• Nie Znaleziono Wyników

Logarithmic Coefficients of Locally Univalent Functions

N/A
N/A
Protected

Academic year: 2021

Share "Logarithmic Coefficients of Locally Univalent Functions"

Copied!
6
0
0

Pełen tekst

(1)

LUBLIN-POLONIA

VOL. XL1II, 2_________________________SECTIO A___________ ______________ 1989 Instytut Matematyki UMCS

Department of Mathematics University of Petrozavodsk

Petrozavodsk, USSR

J. GODULA , V. STARKOW

Logarithmic Coefficients ofLocally Univalent Functions Współczynniki logarytmiczne funkcjilokalniejednolistnych

Abstract. In this paper the authors obtain upper bounds of logarithmic coefficients of func­

tions from a linearly invariant family of the order a.

1. Introduction. Let U*, a> 1 be the class of functions fanalytic in theunit disk D such that

1- w(z)e'*

I — w(0)e,f

where s(z) = z +■ • • is a convex and univalent function, i.e. s maps D onto convex domain; w is analytic in D and |u>(z)| < 1, z £ D; fi is a complex valued function with bounded variationon [0,2ir] and satisfying the following conditions

2ir 2ir

dp(<)= 0 , i |dp(t)| <a - 1 .

The class U* is the linearly invariantfamilyoftheordera, [2], [3]. The class U£ con­

tainsthe class of close-to-convex functions. Moreover, if V2a is the class of functions of bounded boundary rotation, [2], then ViaC U*. As shownin [1],f G U* iff

2 IT

(1.1) /'(z)= /(z)exp[-2jf log(l- w0(«)e'‘)d/x(t)] ,

where s,p. are asabove, and Wo is analytic in D, |u>o(z)| < 1, zgD, u>o(0)=0.

For a function f € U* its logarithmic coefficients 7„, n = 1,2,... are defined by the expansion

(1.2)

00

log/'i*) = 13 7n*" '

n= 1

(2)

10 J. Godula, V. Starkov

In thispaper weobtainbounds for thecoefficients7,,.

2. The main result. By {/i}„ we will denote n-th coefficient in the series expansioh ofan analytic function h.

Theorem. For f € U* and yn given by (1.2) we have

|7»| < 2(a-, n =l,2,... .

Proof. Since U* isrotationally invariant it suffices to considerRe -y„. By (1.1) we have

(2-1) log/'(z) =logs'(z)-2 ,2’

Jo 1O6^ w0(2)e'‘)dp.(t) .

It isknownthat for a convexfunction s thereexists a function ft of thetotal variation 1 on[0, 2tt] such that

(2.2) Re {logs'(2)}„ = -2 Re i J*{log(l- 2e’')}n d/3(t) < -

Jo n

Theequalityholds for

f 0 for t= 0 W)_tl forte (0,24

Now, we estimate coefficients ofthe second expression in (2.1). Let us introduce a new class U+ of functions f such that

f'(2) = s'(2)exp [-2 jf log(l-w(z, <)) dp(f)j ,

wheres, p are asabove andw(2,<) is afunction analytic with respect to2, z€D and analytic with respect to t on an interval containing [0,2tt). Moreover, |w(2,<)| < 1, w(0,<) = 0.

Observe that

(2-3)

Let f€ U+ and

C 17+ .

l°g/'(z)= ¿7nZn , «eD.

n=l

Let be a class of functions <p suchthat

95(2) = -2/ 1Og^-w(z,t))dp(<) ,

(3)

where uj, // are as above.

Let w(j,t) be an extremalfunctionfor |7„| with corresponding /i and let

2ir oo

<?(*) = [ log(! - w(z,<))d/l(t)= V AkZk e 4>„

fc=i

Then for e„ = e2n'/n we have

—1

¥>+(*) := i £ £(«‘) = -2 I£ log(l - Z(zekn,t)) dfi(t) =£Aknzkn

n i^i n

Now, we give

Lemma. Let A* > 0, ]>2t=o = 1 an<t wk(r,t), k =0,1,...,n — I be as in the definition ofU+. Then there exists thefunction u+(z,t) such as in the definition of U+ and such that

n—1

52 ”«*(*.<)) = log(l -w+(z,/)) , z G D . Jt=o

The Lemma follows from the fact that the function log(l + (,) is convex in D and from propertiesof thefunctions w*. Thus fromthe Lemma weobtain that

.a«

<fi+(z) = -2 / log(l -w+(z,t))dfi(t)= Anzn + A2„22"+ ••• ,

where w+(z,<) = 6iznl. We have that the function w#(z,t) = w+(z*/n,<) is such as in thedefinitionof U+ and therefore

¥»+(*

1/") = _2/,3» 1log(l -w#(z,<)) dfi(t) = A„z +A2nz2 +■••€$„ .

