a n d o n the l o c a t i o n o f b o t h t h e m i n i m u m a n d o f t h e first m a x i m u m . O n the o t h e r h a n d , t h e f e a t u r e s o f t h e second m a x i m u m at Fr =s 0.50 are s t r o n g l y a f f e c t e d b y the specific v a l u e o f t h e h u l l separation. I n fact, t h e i n t e n s i t y o f t h i s peak increases c o n s i d e r a b l y as the separation is r e d u c e d , w h i l e its p o s i t i o n s h i f t s t o l a r g e r values o f t h e Froude n u m b e r N o t e also t h a t the b e h a v i o r o f t h e resistance c o e f f i c i e n t o f t h e m o n o h u l l is q u a l i t a t i v e l y s i m i l a r t o t h a t observed f o r t h e catamarans, y e t t h e v a r i a t i o n s i n CT are less p r o n o u n c e d o w i n g t o t h e s m a l l e r elevations o f the associated w a v e p a t t e r n . H,l = 0 2C^) K1.= 0.233 H.l- = 0.26r H,l = 0,3-30 ' • • : \ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Fr

Fig. 5. Calm-water tests: The resistance coefficient C j as a f u n c t i o n of Froude n u m b e r Fr f o r each hull separation hi.

-10 . n i = 0 20o • : H/L = 0233 - MIL = 0 257 — H,L = 03CO —• MSnOhLTl 0 0.1 0.2 0.4 0.5 O.S 0.7 0.8 0.<, Fr 0.1 0.2 0.3 0.4 0.5 0.6 Fr 0.7 O.f

Fig. 6. Calm-water tests: The sinkage (n) and the t r i m ( r ) o f the investigated catamarans as a f u n c t i o n o f Froude number f r (top and b o t t o m panel, respectively).

3.2. Sinkage and trim

The sinkage a n d t r i m o f t h e m o d e l s v a r y w i t h F r o u d e n u m b e r a n d h u l l s e p a r a t i o n as d i s p l a y e d i n Fig. 6 ( t o p a n d b o t t o m panel, r e s p e c t i v e l y ) . As f o r the catamarans, o n e can o b s e r v e t h a t t h e c e n t e r o f g r a v i t y o f t h e m o d e l s moves p r o g r e s s i v e l y d o w n w a r d as t h e Froude n u m b e r increases, u n t i l a m i n i m u m is a t t a i n e d at Fr«= 0.45 ( t o p p a n e l ) . I n this range o f r e l a t i v e l y l o w a d v a n c e m e n t speeds, t h e sinkage rr o f t h e catamarans is m u c h l a r g e r t h a n t h e c o r r e s p o n d i n g value o f t h e m o n o h u l l , a n d is e s s e n t i a l l y u n a f f e c t e d b y h u l l s e p a r a t i o n . This t e n d e n c y is r e v e r t e d a t l a r g e r speeds, because t h e c a t a m a r a n m o d e l s start t o m o v e u p t o w a r d s t h e i r o r i g i n a l s u b m e r s i o n level, w h i l e at t h e same time t h e v e r t i c a l d i s p l a c e m e n t o f t h e m o n o h u l l is m u c h less sensitive t o v a r i a t i o n s i n Fr. This results i n a larger sinkage o f t h e m o n o h u l l c o n f i g u r a t i o n w i t h respect t o catamarans f o r F r > 0.5 ( n o t e also t h a t p o s i t i v e values o f t h e sinkage can be detected a t n a r r o w h u l l spacings f o r t h e catamarans w h e n t h e Froude n u m b e r a p p r o a c h e s 0.75).

The b e h a v i o r o f t h e t r i m ( b o t t o m p a n e l o f Fig. 6 ) s h o w s t h a t t h i s q u a n t i t y takes o n n e g l i g i b l e values f o r all i n v e s t i g a t e d c o n f i g -u r a t i o n s , p r o v i d e d t h a t t h e Fro-ude n -u m b e r is less t h a n 0.35. A b o v e t h i s p o i n t - w h i c h corresponds t o t h e sharp increase o f t h e resistance c o e f f i c i e n t observed i n Fig. 5 - t h e t r i m o f c a t a m a r a n m o d e l s d r o p s s u d d e n l y a n d t h e d y n a m i c a l b e h a v i o r o f s i n g l e - a n d m u l t i - h u l l c o n f i g u r a t i o n s s t a r t to d i f f e r As f o r t h e m o n o h u l l , a

(6)

- e H,1. = C1167 RT. = 0 20O - 0 H:t = 0 233 - A K'L = 0.267 - e KL = 0 300 O 0.1 0.2 0.3 0.4 0.5 0.6 . 0.7 0.8 0.9 Fr

Fig. 7. Calm water tests: Interference f a c t o r / f a s a f u n c t i o n o f Froude number Fr for each hull separation H.

g e n t l e m o n o t o n i c increase o f t h e t r i m is o b s e r v e d as t h e advance-m e n t speed increases. O n t h e contrary, t h e t r i advance-m i n c r e a s i n g steeply f o r the c a t a m a r a n u n t i l a m a x i m u m is reached. The p r o p e r t i e s o f t h i s p e a k s t r o n g l y d e p e n d o n h u l l separation. As t h e s e p a r a t i o n H is d i m i n i s h e d , t h e m a g n i t u d e is greatly a m p l i f i e d , a n d at t h e same t i m e its p o s i t i o n s h i f t s t o larger values o f t h e Froude n u m b e r . Beyond t h e peak, t h e t r i m o f t h e catamarans g r a d u a l l y decreases a n d e v e n t u a l l y levels o f f at a n a m p l i t u d e s i m i l a r t o t h a t o f t h e m o n o h u l l .

