• Nie Znaleziono Wyników

Assessment of ionospheric corrections for PPP-RTK using S-system theory

N/A
N/A
Protected

Academic year: 2021

Share "Assessment of ionospheric corrections for PPP-RTK using S-system theory"

Copied!
21
0
0

Pełen tekst

(1)

Assessment of ionospheric corrections for

PPP-RTK using S-system theory

Dimitrios Psychas1,2*, S. Verhagen2, X. Liu1

* d.psychas@fugro.com

1 Fugro, GNSS R&D, Leidschendam, The Netherlands 2 Delft University of Technology, Delft, The Netherlands

(2)

Contents

 Motivation

PPP-RTK – S-system theory

Ionosphere – Convergence time

 Methodology

Design computations

Ionosphere modelling

 Results

(3)
(4)

Motivation –

PPP-RTK (1/3)

 Precise Point Positioning (PPP)

Dual-frequency PPP solution:

 27 minutes to reach the 10 cm level

 Use of satellite orbit and clock offset

information (e.g. IGS products).  Inability to resolve the integer

carrier-phase ambiguities.

(5)

Motivation –

PPP-RTK (2/3)

 Model the phase biases in the parameter domain

 Long convergence time in float PPP (ionosphere-estimated)  Solution: integer ambiguity resolution-enabled PPP

 S–system theory (Baarda 1973, Teunissen 1985)

 Rank-deficiency in uncombined + undifferenced PPP functional model

with and

Linear model:

with V being a basis matrix of the null-space of A

Decomposition:

(6)

Motivation –

PPP-RTK (3/3)

Satellite clock offsets Satellite phase biases

Other parameters PPP-RTK user PPP-RTK network Precise orbits GNSS data PPP-RTK corrections PPP solution

 27 minutes for reaching 10 cm

PPP-RTK solution

 12 minutes for reaching 10 cm

(7)
(8)

Methodology –

Design computations (1/2)

 How precise does the ionosphere model need to be to enable faster PPP-RTK ?  Assess the precision required to enable shorter Time-To-First-Fix: time to

achieve successful integer ambiguity resolution (99.5%).  Simulated GPS PPP-RTK user environment:

 Measurement noise: 20 cm for code, 2 mm for phase  Elevation-dependent weighting (mask 10o)

 Orbit precision: 2.5 cm

(9)

Methodology –

Design computations (2/2)

(10)

Methodology –

Ionosphere modeling for PPP-RTK

 Uncombined PPP-RTK can provide ionospheric slant delays, unaffected by levelling errors:

 Mathematical representation: Generalized Trigonometric Series functions  Single-layer model approximation

Differential Code Biases (DCB)

 Rank-deficiency if both receiver and satellite DCBs need to be estimated.  Solution: Lumping a minimum set of parameters as the -basis

(11)

 GNSS data (DOY 046/2014) from a CORS network

Methodology –

Data used for ionosphere modeling

 Undifferenced and uncombined PPP-RTK processing

ambiguity-float estimates ambiguity-fixed estimates

(12)

 Self-consistency test: quality metric to assess the modelled STECs  RMS of variations between STECs along a continuous arc

Methodology –

Assessment of ionospheric corrections

 External validation: CODE Global Ionosphere Maps

(13)
(14)

Results –

Ionosphere (1/2)

 Self-consistency test for every receiver-satellite link:  Most of the RMS values are below 1.5 TECU  Overall RMS is 1.1 TECU

 External validation with CODE GIM:

 RMS of VTEC differences is 2.1 TECU  Measurement residuals:

(15)

Results –

Ionosphere (2/2)

• Case study using

precise ionospheric corrections

13 min to reach 10 cm

(16)
(17)

Conclusions

 Conclusions

 Faster PPP-RTK solutions are expected if precise ionospheric corrections are available to the users.

 PPP-RTK can provide high-precision ionospheric delays for ionosphere modeling.

 The proposed methodology can be used for reliable regional ionosphere modeling and satellite DCB estimation.

(18)

References

 Baarda, W. (1973). S-transformations, criterion matrices. Publications on Geodesy, 18 vol 5 (Delft: Netherlands Geodetic Commision)

 Teunissen, P. J. G. (1985). Generalized inverses, adjustment, the datum problem and

S-transformations. In E. Grafarend & F. Sanso (Eds.), Optimization and design of geodetic networks.

(19)

Click to add the title of the Frontpage

Acknowledgements

North Carolina Geodetic Survey, International GNSS service

Dimitrios Psychas GNSS R&D Team Geodesist – PhD Researcher Fugro Intersite B.V. Dillenburgsingel 69 Leidschendam 2263 HW The Netherlands d.psychas@fugro.com

This project has received funding from the

(20)

Backup –

Satellite DCBs

 Validation with IGS DCBs (C1C-C2W)  Common -basis is needed

 RMS equal to 1.3 ns

(21)

Backup –

Receiver DCBs

Stability analysis

Cytaty

Powiązane dokumenty

5 Assisting and opposing mixed convection with conjugate heat transfer in a differentially heated cavity filled with coarse-grained porous media 93 5.1

23 Skutek odniesie „doręczenie przesyłki pocztowej lub jej awizowanie na adres prywatny redaktora naczelnego, jak i na adres redakcji, a także przesłanie faksu do

ABC m?odego ekologa, strona 1/2 | Testy, quizy i nauka online

The input parameters that were adjusted were the hydrogen price, lifetime of the fuel cell system, investment costs per vehicle, day-ahead price, aFRR up price, aFRR down price,

Despite the rapid progress that has been made in recent years in improving forecasting, warning and management of this type of flooding, a number of major drawbacks remain,

podobnie, tj. dodatkową przesłanką może być czytelnie gruszkowaty obrys zewnętrzny płytki zapięcia naszyjników typu Äeg 376. w wypadku tordowanych egzemplarzy z gruszkowatym

Key words: counter-democracy, democracy, democratic institutions, political activity.. Autor próbuje wskazać dlaczego się pojawiła, co przyniesie i jakie nowe wyzwania stawia

[2] Ocena Strategiczna Systemu Gospodarki Odpadami Miasta Krakowa wraz z wyborem wariantów lokalizacji zakładu termicznego przekształcania odpadów komunalnych, Kraków,