Thus an estimation ofthen-th coefficient in reduces to an estimation ofthefirst one.

Therefore,if € $<> then

Re {y?}, = Re[jf 2{w(z,f)}idp(f)] < 2jf | —|t=0 w(z,<)| |dp(f)| < 2(a - 1).

Hence, by theinclusion (2.3) we obtain 2 TT

Re[{-2jf log(l — w(z)e‘<)d/r(t)}nj < 2(a -1.

Q — 1

The equality holdsfor w(z) =zn and forp with jumps : —for t = 0 and for t = 7r. Evidently the equality occurs for another fi. 2

(4)

12 J. Godula, V. Starkov

Now, we deduce from this and (2.1), (2.2) that

Re 7„ < 2(a - 1 + -) n and this proves our Theorem.

3. Additional results. From our Theorem we have that for n =1,2,.

|{l°g/'(2)}nl < |{2(«-l)j^ - 21og(l -,)} J .

Hence

= |{(1 + 2* + 3zJ + ■ ■ -)(1 + B\Z + B?Z2 + • • ,)}n| = n

= £(fc+!)£„_* , B0 = l, n=l,2,....

k=0 Observe that

Therefore

C-0-

in — 1\ 2*(a—1)*

*.-§(t_1)-4rL’ n=1'2--

Bo = 1 . Thus we have

n-k-\\ 2>(a -l)'(fc4-1)

k=0 >=1 v J z

, n— 1,2,... .

From this wecan obtainthat

n —1n —fc—1

Krt-iift'E „ = 2,3,...

*=0 >=1 x 1 ' J where 5Zj=i by definition equals to Bo = 1.

(5)

II BFEI1ENCES

[I.] Goilula . -I. . Starkov , V. , On Inkubewsl.ifunctional in lr* , Eolia Sci. Univ. Tecliu.

Hesoviensi.«,(¡0, 9(1989), 37 IS

[2] Pommercnkr , i'll, . Linear invnnante b'ainilten analytivt ho b'nntlionnn, I , Malli. Aim., 155 (1901), 108 151.

[3] Star kov, V , Pinikov, <«. , On a linearly invariant family which generalizes the class of clone to convex functions, (’.It. Ara<| Bulgare Sri , 38. 8 (1985), 967 968. (in Russian)

STR ESZCZENIK

W pracy autorzy otrzymali oszacowanie ws|xdczyuników logarytmicznych funkcji z pcunei liniowo niezmienniczej rodziny rzędu (V.

(6)

Cytaty

Powiązane dokumenty

ToxysHHa, ani-opii ycTaHOBHM BapnaynoHHbie (}&gt;op- wy?ui mu xajiacca M (3, ¿0&#34;) “ ■najIM HX npHMeHeHHH am onpe aojj 6 hhh MQIEOpHTHOiÇ OÔXaCTH

Convolutions of Univalent Functions with Negative Coefficients Sploty funkcji jednolistnych o współczynnikach ujemnych Свертки однолистных функций

Współczynniki funkcji odwrotnych do funkcji regularnych gwiaździstych Коэффициенты функций обратных к регулярным звездным функциям.. Except for rotations the

Analytic Functions with Univalent Derivatives 145 Each of the series converges because is typically real and hence (1/6) • Z&gt;3 &lt; 3.. We wish to eliminate all the

The question arises as to what other functions in 5 liave only integral coefficients in their Taylor expansions.. To find all such functions, we will make use of the following

We now examine problems about the growth of |#'(z) | where g is analytic and bounded in A (and not necessarily univalent) and for simplicity take the bound to be 1.!. The

Since the derivative of functions in the class 5 satisfies sharp inequality |&lt;7/(2:)l 0 + l2l)(l — l2l) 3, z € A, the order of growth of the integral means of functions

formly convex and uniformly starlike, and some related classes of univalent functions. We also introduce a class of functions ST«) which is given by the property that the image of