The a t t i t u d e o f t h e catamaran, as w e l l as t h e Cr curves, is s t r o n g l y r e l a t e d t o t h e features o f the w a v e p a t t e r n i n t h e r e g i o n b e t w e e n t h e h u l l s : t h i s r e l a t i o n s h i p w i l l be discussed i n m o r e d e t a i l i n s u b s e q u e n t sections. 3.3. Interference factor T h e e f f e c t s i n d u c e d o n t h e t o t a l resistance b y changes i n h u l l s e p a r a t i o n are b e t t e r a p p r e c i a t e d b y c o n s i d e r i n g t h e i n t e r f e r e n c e f a c t o r lp, w h i c h is d e f i n e d as the r e l a t i v e d i f f e r e n c e b e t w e e n t h e resistance c o e f f i c i e n t s o f t h e c a t a m a r a n a n d o f t h e m o n o h u l l , a c c o r d i n g t o -(M) 2R m I n this e x p r e s s i o n , superscripts M a n d C r e f e r r e s p e c t i v e l y t o t h e m o n o h u l l a n d t o t h e c a t a m a r a n . The v a r i a t i o n o f t h e i n t e r f e r e n c e f a c t o r w i t h Froude n u m b e r is s h o w n p a r a m e t r i c a l l y i n Fig. 7 as a f u n c t i o n o f h u l l s e p a r a t i o n . The p l o t c l e a r l y evidences t h a t t h e i n t e r f e r e n c e f a c t o r is g e n e r a l l y positive, i n d i c a t i n g t h a t t h e d r a g e x p e r i e n c e d b y t h e c a t a m a r a n is a l m o s t a l w a y s larger t h a n t w i c e t h e d r a g o f t h e m o n o h u l l . I n t h e range o f Froude n u m b e r s 0.32 < Fr < 0.37, h o w e v e r , t h e p a r a m e t e r Ip c o m p u t e d f o r t h e largest separations, H / L > 0.233, appears t o be s l i g h t l y negative, suggesting f a v o r a b l e i n t e r f e r e n c e effects. T h i s v e l o c i t y i n t e r v a l corresponds t o t h e range o f Froude n u m b e r s w h e r e m i n i m a o f t h e resistance c o e f f i c i e n t Cj are o b s e r v e d (see Fig. 5 ) . N o t e also that, i n t h i s n a r r o w range o f c o n d i t i o n s , t h e i n f l u e n c e o f h u l l gap is c r i t i c a l , as a s m a l l change i n t h e s e p a r a t i o n H leads to considerable fluctuations o f t h e i n t e r -ference f a c t o r .

Fig. 7 s h o w s t h a t i n t e r f e r e n c e effects - t o g e t h e r w i t h t h e associated d r a g p e n a l i z a t i o n - are o f p a r t i c u l a r relevance w h e n t h e Froude n u m b e r is larger t h a n Fr ^ 0.4. A c t u a l l y , b e y o n d t h i s l i m i t , t h e i n t e r f e r e n c e f a c t o r increases s h a r p l y a n d a s t r o n g d e p e n d e n c y o n t h e specific h u l l s e p a r a t i o n is apparent. T h e m a x i m u m l e v e l o f i n t e r f e r e n c e is a c h i e v e d w i t h t h e n a r r o w e s t h u l l s p a c i n g ( H / L = 0.167) a t Fr^ 0.5, w h e r e t h e i n t e r f e r e n c e f a c t o r c a n be as large as 0.33. A t l a r g e r separations, t h e p e a k i n t e r a c t i o n reduces a n d occurs at l o w e r a d v a n c e m e n t speeds.

n I 0.012 0.006 0.000 -0.006 I -0.012 0.10 0.00 -0.10

Fig. 8. Dimensionless free-surface elevation (;;) around the different models at F r = 0 . 3 0 . From top to bottom, the panels correspond respectively to: H / L = 0.167, H / L = 0.233, H/L = 0.300 and H/L = oo (monohull).

Fig. 9. Photograph of the wave field around the H/L = 0.167 catamaran at Fr=0.30.

I n p a r t i c u l a r , at H / L = 0.233, t h e m a x i m u m i n t e r f e r e n c e c o e f f i c i e n t is / F ! « 0 . 2 4 a n d is a t t a i n e d at F r a ; 0.48, w h i l e a t H / L = 0.300 t h e peak v a l u e Ip ^ 0.21 occurs at Fr f« 0.44. Finally, Fig. 7 c o n f i r m s t h a t t h e i n t e r a c t i o n b e t w e e n t h e h u l l s is v e r y w e a k at l o w speeds (i.e., w h e n Fr < 0 . 3 0 ) as w e l l as a t t h e e x t r e m e e n d o f t h e i n v e s t i g a t e d Froude n u m b e r i n t e r v a l (i.e., f o r Fr > 0.7). N o t e t h a t t h e observed b e h a v i o r at large Froude n u m b e r s is i n d e e d consistent w i t h t h e v i e w t h a t t h e i n d i v i d u a l w a v e systems p r o d u c e d b y each d e m i h u l l are i n c r e a s i n g l y c o n f i n e d as t h e v e l o c i t y increases, so t h a t m u t u a l i n t e r a c t i o n s are a t t e n u a t e d .

4. Wave-field characterization

The w a v e - f i e l d s g e n e r a t e d b y t h e c a t a m a r a n m o d e l s at several Froude n u m b e r s are d i s p l a y e d as c o n t o u r lines o f t h e n o n -d i m e n s i o n a l free-surface e l e v a t i o n // = / i / L i n Figs. 8, 11 a n -d 15, w h i c h c o r r e s p o n d r e s p e c t i v e l y t o Fr = 0.3, 0.5 a n d 0.75. The panels i n each figure r e f e r t o d i f f e r e n t values o f t h e h u l l s e p a r a t i o n ( H increases f r o m t o p t o b o t t o m ) . T h e w a v e field a r o u n d t h e m o n o h u l l is also r e p o r t e d i n each figure t o serve as a r e f e r e n c e .

(7)

R. Broglia et al. / Ocean Engineering 76 (2014) 75-85 81

Fig. 10. Photograph of the wave field around the H / L = 0.300 catamaran at F r = 0 . 3 0 . 0.10 0.00 -0.10 t O 0.25 0.5 0.75 1 1.25 1.5 1.75 2 X/L

Fig. 11. Dimensionless free-surface elevation (i;) around the d i f f e r e n t models at F r = 0 . 5 0 . From t o p to bottom, the panels correspond respectively to: H / L = 0.167,

H/L = 0.233, H/L = 0.300 and H/L = oo ( m o n o h u l l ) .

4 . J . Fr=0.3

A t l o w Froutie n u m b e r s , F r = 0 . 3 , t h e b o t t o m p a n e l o f Fig. 8 s h o w s t h a t t h e w a v e a m p l i t u d e g e n e r a t e d b y t h e m o n o h u l l is v e r y w e a k , as t h e n o n d i m e n s i o n a l f r e e s u r f a c e e l e v a t i o n ;/ is e v e r y -w h e r e less t h a n 0.01. Some d i f f e r e n c e s b e t -w e e n t h e m o n o h u l l and t h e c a t a m a r a n m o d e l s - i n d u c e d b y i n t e r f e r e n c e effects - are n o n e t h e l e s s discernible, especially at t h e n a r r o w e s t h u l l gap. I n o r d e r t o g a i n a q u a l i t a t i v e f e e l i n g o f the effects associated w i t h h u l l i n t e r a c t i o n , representative p h o t o g r a p h s o f t h e w a v e p a t t e r n t a k e n w i t h a camera l o o k i n g f o r w a r d f r o m astern are r e p o r t e d i n Figs. 9 a n d 10 f o r t h e t w o e x t r e m e separations ( n a m e l y , f o r

H/L = 0.167 a n d f o r H / L = 0.300). This i n f o r m a t i o n can be u t i l i z e d

i n c o m b i n a t i o n w i t h t h e m o r e q u a n t i t a t i v e i n s i g h t p r o v i d e d b y t h e analysis o f t h e e l e v a t i o n c o n t o u r i n Fig. 8.

