• Nie Znaleziono Wyników

Stationary heat flow in 3D

N/A
N/A
Protected

Academic year: 2021

Share "Stationary heat flow in 3D"

Copied!
11
0
0

Pełen tekst

(1)

FEM for stationary heat flow

Piotr Pluciński

e-mail: Piotr.Plucinski@pk.edu.pl

Jerzy Pamin

e-mail: Jerzy.Pamin@pk.edu.pl

Chair for Computational Engineering

Faculty of Civil Engineering, Cracow University of Technology URL: www.CCE.pk.edu.pl

Computational Methods, 2020 J.Paminc

Lecture contents

1 Stationary heat flow in 3D Model - strong formulation Model - weak formulation FE equations

2 Selection of approximation functions Shape functions for 1D problems Shape functions for 2D problems Shape functions for 3D problems

(2)

Stationary heat flow in 3D

q n

qn = qTn

∇ =

∂x

∂y

∂z

cold hot

q ∇T

Fundamental unknown - temperature T

Fourier’s law of heat conduction q = −D ∇T

heat flux density vector q = {qx qy qz} [W/m2] temperature gradient gradT = ∇T = n

∂T

∂x

∂T

∂y

∂T

∂z

o

[K/m]

heat conduction matrix D = {kij} [W/(mK)]

Flux density grows with temperature gradient.

Heat flows from higher to lower temperature.

Computational Methods, 2020 J.Paminc

Heat energy balance

Heat generated equal to heat flowing out

Z

V

f dV = Z

S

qndS ∀ V

f – heat source density – energy supplied to the body per unit volume and time [W/m3]

V

S Using Green-Gauss-Ostrogradsky theorem about integration by parts

Z

S

qndS = Z

S

qTn dS = Z

V

divq dV = Z

V

 ∂qx

∂x + ∂qy

∂y + ∂qz

∂z

 dV Z

V

f dV = Z

V

Tq dV ∀ V Tq = f ∀x ∈ V

(3)

Heat flow equations

Heat conduction equation (strong formulation)

T(D∇T ) + f = 0 ∀x ∈ V + boundary conditions

qn = qTn = bq on Sq– natural b.c. (Neumann) T = bT on ST– essential b.c. (Dirichlet)

V

ST Sq

Conduction matrix for isotropic materials D = kI

2T

∂x2 + 2T

∂y2 + 2T

∂z2 + f

k = 0 – Poisson equation For isotropic materials without heat source

2T

∂x2 + 2T

∂y2 + 2T

∂z2 = 0 – Laplace equation

Computational Methods, 2020 J.Paminc

Stationary heat flow in 3D

Weighted residual method Z

V

w ∇T(D∇T ) + f dV = 0 ∀w 6= 0 Z

V

w∇T(D∇T )dV + Z

V

wf dV = 0

V

ST Sq

Weak formulation

Z

V

(∇w)TD∇T dV + Z

S

w

D∇T

−q

T

ndS + Z

V

wf dV = 0

Z

V

(∇w)TD∇T dV − Z

S

w qTn qn

dS + Z

V

wf dV = 0 Z

V

(∇w)TD∇T dV = − Z

Sq

w q dS −b Z

ST

w qn dS + Z

V

wf dV ∀w natural b.c. secondary unknown

(4)

Stationary heat flow in 3D

Strong formulation

T(D∇T ) + f = 0 ∀x ∈ V + boundary conditions

qn = qTn = qb on Sq

T = Tb on ST

V

ST Sq

Weak formulation

Z

V

(∇w)TD∇T dV = − Z

Sq

wqbdS − Z

ST

wqndS + Z

V

wf dV ∀w 6= 0

+ boundary condition

T = Tb on ST

Computational Methods, 2020 J.Paminc

Stationary heat flow in 3D

Set of FE equations

T = NΘ – approximated temperature function N – shape function vector ((global approximation) Θ – nodal temperature (dof) vector

∇T = BΘ – approximated temperature gradient function B = ∇N – shape function derivative matrix

w = wTNT – approximation of weight function (∇w = Bw) Z

V

(∇w)TD∇T dV = − Z

Sq

wbq dS − Z

ST

wqndS + Z

V

wf dV ∀wT

KΘ = fb+ f K =

Z

V

BTDBdV, fb = − Z

Sq

NTq dS−b Z

ST

NTqndS, f = Z

V

NTf dV

(5)

Selection of approximation functions

Fundamental steps in FE procedure

1 Build a strong formulation of a problem

2 Convert the formulation into a weak format

3 Select approximation of unknown function

4 Select weighting function (usually Galerkin approach)

Computational Methods, 2020 J.Paminc

Selection of approximation functions in 1D

1 Strong formulation d

dx AkdT dx

!

