• Nie Znaleziono Wyników

Univalent Taylor Series with Integral Coefficients

N/A
N/A
Protected

Academic year: 2021

Share "Univalent Taylor Series with Integral Coefficients"

Copied!
4
0
0

Pełen tekst

(1)

ANNALES U NIV E RS IT A TI S MARIAE CU RIE-SKŁODOWSKA

LUBLIN-POLONIA

VOL. XXXVI/XXXVII, 16________________ SECTIO A______________________________ 1982/1983

Department of Mathematic«

University of Michigan Ann Arbor, Michigan, USA Department of Mathematics

College of Charleston Charleston, South Carolina, USA

M.O.READE, H. SILVERMAN* *

Univalent Taylor Sériés with Intégral Coefficients

Jednolistne szeregi Taylora o współczynnikach całkowitych

Однолистные ряды Тейлора с целыми коэффициентами

Let S denote the class of functions of the form/(z) =» z + ... that are analytic and univalent in the unit disk A = £z: | z | < 1 j . The Koebe functions z / (1 ± z)1 are extremal for many problems in 5 as are the functions z/(l ± z) for the subfamily of S consisting of convex functions. The Taylor expansions for these four functions have integral coefficients. The question arises as to what other functions in 5 liave only integral coefficients in their Taylor expansions. To find all such functions, we will make use of the following version of the classical j j

Area Theorem.

If f (z) e S. then --- = — + 2 b„zn satisfies the coefficient

inequality Az> 2

2

n | b„

1» < 1 . (I)

n •

1

We now prove our

Theorem.

If f (z) = z + 2 an z” 6 S and a„ is an integer for every n, then f (z) n • J

must have one of the forms

1980 Mathematical subject classification. Primary 30C45.

* This work wai completed while the second author was on sabbatical leave from the College of Charleston as a Visiting Scholar at the University of Michigan.

(2)

132

M. O. Reade, H. Silverman

I Z Z Z

Z' T7T’ (1 ± Z)3 ' l±z’ • 1 ± Z + Z3' •

Proof. Upon writing

A*) z + 2

a„zn 2

«■I

we note that and j satisfy the relations

b0

+ flj = 0 ,

bi 4-h0flj + tfj = 0 , (2)

and, more generally,

b„ +b„. , a2 + bn.2 «» +"• + M/

im +0n* j =0 (n>2). (3)

Since the are integers, it follows inductively from (3) that the {/>„} are also integers. Hence, (1) implies that

IM<1 (4)

and that

b„

= 0 for

n

= 2, 3... Thus, —-— = — +

ba + btz

or, equivalently ,/(z)

must liave the form •* 2

z 1 + bot + b t z2

of the forms

z 2.

"t

Now from

(4)

we know that the possible values for

bt

are

bt

= 0, 1, - 1. Our result will follow from a consideration of these three cases.

Case (i): h, = 0. Then /(z) = z / (1 +

boz)

and since

f

(z) is analytic In A, we must have | h0 I < 1> which yields the three possible values b0 = 0,1, - 1. Thus,/(z) lias one

z

1-z '

hi = 1. From the well-known bound |

a2

| < 2 for functions in 5, we see from (2) that the possible values for h0 = — flj are h0 - 0, ± 1, ± 2.

This generates the five functions

z z z z z

1 + Z

Case(ii):

1+z*’ l+z + z3 1-z + z3’ (1+z)3’ (1-z)3'

(3)

Univalent Taylor Series with Integral Coefficients 133

each of which is univalent in A.

Case (iii): d, = — 1. Since the denominator of 2 / (1 + d02 — 2’) has its zeros at 2 = ( — dft ±Vdo +4)/2, of the five possible.values0,±l,±2 fordo, only the cased0 =

= 0 will produce a function anylytic in A. Consequently, our final case supplies us with the univalent functions 2 / (1 — 21).

Combining the three cases, we obtain the nine univalent functions whose Taylor series have integral coefficients. This completes the proof.

Note that the only functions in S with integral coefficients are rational (and starlike).

This leads to the following questions:

(i) If

f

(2) is in

S

and assumes rational values for 2 rational in A, must

f

(2) be a rational function?

(ii) What can we say about rational functions in

S?

Mitrinovic has some partial results [1] as do Reade and Todorov [2].

REFERENCES

[1) MitrinoviS, D. S..

On the univalence of rational function!,

Unlv. Beograd. PubL Elektrotehn.

Fak. Set. Mat. Fiz., 634 - 677, (1979), 221-227.

(2) Reade, M. 0., Todorov, P. G„

The radii of ttarlikenett and convexity of order alpha of a rational function of Koebe type,

(submitted).

STRESZCZENIE

Znalezione zostały wszystkie funkqe klasy So współczynnikach całkowitych.

РЕЗЮМЕ

Найдены все функции класса 5 с целыми коэффициентами.

(4)

Cytaty

Powiązane dokumenty

Section 3 is devoted to obtain distortion properties and radius of meromorphic convexity of order i (0 &lt; 6 &lt; 1) for functions in EJ^(a).. In Section 4 we

The extension technique applied by Beurling and Ahlfors assures that the function ?[f,rj is continuously differentiable everywhere on its domain, which follows by the property of.

Współczynniki Grunsky’ ego funkcji meromorficznycłi gwiaździstych i wypukłych Коэффициенты Грунского мероморфных, звёздных и

Thus the equation (12) and consequently the equation (7) has a unique root in this interval what, by the definition of completes the proof of the theorem in the case in

Współczynniki funkcji odwrotnych do funkcji regularnych gwiaździstych Коэффициенты функций обратных к регулярным звездным функциям.. Except for rotations the

Since the derivative of functions in the class 5 satisfies sharp inequality |&lt;7/(2:)l 0 + l2l)(l — l2l) 3, z € A, the order of growth of the integral means of functions

Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) &gt; 0 inside the disc |«| &lt; rn,

W pracy autorzy otrzymali oszacowanie ws|xdczyuników logarytmicznych funkcji z pcunei liniowo niezmienniczej rodziny