A t H / L = 0.167, one can observe i n t h e t o p p a n e l o f Fig. 8 t h a t t h e w a v e f i e l d o n t h e o u t e r side o f t h e c a t a m a r a n is o n l y s l i g h t i y p e r t u r b e d w i t h respect t o the m o n o h u l l case. I n t e r f e r e n c e effects are o n t h e o t h e r h a n d clearly v i s i b l e i n t h e r e g i o n b e t w e e n the h u l l s . For instance, t h e w a v e e l e v a t i o n m e a s u r e d a t x / L = 0.25 is t h r e e t i m e s as large as at t h e c o r r e s p o n d i n g p o i n t o n t h e e x t e r n a l side. I n t h e i n n e r r e g i o n , t h e i n t e r a c t i o n b e t w e e n h u l l s results i n a r o u g h l y t w o - d i m e n s i o n a l w a v e f i e l d w h i c h is c h a r a c t e r i z e d b y a

Fig. 12. Photograph o f the wave field around the H / L = 0.167 catamaran at Fr=0.50.

Fig. 13. Photograph o f the wave field around the H / l = 0.233 catamaran at f r = 0 . 5 0 .

series o f p r o n o u n c e d crests a n d t r o u g h s as w e l l as b y a r o o s t e r t a i l e x t e n d i n g a s t e r n f r o m x/L 1 to x / L 1.25. These f e a t u r e s can be clearly d i s t i n g u i s h e d also i n t h e p i c t u r e o f Fig. 9.

As t h e h u l l s p a c i n g is increased t o H / L = 0.233, t h e w a v e f i e l d does n o t change s i g n i f i c a n t l y o n t h e o u t e r side, w h i l e a c o m p l e x t h r e e - d i m e n s i o n a l p a t t e r n develops i n t h e i n n e r r e g i o n . Here, t h e w a v e s y s t e m i n v o l v e s a m a r k e d t r o u g h o n t h e c a t a m a r a n center-l i n e ( center-l o c a t e d a p p r o x i m a t e center-l y a m i d s h i p s ) as w e center-l center-l as a n a r r o w a n d intense peak c e n t e r e d a t x / L ^ 0.5. A t t h e same t i m e , a n e x t e n d e d depressure r e g i o n appears near the stern. The r o o s t e r t a i l is c o n f i n e d t o a zone a r o u n d 1 < x / L < 1.25, as a t s m a l l e r h u l l separation, b u t t h e o v e r a l l p e r t u r b a t i o n n o w e x t e n d s t o m u c h larger d o w n s t r e a m distances. F i n a l l y at t h e largest h u l l gap, H / L = 0.300, t h e c h a r a c t e r o f t h e w a v e p a t t e r n is s u b s t a n t i a l l y preserved, b u t t h e m a g n i t u d e o f t h e f r e e s u r f a c e d e f o r m a t i o n appears s i g n i f i c a n t l y r e d u c e d e v e r y -w h e r e . Also, b o t h t h e -w a v e peak o n t h e l o n g i t u d i n a l axis a n d t h e depressure r e g i o n astern are observed t o s h i f t s l i g h t l y d o w n -s t r e a m . Farther a w a y f r o m t h e m o d e l , i.e., f o r x / L > l , t h e w a v e field again q u a l i t a t i v e l y resembles t h a t observed a t H / L = 0.233.

4.2. Fr=0.5

A t this v a l u e o f t h e Froude n u m b e r , d i f f e r e n c e s b e t w e e n t h e m o n o h u l l a n d t h e H / L = 0.167 c a t a m a r a n are c l e a r l y d e t e c t e d e v e n o n t h e o u t e r side o f t h e vessel, w h e r e f r e e s u r f a c e p e r t u r b a -t i o n s are g e n e r a l l y f o u n d -t o be a m p l i f i e d (see Fig. 11). For ins-tance, t h e b o w w a v e is c o n s i d e r a b l y accentuated a n d a m a r k e d d e p r e s -sure i n v o l v e s a s i g n i f i c a n t f r a c t i o n o f t h e ship m o d e l a s t e r n . I n t h e

(8)

Fig. 14. Pliotograpii o f the wave field around the H / L = 0.300 catamaran at Fr=0.50.

O 0.25 0.5 0.75 1 1.25 1.5 1.75 2

O 0.25 0.5 0.75 1 1.25 1.5 1.75 2 x/L

Fig. 15. Dimensionless free-surface elevation (;;) around the different models at F r = 0 . 7 5 . From top to bottom, the panels correspond respectively to: H / L = 0.167, H / L = 0.233, H / L = 0.300 and H / L = oo ( m o n o h u l l ) . i n n e r r e g i o n , t h e w a v e f i e l d is characterized b y a n a r r o w a n d e l o n g a t e d peak o r i g i n a t e d f r o m t h e s u p e r p o s i t i o n o f t h e t w o d i v e r g i n g b o w crests. T h e p e r t u r b a t i o n focalizes o n t h e l o n g -i t u d -i n a l ax-is a t x » ^ 0.3, w h e r e t h e presence o f a r e g -i o n o f -i n c -i p -i e n t w a v e b r e a k i n g is revealed b y t h e f o r m a t i o n o f d r o p l e t s o b s e r v e d i n t h e p h o t o g r a p h o f Fig. 12. A m a j o r depressure zone s p a n n i n g t h e e n t i r e transverse gap extends a x i a l l y f r o m t o X R JI. This r e g i o n t e r m i n a t e s i n a U-shaped f o r m w h i c h leaves t h e s t e r n d r y . Farther d o w n s t r e a m , t h e free-surface is d o m i n a t e d by a h i g h l y c o n v o l u t e d r o o s t e r t a i l s t r e t c h i n g f r o m x^^.0 t o x f » 1 . 2 . T h i s p r o n o u n c e d r o o s t e r t a i l consists i n a sheet-like j e t w h i c h is characterized b y a n active d r o p f o r m a t i o n process. The i n t e n s e t u r b u l e n t a c t i v i t y i n t h e w a k e f l o w , e v i d e n t i n t h e p i c t u r e o f Fig. 12, is also n o t e w o r t h y .