+ f = 0

+ boundary conditions

qx = qb at xq ( e.g. xq = 0) T = bT at xT ( e.g. xT = l)

xq = 0 xT = l

2 Conversion into weak formulation Z l

0

dw

dx AkdT dx

!

dx = (wA) x=0

q − (wAqb x) x=l

+ Z l

0

wf dx + b.c.

T = bT at xT ( e.g. xT = l)

(6)

Selection of approximation functions in 1D

3 Selection of approximation functions Linear function

Te(x) = α1+ α2x = Φαe Φ = [1 x], αe =

 α1 α2



Te(x) = Nie(xe)Ti + Nje(xe)Tj = NeΘe Ne = [Nie(xe) Nje(xe)], Θe =

 Ti Tj



dTe

dxe = BeΘe, Be = dNe dxe =

"

dNie dxe

dNje dxe

#

x T

Ti Tj

xi xj le

xe 0e le 1

Nie(xe)

xe 0e le

1 Nje(xe)

Computational Methods, 2020 J.Paminc

Selection of approximation functions in 1D

3 Selection of approximation functions Quadratic function

Te(x) = α1+ α2x + α3x2 = Φαe Φ = [1 x x2], αe =

α1 α2 α3

Te(x) = Nie(xe)Ti + Nje(xe)Tj + Nke(xe)Tk

= NeΘe

Ne = [Nie(xe) Nje(xe) Nke(xe)], Θe =

Ti Tj Tk

dTe

dxe = BeΘe, Be = dNe dxe =

"

dNie dxe

dNje dxe

dNke dxe

#

x T

Ti

Tj

Tk

xi xj xk le

xe 0e xej le 1 Nie(xe)

xe 0e xej le

1 Nje(xe)

xe 0e xej le

1 Nke(xe)

(7)

Selection of approximation functions in 2D

1 Strong formulation

T(D∇T ) + f = 0 ∀x ∈ A + boundary conditions

qn = qTn =qb on Γq

T = bT on ΓT ΓT

Γq

2 Conversion into weak formulation (h - configuration thickness)

Z

A

(∇w)TDh∇T dA = − Z

Γq

whqdΓ −b Z

ΓT

whqndΓ + Z

A

whf dA

+ boundary condition

T = bT on ΓT

Computational Methods, 2020 J.Paminc

Selection of approximation functions in 2D

3 Selection of approximation functions Three-node element

Te(x, y) = α1+ α2x + α3y = Φαe

Φ = [1 x y], αe =

α1 α2 α3

Te(x, y) = Nie(xe, ye)Ti + Nje(xe, ye)Tj+ + Nke(xe, ye)Tk = NeΘe

Ne = [Nie(xe, ye) Nje(xe, ye) Nke(xe, ye)], Θe =

Ti Tj Tk

y T (x, y)

x Ti

Tk

Tj i

k

j

ye xe

i k

j e

(8)

Selection of approximation functions in 2D

3 Selection of approximation functions Three-node element

Ne = [Nie(xe, ye) Nje(xe, ye) Nke(xe, ye)]

e.g. for Ni(xe, ye) Ni(xei, yie) = 1 Ni(xej, yje) = 0 Ni(xek, yke) = 0

ye Ni(xe, ye)

xe 1 i

k

j

ye Nj(xe, ye)

xe 1

i k

j ye

Nk(xe, ye)

xe

1 i

k

j

Determination of shape functions Ni(xe, ye) = α1i+ α2ixe + α3iye

1 xi yi 1 xj yj 1 xk yk

α1i α2i α3i

=

 1 0 0

=⇒

α1i = xjy2Pk−xkyj

4

α2i = y2Pj−yk

4

α3i = x2Pk−xj

4

Computational Methods, 2020 J.Paminc

Selection of approximation functions in 2D

Pascal triangle – three-node element 1

x y

x2 xy y2

x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4

Pascal triangle – six-node element 1

x y

x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4

(9)