As t h e h u l l s e p a r a t i o n is increased t o H / L = 0.233, no s i g n i f i -c a n t -change o-c-curs i n t h e e x t e r n a l p a r t o f the d o m a i n , w h i l e t h e w a v e p a t t e r n i n t h e i n t e r n a l r e g i o n g r a d u a l l y evolves t o w a r d a t h r e e - d i m e n s i o n a l o r g a n i z a t i o n (see Fig. 11). Here, t h e f r e e - s u r f a c e appears w r i n k l e d a n d c o r r u g a t e d , a l t h o u g h b r e a k i n g seems t o be i n h i b i t e d d u e t o t h e a c t i o n o f surface t e n s i o n , Fig. 13. O f f t h e s t e r n , t h e w a v e f r o n t o r i g i n a t e d b y t h e h u l l i n t e r a c t i o n e x h i b i t s a c u s p -like ( V ) shape a n d is characterized b y the f o r m a t i o n o f c a p i l l a r y waves, see Fig. 13. W a k e t u r b u l e n c e effects are q u a l i t a t i v e l y s i m i l a r

Fig. 16. Photograph of the wave field around the H / L = 0.167 catamaran at Fr=0.75.

to t h e H / L = 0.167 case, since n o m a j o r change is e x p e c t e d i n t h e b o u n d a r y layer p r o p e r t i e s . A n a r r o w peak is v i s i b l e a m i d s h i p s o n t h e c a t a m a r a n axis. The depressure r e g i o n b e t w e e n t h e h u l l s extends f r o m x/L ^0.7 to x » = 1 . 0 a l t h o u g h its effects a p p e a r t o be s l i g h t l y a t t e n u a t e d as c o m p a r e d t o s m a l l e r h u l l gap. O n t h e contrary, t h e s t e r n is v i s i b l y m o r e dry, w h i l e t h e rooster t a i l has b r o a d e n e d a n d d r i f t e d f a r t h e r d o w n s t r e a m .

F i n a l l y at t h e largest h u l l spacing, H / L = 0.300, i n t e r f e r e n c e effects b e t w e e n a d j a c e n t w a v e systems are s u b s t a n t i a l l y r e d u c e d . The t o p o l o g y o f the w a v e f i e l d q u a l i t a t i v e l y resembles t h a t observed at H / L = 0.233, y e t t h e i n t e n s i t i e s are reduced. As i t can be see i n Fig. 11 a n d i n Fig. 14, a f u r t h e r d o w n s t r e a m d i s p l a c e m e n t o f b o t h t h e depressure r e g i o n a n d t h e rooster t a i l takes also place.

4.3. Fr=0.75

The e l e v a t i o n c o n t o u r s h o w n i n Fig. 15 indicates t h a t d e p a r -tures o f t h e w a v e p a t t e r n f r o m t h e m o n o h u l l s i t u a t i o n can be s t i l l observed i n t h e e x t e r n a l r e g i o n , especially at r e d u c e d values o f t h e h u l l gap. A t H / L = 0.167, f o r instance, t h e scars i m p r i n t e d o n the f r e e - s u r f a c e b y b o w - w a v e b r e a k i n g effects ( O l i v i e r i et al., 2 0 0 7 ) are clearly v i s i b l e , as i n d i c a t e d by the d i s r u p t u r e o f the w a v e f r o n t d e t e c t e d a t x = 0 . 2 5 - 0 . 6 , y = 0.2-0.3 i n Fig. 16. This f e a t u r e is cleariy v i s i b l e also at l a r g e r separations, a n d is o n t h e c o n t r a r y h a r d l y d i s c e r n i b l e f o r t h e m o n o h u l l . Quite u n d e r s t a n d i n g l y i n t e r -ference e f f e c t s are accentuated i n t h e i n n e r r e g i o n . A t H / L = 0.167, a r e g i o n o f elevated f r e e - s u r f a c e extends o n t h e l o n g i t u d i n a l axis over a s u b s t a n t i a l p o r t i o n o f t h e ship m o d e l ( r a n g i n g f r o m x ^ 0.3 t o X ~ 0.6). The p i c t u r e i n Fig. 16 cleariy s h o w s t h a t t h e crest o f t h i s r e g i o n consists i n a sheet-like j e t w i t h v i g o r o u s d r o p f o r m a t i o n . Intense small-scale t u r b u l e n c e is also e v i d e n t o n t h e f r e e - s u r f a c e . The depressure zone extends f r o m x RJ 0.8 t o w e l l b e y o n d t h e s t e r n ( n a m e l y t o x ~ 1.2). S i m i l a r l y t o t h e F r = 0 . 5 case, t h e s t e r n is l e f t c o m p l e t e l y d r y . I n t h e d o w n s t r e a m w a v e p a t t e r n , t h e p r o m i n e n t rooster t a i l f o r m i n g i n t h e r e g i o n 1.3;<x;<1.6 d u e to t h e super-p o s i t i o n o f t h e i n t e r n a l s t e r n waves takes t h e f o r m o f a n a l m o s t c o n t i n u o u s t u r b u l e n t j e t .

As t h e separation increases t o H / L = 0.233, t h e effects described above p r o g r e s s i v e l y attenuate. For instance, t h e w a v e peak i n t h e i n n e r r e g i o n reduces a n d moves b e y o n d x R* 0.5, w h i l e t h e i n t e n s i t y o f t h e depressure i n t h e r e g i o n 0.9;<x;<1.2 is also s i g n i f i c a n t l y lessened. O n t h e c o n t r a r y , t h e i n t e n s i t y o f t h e rooster t a i l ( s t i l l c h a r a c t e r i z e d b y a n intense small-scale t u r b u l e n c e o n t h e f r e e surface) increases a n d moves d o w n s t r e a m , o f f t h e f i e l d o f v i e w o f t h e camera i n Fig. 17.

(9)

R. Broglia et at. / Ocean Engineering 76 (2014) 75-S5 83

Fig. 17. Pliotograph o f the wave field around the H / i = 0.233 catamaran at Fr=0.75.

Fig. 18. Photograph o f the wave field around the H / i = 0.300 catamaran at Fr=0.75,

A t t h e U t m o s t h u i l gap, H/L = 0,300, t h e d o w n s t r e a m displacem e n t o f t h e s t r u c t u r e s o r i g i n a t e d f r o displacem t h e i n t e r a c t i o n o f i n d i v i -d u a l w a v e systems is even m o r e evi-dent. The r e g i o n o f m e a s u r a b l e f r e e - s u r f a c e depressure moves o f f t h e s t e r n a n d t h e r o o s t e r t a i l involves a b r o a d e r r e g i o n , w h i c h is h o w e v e r located f a r t h e r a w a y f r o m t h e m o d e l . T h i s results i n the s y m m e t r y b e t w e e n i n n e r a n d o u t e r regions b e i n g b r o k e n o n l y i n a localized zone o v e r t h e l o n g i t u d i n a l axis, as revealed b y t h e w h i t e - w a t e r r e g i o n v i s i b l e i n t h e p i c t u r e o f Fig. 18.

5. Concluding discussion

The results presented i n t h e previous sections c l e a r l y i n d i c a t e t h a t t h e i n t e r a c t i o n b e t w e e n the d e m i - h u l l s o f a c a t a m a r a n d e p e n d s s t r o n g l y o n b o t h t h e h u l l separation H and t h e advance-m e n t speed ( n a advance-m e l y o n t h e Froude n u advance-m b e r Fr). This i n t e r a c t i o n has a p r o f o u n d i m p a c t o n b o t h the value a n d t h e v a r i a t i o n o f t h e t o t a l resistance c o e f f i c i e n t Cj.

The specific features o f the resistance curves, w h i c h w e r e o u t -l i n e d i n Section 3.1, can be better understood a t t h i s p o i n t by c o n s i d e r i n g the Cr data s h o w n i n Fig. 5 i n c o n j u n c t i o n w i t h t h e a d d i t i o n a l results c o n c e r n i n g t h e v a r i a t i o n o f sinkage and t r i m (Fig. 6 ) a n d t h e properties o f the wave field (Figs. 8 - 1 5 ) . The resistance c o e f f i c i e n t o f t h e investigated c o n f i g u r a t i o n s was typically f o u n d t o e x h i b i t a series o f peaks and troughs (as observed also i n M o l l a n d et al., 1996; Moraes et al., 2 0 0 4 ; Souto-Iglesias e t al., 2 0 0 7 ) . A first local m a x i m u m is observed at F r » j 0.30 f o r b o t h t h e

m o n o h u l l and the catamarans (except the one w i t h t h e n a r r o w e s t separation). U p o n increasing t h e Froude number, t h e resistance coefficient Cr i n i t i a l l y decreases a n d goes t h r o u g h a m i n i m u m a t FrRJ 0.35. Here, a m o d e s t degree o f favorable interference is obtained f o r the large-separation cases, i.e f o r H / L > 0.233 c m . Beyond this value o f t h e Froude number, large levels o f u n f a v o r a b l e interference are observed and t h e resistance coefficient Cr increases sharply up to a m a x i m u m w h o s e propert:ies sti-ongly d e p e n d o n t h e value o f the h u l l separation. S i m i l a r trends, a l t h o u g h w i t h s l i g h t l y d i f f e r e n t levels o f interference, w e r e observed f o r o t h e r catamaran shapes (see e.g., Souto-Iglesias et al., 2007, 2012).

A first p o i n t t o be n o t e d here concerns t h e r e m a r k a b l e s i m i l a r i t y b e t w e e n t h e behaviors observed f o r t h e resistance c o e f f i c i e n t and t h e t r i m o f t h e catamarans. I n p a r t i c u l a r , t h e p o s i t i o n o f t h e first m a x i m u m i n t h e Cj p l o t correlates v e r y w e l l w i t h t h e ( w e a k ) local m a x i m u m observed i n t h e t r i m curves o f t h e large- a n d m e d i u m - s e p a r a t i o n catamarans ( n o appreciable change i n the t r i m is d e t e c t e d f o r t h e H / L = 0.167 c a t a m a r a n u n t i l Fr exceeds 0.35). S i m i l a r l y , t h e absolute m a x i m u m o f Cr is reached a t a p p r o x i m a t e l y t h e same values o f t h e Froude n u m b e r w h e r e m a x i m u m d e v i a t i o n s o f t r i m a n d sinkage f r o m t h e i r h y d r o s t a t i c reference levels take place. For t h e H / L = 0.167 c a t a m a r a n , f o r instance, t h e m a x i m u m Cr a n d t h e m a x i m u m i n t e r f e r e n c e f a c t o r occur at Fr«= 0.5, w h i l e m a x i m u m t r i m a n d sinkage are at F r R j 0.6 and Fr 0.4 respectively. The same o b s e r v a t i o n applies to l a r g e r separations, i.e., t h e m a x i m u m values o f Cj are consistently observed a p p r o x i m a t e l y h a l f w a y b e t w e e n t h e positions w h e r e t h e t r i m a n d sinkage are largest. This s t r i k i n g coincidence can be explained by c o n s i d e r i n g the e v o l u t i o n o f t h e w a v e p a t t e r n at c h a n g i n g Froude n u m b e r , w h i c h is displayed i n Figs. 8 - 1 5 . Let us first consider t h e case at F r = 0.3. For t h e n a r r o w e s t separation catamaran, H / L = 0.167, t h e l i m i t e d gap b e t w e e n t h e h u l l s induces i n t h e i n n e r region a quasi t w o - d i m e n s i o n a l wave p a t t e r n (Fig. 8 ) . The w a v e system consists o f a n a l m o s t u n p e r t u r b e d interface at t h e bow, f o l l o w e d by a peak at x / L RJ 0.25 a n d a b y a t r o u g h a t x / L 0.4. The w a v e elevation t h e n vanishes at x / L RJ 0.5, a n d secondary peaks and t r o u g h s are again observed a t x/L^O.7 and X/ LR JO . S. Even-t u a l l y Even-t h e w a v e h e i g h Even-t is again zero aEven-t Even-t h e sEven-tern. This r e g u l a r a l t e r n a t i o n o f peaks a n d t r o u g h s does n o t e v i d e n t l y force the catamaran to t r i m , and t h e r e f o r e results i n a s m o o t h v a r i a t i o n o f t h e t r i m and Cj curves f o r the H / f = 0.167 catamaran. This o b s e r v a t i o n accounts f o r t h e absence o f t h e local m a x i m u m w h i c h is o t h e r w i s e detected i n p r o x i m i t y o f F r = 0 . 3 f o r t h e larger h u l l separations. A c t u a l l y at H / L = 0.233 a n d H / L = 0.300, t h e i n t e r n a l w a v e f i e l d is d o m i n a t e d by the intense depressure a r o u n d the stern region, w h i c h is l i k e l y t o i n d u c e a b o w - u p c o n f i g u r a t i o n o f t h e catamaran. This e f f e c t p r e s u m a b l y c o m b i n e s w i t h t h e t e n d e n c y o f the m o d e l to sink, a n d results i n a c o m p a r a t i v e l y large v a r i a t i o n o f t h e resistance c o e f f i c i e n t a r o u n d F r ^ j 0 . 3 , as i n d i c a t e d b y the m a x i m a detected a t t h i s p o s i t i o n f o r these t w o separations.