Selection of approximation functions in 2D

Convergence conditions - requirements for FE approximation

completeness – approximation must be able to represent a constant field and a constant field gradient

continuity (conforming FE) – approximation must be continuous along interelement edges

Computational Methods, 2020 J.Paminc

Selection of approximation functions in 2D

3 Selection of approximation functions Four-node element

Te(x, y) = αe1+ αe2x + αe3y + αe4xy = Φαe

Φ = [1 x y xy], αe =

αe1 αe2 αe3 αe4

Te(x, y) = Nie(xe, ye)Ti + Nje(xe, ye)Tj+

+ Nke(xe, ye)Tk + Nle(xe, ye)Tl = NeΘe Ne = [Nie(xe, ye) Nje(xe, ye) Nke(xe, ye) Nle(xe, ye)]

Θe = {Ti Tj Tk Tl}

y T (x, y)

x Tj

Tk Ti

Tl j

i

k l

ye xe

j

i

k e l

(10)

Selection of approximation functions in 2D

3 Selection of approximation functions Four-node element (rectangular)

Ne = [Nie(xe, ye) Nje(xe, ye) Nke(xe, ye) Nle(xe, ye)]

e.g. for Ni(xe, ye) Ni(xei, yie) = 1 Ni(xej, yje) = 0 Ni(xek, yek) = 0 Ni(xel, yle) = 0

ye Ni(x, y) = (x−xjab)(y−yl)

xe 1

i

j

k l b a

ye Nl(x, y) = −(x−xkab)(y−yi)

xe

i 1 j

k l

b a

ye Nj(x, y) = −(x−xiab)(y−yk)

xe 1 j i

k l b a

ye Nk(x, y) = (x−xlab)(y−yj)

xe 1

i j

k l

b a

∇Te = BeΘe Be =

" ∂Ne

∂xe

∂Ne

∂ye

#

Computational Methods, 2020 J.Paminc

Selection of approximation functions in 2D

Pascal triangle – four-node element 1

x y

x2 xy y2

x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4

Pascal triangle – eight-node element 1

x y

x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4

(11)

Selection of approximation functions in 3D

1 Strong formulation

T(D∇T ) + f = 0 ∀x ∈ V + boundary conditions

qn = qTn =qb on Sq

T = bT on ST

V

ST Sq

2 Conversion to weak formulation

Z

V

(∇w)TD∇T dV = − Z

Sq

wqdS −b Z

ST

wqndS + Z

V

wf dV + boundary condition

T = bT on ST

Computational Methods, 2020 J.Paminc

Selection of approximation functions in 3D

3 Selection of approximation functions Tetrahedral element

Te(x, y, z) = αe1+ αe2x + αe3y + αe4z Te(x, y, z) = Nie(xe, ye, ze)Ti + Nje(xe, ye, ze)Tj

+ Nke(xe, ye, ze)Tk + Nle(xe, ye, ze)Tl

= NeΘe

Hexahedral element

Te(x, y, z) = αe1+ αe2x + αe3y + αe4z+

+ αe5xy + α6eyz + αe7xz + αe8xyz

y z

xi

j

k l

y z

x i

j k

l m

n o

p

Cytaty

Powiązane dokumenty

As the first step towards comprehensive brain stem model neural rhythm generators controlling the upper and lower lung muscles responsible for breathing patterns are studied..

So, a search is on for considering various polynomial (polynomial operators) so that they maintain the zero- free property of f. One of the polynomial best suited in the situation

The basic result asserts the relation between compact convex subsets of a locally convex Hausdorff space and their extreme points.. Theorem 3 (Krein-Milman, see [3, 9,

1 Stationary heat flow in 3D Model - strong formulation Model - weak formulation FE equations.. 2 Selection of approximation functions Shape functions for 1D problems Shape

This lecture was prepared within project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction”, co-financed by the

In this paper the assumptions on a(t, r) are chosen in such a manner that they imply continuity of the transforms and are satisfied for a number of

„Jeśli zaś obawiacie się mieczów Italii i wojen, powinniście skwapliwie przy- jąć do wiadomości, jak wielka jest opieka błogosławionego Piotra, Księcia Apostołów (beati

Adama Buczka - Honorowego Kapelana Strażaków Diecezji Siedleckiej, dh Artura Pietrzaka - Prezesa Zarządu Od­ działu Powiatowego ZOSP RP w Siedlcach, nadbrygadiera Tomasz