A t h i g h e r Froude n u m b e r s , F r = 0.5, t h e s t r u c t u r e o f t h e w a v e -p a t t e r n changes -p r o f o u n d l y (Fig. 11). A t t h e n a r r o w e s t se-paration, the w a v e system i n t h e i n t e r h u l l r e g i o n is s t i l l a p p r o x i m a t e l y t w o -d i m e n s i o n a l , b u t t h e t y p i c a l w a v e l e n g t h is t w i c e as large as at F r = 0 . 3 . The w a v e e l e v a t i o n is p o s i t i v e i n t h e f o r e b o d y r e g i o n a n d negative i n the a f t b o d y Z e r o - e l e v a t i o n occurs respectively at t h e bow, at the stern a n d a m i d s h i p s . As a consequence, a b o w - u p a t t i t u d e is observed f o r t h e H / L = 0.167 m o d e l . As t h e separation increases, the w a v e f i e l d r e m a i n s q u a l i t a t i v e l y similar, y e t w i t h r e d u c e d a m p l i t u d e s o f t h e w a v e f i e l d a n d w i t h an o v e r a l l d o w n -s t r e a m -s h i f t o f t h e d o m i n a n t -s t r u c t u r e -s . The-se effect-s c o u l d p l a u s i b l y e x p l a i n w h y a m u c h m o r e e v i d e n t increase o f t h e t r i m is registered f o r t h e n a r r o w e s t c a t a m a r a n . Note also t h a t t h e intense depressure w h i c h extends a r o u n d t h e a f t b o d y at H / L = ^ 0.167 p r o b a b l y c o n t r i b u t e s t o t h e l a r g e r sinkage as c o m p a r e d t o w i d e r c o n f i g u r a t i o n s ( H / L = 0.233 a n d H / L = 0.300).

(10)

Finally, a t t h e largest Froude n u m b e r , F r = 0 . 7 5 , t h e m a r k e d depressure b e t w e e n the h u l l s o f t h e n a r r o w e s t c a t a m a r a n ( H / L = 0 . 1 6 7 ) affects t h e e n t i r e stern r e g i o n , w h i l e t h e w a v e peak m o v e s a p p r o x i m a t e l y a m i d s h i p s (Fig. 15). This t o p o l o g y o f t h e f r e e - s u r f a c e a r g u a b l y explains t h e t e n d e n c y t o w a r d s m a l l e r values o f b o t h t h e sinkage and t r i m w h i c h is o b s e r v e d at t h i s Froude n u m b e r . T h e sinkage o f t h e s m a l l - s e p a r a t i o n c a t a m a r a n is i n f a c t p o s i t i v e (i.e., t h e m o d e l is less submersed t h a n i t is a t r e s t ) a n d the t r i m d i f f e r s v e r y l i t t l e f r o m t h a t o f t h e m o n o h u l l . Also, a t larger h u l l separations, t h e catamarans d i s p l a y v a n i s h i n g l y s m a l l values o f sinkage a n d t r i m a m p l i t u d e s w h i c h are v e r y close t o t h a t o f t h e m o n o h u l l . T h i s d i f f e r e n t b e h a v i o r can be u n d e r s t o o d b y n o t i n g t h a t t h e w a v e e l e v a d o n p l o t i n Fig. 15 i n d i c a t e s t h a t t h e i n d i v i d u a l w a v e p a t t e r n s generated b y t h e h u l l s at H / L = 0.233 a n d H / L = 0.300 are a l m o s t i n d e p e n d e n t , so t h a t l a r g e r - s e p a r a t i o n catamar-ans e x p e r i e n c e i n d e e d v e r y s m a l l i n t e r f e r e n c e effects.

6. Conclusions

I n t h i s w o r k , t h e i n t e r f e r e n c e effects b e t w e e n a d j a c e n t h u l l s o f a D e l f t 372 c a t a m a r a n m o d e l have been i n v e s t i g a t e d e x p e r i m e n -t a l l y a-t c h a n g i n g -t h e h u l l separa-tion a n d -t h e Froude n u m b e r . B o -t h g l o b a l q u a n t i t i e s ( n a m e l y , t o t a l resistance, sinkage a n d t r i m ) a n d local p r o p e r t i e s o f t h e w a v e f i e l d have been e x a m i n e d .

The e f f e c t s o f t h e i n t e r a c t i o n w e r e h a r d l y n o t i c e a b l e at l o w speeds, n a m e l y f o r F r < 0.3. A t larger v e l o c i t i e s , h i g h levels o f u n f a v o r a b l e i n t e r f e r e n c e w e r e instead observed, p a r t i c u l a r l y i n p r o x i m i t y o f F r = 0.5. The m a x i m u m l e v e l o f i n t e r f e r e n c e was m e a s u r e d f o r the smallest separation ( H / L = 0.166) at Fr^ 0.5. Here, t h e t o t a l resistance c o e f f i c i e n t Cr w a s f o u n d t o increase b y m o r e t h a n 30% w i t h respect t o t h e m o n o h u l l reference. A t larger separations, t h e peak i n t e r a c t i o n o c c u r r e d a t s m a l l e r values o f t h e Froude n u m b e r , a n d its i n t e n s i t y was a t t e n u a t e d . For instance, at H / L = 0.300, t h e m a x i m u m increase o f Cr w i t h respect t o t h e m o n o h u l l a m o u n t e d t o a p p r o x i m a t e l y 20% at Fr 0.44.

I n t e r f e r e n c e effects w e r e f o u n d to be i n t i m a t e l y c o n n e c t e d w i t h t h e b e h a v i o r o f the sinkage a n d ( i n p a r t i c u l a r ) o f t h e t r i m o f t h e m o d e l . The m e c h a n i s m s w h i c h c o n t r o l t h e change i n resis-tance e x p e r i e n c e d b y the c a t a m a r a n w i t h respect t o t h e s i n g l e - h u l l case can be s u m m a r i z e d as f o l l o w s :

• First, t h e m o d i f i c a t i o n s o f the f r e e s u r f a c e d u e t o t h e i n t e r -ference o f t h e i n d i v i d u a l w a v e systems i n t h e i n t e r - h u l l r e g i o n cause t h e t r i m a n d t h e sinkage o f t h e c a t a m a r a n m o d e l t o change. T h i s e f f e c t leads to a v a r i a t i o n ( g e n e r a l l y , a n increase) o f t h e f o r m resistance i n response t o t h e m o d i f i e d a t t i t u d e o f the c a t a m a r a n .

• I n t u r n , t h e changed a t t i t u d e o f the c a t a m a r a n m o d i f i e s the w a v e p a t t e r n , possibly r e s u l t i n g i n a f u r t h e r v a r i a t i o n o f the w a v e - m a k i n g resistance (as revealed i n p a r t i c u l a r b y t h e h i g h e r w a v e e l e v a t i o n i n t h e r e g i o n e x t e r n a l t o t h e c a t a m a r a n ) .

This t w o f o l d e f f e c t u l t i m a t e l y leads to t h e s i g n i f i c a n t changes o b s e r v e d i n t h e m a g n i t u d e o f t h e t o t a l resistance, p a r t i c u l a r l y at s m a l l h u l l separations a n d at i n t e r m e d i a t e values o f t h e Froude n u m b e r . A c t u a l l y , at l o w speeds, t h e w a v e e l e v a t i o n is t o o s m a l l t o p r o d u c e a s i g n i f i c a n t e f f e c t o n Cj, even a t the n a r r o w e s t h u l l gap w h e r e i n t e r f e r e n c e b e t w e e n the w a v e systems c o u l d be v e r y relevant. A t h i g h speeds, o n t h e o t h e r h a n d , t h e i n d i v i d u a l w a v e systems are v e r y d i v e r g i n g : the s u p e r p o s i t i o n b e t w e e n t h e m is t h u s s u b s t a n t i a l l y reduced a n d t h e m u l t i h u l l c o n f i g u r a t i o n behaves as a c o m b i n a t i o n o f a l m o s t n o n - i n t e r a c t i n g vessels. I n c o n c l u s i o n , t h e largest i n t e r f e r e n c e effects are o b s e r v e d w h e n the s e p a r a t i o n is s m a l l e n o u g h t o r e s u l t i n s u f f i c i e n t l y i n t e n s e i n t e r -a c t i o n o f t h e w -a v e systems -and -a t t h e s-ame t i m e t h e w -a v e

e l e v a t i o n is s u f f i c i e n t l y large t o produce appreciable changes i n t h e c a t a m a r a n t r i m . B o t h c o n d i t i o n s need to be f u l f i l l e d t o observe n o n - v a n i s h i n g values o f t h e i n t e r f e r e n c e c o e f f i c i e n t . The above considerations are s t r i c t l y r e l a t e d t o this p a r t i c u l a r c a t a m a r a n . For o t h e r h u l l shapes, d i f f e r e n t scenarios can be observed, as i n S o u t o -Iglesias et a l . ( 2 0 0 7 ) w h e r e t h e effects o n the f r e e surface d u e t o t r i m v a r i a t i o n s are o f secondary i m p o r t a n c e .

As a final r e m a r k , w e n o t e t h a t f u r t h e r i n s i g h t i n t o t h e w a v e -i n t e r f e r e n c e p h e n o m e n o n c o u l d be ga-ined b y q u a n t -i f y -i n g e x a c t l y t h e i n d i v i d u a l c o n t r i b u t i o n s t o t h e resistance v a r i a t i o n (based, e.g. o n the analysis o f t h e o u t e r w a v e - f i e l d s t r u c t u r e ) . This issue w i l l be e x p l o r e d i n d e t a i l i n a f o r t h c o m i n g paper b y u s i n g a c o m b i n a t i o n o f b o t h e x p e r i m e n t a l a n d n u m e r i c a l i n f o r m a t i o n .

Acloiowledgements

The investigation r e p o r t e d here is part o f a w i d e r c o o p e r a t i o n b e t w e e n the Iowa Institute o f Hydraulic Research (IIHR, U n i v e r s i t y o f I o w a ) and CNR-INSEAN, a i m e d at t h e characterization o f the behavior o f fast catamarans i n c a l m a n d r o u g h seas. Financial s u p p o r t f r o m t h e U.S. Office o f Naval Research t h r o u g h ONR N00014-08-1-1037 G r a n t (Dr. L. Patrick Purtell supervisor) is gratefully acknowledged.

References

Armstrong, T.. 2003. The effect of D e m i h u l l separation on the frictional resistance o f catamarans. In: Proceedings o f the FAST 2003, Ischia, Italy.

Bouscasse, B., Broglia, R.. Stern, F., 2013. Experimental investigation o f a fast catamaran in head waves. Ocean Eng. 72, 318-330.

Broglia, R, Aloisio, C , Falchi, M., Grizzi, S., Zaghi, S., Felli, M., Miozzi, M., Pereira, F., F., Stern, F., 2012. Hydrodynamics o f the f l o w around a catamaran model i n steady d r i f t . I n : Proceedings o f 2 9 t h ONR Symposium on Naval Hydrodynamics. Gothenburg, Sweden.

Broglia, R., Bouscasse, B., Jacob, B., Olivieri, A., Zaghi, S., Stern, F, 2011. Calm w a t e r and seakeeping investigation for a fast catamaran. I n : 11th International Conference Fast Sea Transportation, FAST 2011, Honolulu, Hawaii, USA. Campana, E., Peri, D., Pinto, A., Tahara, Y., Kandasamy, M., Stem, R, Gary, C, Hoffnian, R,

Gorski, J., Kennel, C, 2006. Simulation based design of fast multihull ships. I n : Proceedings o f the 26th Symposium on Naval Hydrodynamics, Rome, Italy. Castiglione, T., Stern, R, Bova, S., Kandasamy, M.. 2011. Numerical investigation o f

the seakeeping behavior of a catamaran advancing i n regular head waves. Ocean Eng. 38, 1806-1822.

Chen, X.N., Deo Sharma, S., 1997. Zero wave resistance for ships m o v i n g i n shallow channels at supercritical speeds.]. Fluid Mech. 335. 3 0 5 - 3 2 1 .

Coleman, H.W., Steele, W.G., 2009. Experimentation, Validation, and Uncertainty Analysis for Engineers. John W i l e y & Sons.

Colicchio, G., Colagrossi, A., Lugni, C, Faltinsen, 0., 2005. Experimental and numerical investigation of a t r i m a r a n in calm water. I n : Proceedings o f 8 t h International Conference on Fast and Sea Transportation, FAST 2005, St. Petersburg, Russia.

Faltinsen, 0., 2005. Hydrodynamics o f High Speed Marine Vehicles. Cambridge University Press.

He, W., Castiglione, T , Kandasamy, M . , Stern, R, 2011. URANS s i m u l a t i o n o f catamaran interference. In: l U h International Conference on Fast Sea Trans-portation FAST 2011, Honolulu, Hawaii, USA.

Insel, Molland, 1992. A n investigation i n t o the resistance components of high speed displacement catamarans. Trans RINA, 134.

Lugni, C, Colagrossi, A., Landrini. M . , Faltinsen, 2004, Experimental and numerical study of semi-displacement m o n o - h u l l and catamaran i n calm water and incident waves. I n : Proceedings o f 2 5 t h Symposium on Naval Hydrodynamics,

St. John, Canada.

Maki, K„ Doctors, L, Rhee, S„ Wilson, W,. Beck, R, Troesch, A., 2007. Resistance predictions for a high-speed sealift trimaran. In: Proceedings o f the 9th Interna-tional Conference on Naval Ship Hydrodynamics, Ann Arbor, Michigan, USA. Milanov, E.. Chotukova, V., Georgiev, R, Stern, R, 2011. EFD studies Delft 372

catamaran directional stability and maneuverability in deep and shallow water. In: NATO AVT-189 Specialists Meeting on Assessment o f Stability and Control Prediction Methods f o r NATO A i r & Sea Vehicles. Portsdown, UK.

Milanov, E., Georgiev, S., 2010. M o d e l Tests of W a t e r j e t Propelled Delft 372 Catamaran. BSHC Technical Report KP092006/01.

Milanov, E., Zlatev. Z., Chotukova, V., Stern, R, 2010. Numerical and experimental prediction of the inherent course stability of high-speed catamaran i n deep and shallow water. In: Proceedings o f the 2 8 t h ONR Symposium on Naval H y d r o -dynamics, Pasadena, California, USA.

Miller, R, Gorski, J., Xing, T„ Carrica, R, Stern, R, 2006, Resistance predictions of high speed mono and multihull ships w i t h and w i t h o u t water j e t propulsors using urans. In: Proceedings of 26th Symposium on Naval Hydrodynamics, Rome, Italy.

(11)

R. Broglia et al. / Ocean Engineering 76 (2014) 75-85 85

Miozzi, M . , 2011. Towing and Self-propulsion Tests o f Waterjet Propeiler DELFT-372 Catamaran. CNR-INSEAN Technical Report 2011-TR-Oll.

Molland, A., Wellicome, J., Couser, P., 1996. Resistance experiments on a systematic series o f high speed catamaran forms: variation o f length-displacement ratio and breadth-draught ratio. Trans. R. Inst. Naval Archit, 138 59-71

Moraes, H., Vasconcellos, J., U t o r r e , R., 2004. Wave resistance for high-speed catamarans. Ocean Eng. 3 1 , 2253-2282.

Olivieri, A., Pistani, E, Avanzini, C , Stern, E, Penna, R, 2001. Tank Experiments o f Resistance, Sinkage and Trim, Boundary Layer, Wake and Free Surface Flow Around a Naval Combatant INSEAN 2340 Model. IIHR Report No. 421. Olivieri, A., Pistani, R, Wilson, R„ Campana, E.R, Stern, R, 2 0 0 7 Scars and vortices

induced by ship bow and shoulder wave breaking. 1. Fluids Eng. 129, 1445-1459.

Peri, D., Diez, M . , Kandasamy, M., Tahara, Y„ Miozzi, M . , Campana, E., Stern, R, 2012. Simulation based design w i t h variable physics modeling and experimental verification o f a water-jet propelled catamaran. I n : Proceedings of 29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden.

Souto-Iglesias, A., Fernandez-Gutierrez, D„ Perez-Rojas, L , 2012, Experimental assessment o f interference resistance for a series 60 catamaran i n free and fixed trim-sinkage conditions. Ocean Eng. 53, 3 8 - 4 7 .

Souto-Iglesias, A., Zamora-Rodriguez, R., Fernandez-Gutierrez, D„ Perez-Rojas, L., 2007. Analysis o f the wave system o f a catamaran for CFD validation. Exp. Fluids 42, 321-332.

Stern. R, Carrica, R, Kandasamy, M . , Gorski, J., Odea. J., Hughes, M . , Miller, R., Hendrix, D., Kring, D., Milewski, W., H o f f m a n , R„ Gary, C, 2006. Computational hydrodynamic tools for high-speed s e a l i f t SNAME Trans. 114, 5 5 - 8 1 . Tarafder, M.S., Suzuki, K., 2007. Computation o f wave-making resistance o f a

catamaran in deep water using a potential-based panel method. Ocean Eng. 34, 1892-1900.

van't Veer, R., 1998a. Experimental Results o f Motions and Structural Loads o n the 372 Catamaran Model in Head and Oblique Waves. TU Delft Report, No, 1130. van't Veer, R., 1998b, Experimental Results of Motions, Hydrodynamic Coefficients

and Wave Loads on the 372 Catamaran Model, TU Delft Report No, 1129. Zaghi, S.. Broglia, R„ Mascio, A,D., 2011. Analysis of the interference effects for h i g h

-speed catamarans by model tests and numerical simulations. Ocean Eng, 38, 2110-2122.

Zlatev, Z., Milanov, E„ Chotukova, V., Sakamoto, N., Stern, R, 2009. Combined model-scale EFD-CFD investigation o f the maneuvering characteristics of a high speed catamaran. In: 10th International Conference Fast Sea Transportation, FAST 2009, Athens, Greece.

Cytaty

Powiązane dokumenty

Kluczowym elementem strategii w  większości państw członkowskich jest rozwijanie kompetencji informatycznych, zaraz po nim – kształcenie w zakresie innowacyjności oraz

Et, au cœur de ces pages qui déploient la mise en scène d’un rite vide de sens pour Jacques, prend place un passage étonnant (188—190) : de très longues phrases

Incroyablement paresseux à l’expérimentation personnelle, armé de documents de pacotille ramassés par des tiers, plein d’une enflure hugolique, d’autant plus énervante

Tematyka Dziennika starości oscyluje głównie wokół aktywności intelektualnej i zawodowej Proppa (działalności naukowej i dydak- tycznej, kontaktów ze studentami

[r]

Wynika ona z twierdzenia, że zasada praworządności powinna być wio­ dącą dyrektywą w ocenie postępowania przygotowawczego, że obecny model tego postępowania,

Celem ćwiczenia jest doświadczalne wyznaczenie siły wyporu oraz gęstości ciał stałych wykorzystując ich masę i siłę ciężkości bryły w powietrzu oraz cieczy..

Podczas badań usuwania osadu płuczkowego z powierzch- ni rotora wiskozymetru obrotowego za pomocą bazowej cie- czy przemywającej, którą była woda, uzyskano usunięcie osa- du