• Nie Znaleziono Wyników

Study of the Dalitz decay $\phi \rightarrow \eta e^{+}e^{-}$ with the KLOE detector

N/A
N/A
Protected

Academic year: 2022

Share "Study of the Dalitz decay $\phi \rightarrow \eta e^{+}e^{-}$ with the KLOE detector"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Study of the Dalitz decay φη e + e with the KLOE detector

The KLOE-2 Collaboration

D. Babusci

h

, I. Balwierz-Pytko

g

, G. Bencivenni

h

, C. Bloise

h

, F. Bossi

h

, P. Branchini

r

, A. Budano

q,r

, L. Caldeira Balkeståhl

u

, F. Ceradini

q,r

, P. Ciambrone

h

, F. Curciarello

i,d

, E. Czerwi ´nski

g

, E. Danè

h

, V. De Leo

i,d

, E. De Lucia

h

, G. De Robertis

b

, A. De Santis

h

, P. De Simone

h

, A. Di Cicco

q,r

, A. Di Domenico

m,n

, R. Di Salvo

p

, D. Domenici

h

,

O. Erriquez

a,b

, G. Fanizzi

a,b

, A. Fantini

o,p

, G. Felici

h

, S. Fiore

s,n

, P. Franzini

m,n

, A. Gajos

g

, P. Gauzzi

m,n

, G. Giardina

i,d

, S. Giovannella

h,∗

, E. Graziani

r

, F. Happacher

h

,

L. Heijkenskjöld

u

, B. Höistad

u

, T. Johansson

u

, D. Kami ´nska

g

, W. Krzemien

g

, A. Kupsc

u

, J. Lee-Franzini

h,t

, F. Loddo

b

, S. Loffredo

q,r

, G. Mandaglio

i,d,c

, M. Martemianov

j

,

M. Martini

h,l

, M. Mascolo

o,p

, R. Messi

o,p

, S. Miscetti

h,

, G. Morello

h

, D. Moricciani

p

, P. Moskal

g

, A. Palladino

h

, A. Passeri

r

, V. Patera

k,h

, I. Prado Longhi

q,r

, A. Ranieri

b

, P. Santangelo

h

, I. Sarra

h,∗

, M. Schioppa

e,f

, B. Sciascia

h

, M. Silarski

g

, L. Tortora

r

, G. Venanzoni

h

, W. Wi´slicki

v

, M. Wolke

u

aDipartimentodiFisicadell’UniversitàdiBari,Bari,Italy bINFNSezionediBari,Bari,Italy

cCentroSicilianodiFisicaNucleareeStrutturadellaMateria,Catania,Italy dINFNSezionediCatania,Catania,Italy

eDipartimentodiFisicadell’UniversitàdellaCalabria,Cosenza,Italy fINFNGruppocollegatodiCosenza,Cosenza,Italy

gInstituteofPhysics,JagiellonianUniversity,Cracow,Poland hLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

iDipartimentodiFisicaeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy jInstituteforTheoreticalandExperimentalPhysics(ITEP),Moscow,Russia

kDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“LaSapienza”,Roma,Italy lDipartimentodiScienzeeTecnologieApplicate,Università“GuglielmoMarconi”,Roma,Italy mDipartimentodiFisicadell’Università“LaSapienza”,Roma,Italy

nINFNSezionediRoma,Roma,Italy

oDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy pINFNSezionediRomaTorVergata,Roma,Italy

qDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy rINFNSezionediRomaTre,Roma,Italy

sENEAUTTMAT-IRR,CasacciaR.C.,Roma,Italy

tPhysicsDepartment,StateUniversityofNewYorkatStonyBrook,NY,USA uDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden vNationalCentreforNuclearResearch,Warsaw,Poland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received16September2014

Receivedinrevisedform17December2014 Accepted10January2015

Availableonline13January2015 Editor:L.Rolandi

We have studied the vector to pseudoscalarconversion decayφηe+e,with ηπ0π0π0, with theKLOEdetectoratDAΦNE.Thedatasetof1.7 fb1 ofe+e collisionsat√

sMφ containsaclear conversion decaysignal of ∼31,000 events fromwhich wemeasured a value of BRηe+e)= (1.075±0.007±0.038)×104.Thesamesampleisusedtodeterminethetransitionformfactorbyafit

*

Correspondingauthors.

E-mailaddresses:simona.giovannella@lnf.infn.it(S. Giovannella),stefano.miscetti@lnf.infn.it(S. Miscetti),ivano.sarra@lnf.infn.it(I. Sarra).

http://dx.doi.org/10.1016/j.physletb.2015.01.011

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Keywords:

e+ecollisions Conversiondecay Transitionformfactor

tothee+einvariantmassspectrum,obtainingbφη= (1.28±0.10+00..0908)GeV2,thatimprovesbyafactor offivetheprecisionofthepreviousmeasurementandisingoodagreementwithVMDexpectations.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

We report the study of the vector to pseudoscalar conver- sion decay φ

η

e+e with

η

π

0

π

0

π

0. In conversion de- cays, AB

γ

Be+e,the radiatedphoton isvirtual andthe squareddilepton invariant mass, Mee2,corresponds tothe photon 4-momentum transferred, q2. The probability of having a lepton pairofgiveninvariantmassisdetermined bytheelectromagnetic dynamicalstructureofthetransitionAB

γ

.Thedifferentialde- cayrate,normalizedtotheradiativewidth,is[1]:

1

Γ (φηγ )

d

Γ (φη

e+e

)

dq2

= α

3

π

|

Fφη

(

q2

) |

2 q2



1

4M2 q2



1

+

2M2 q2



×



1

+

q2 M2φ

Mη2



2

4M

2 φq2

(

M2φ

M2η

)

2



3/2

,

(1)

whereM isthemassoftheelectronand , Mη arethemasses oftheφand

η

mesons,respectively. Fφη(q2)isthetransitionform factor, TFF, that describes the coupling of the mesons to virtual photons and provides information on its nature and underlying structure. The slope ofthe transitionform factor,bφη ,is defined as:

bφη

dF dq2

 

q2=0

.

(2)

IntheVectorMesonDominancemodel,VMD, thetransitionform factorisparametrizedas:

Fφη



q2

=

1

1

q2

2φη

bφη

≈ Λ

φη2

.

(3)

The VMD successfully describes some transitions, such as

η

γ μ

+

μ

, while is failing for others, as in the case of

ω

π

0

μ

+

μ

[2].Recently,newmodelshavebeendevelopedtoover- come such a kind of discrepancies [3,4] and they should be validated with the experimental data from other channels. The only existing data on φ

η

e+e come from the SND [5] and CMD-2[6]experiments.Theirmeasurementsofthebranching ra- tio,BR

η

e+e),are (1.19±0.19±0.07)×104 and(1.14± 0.10±0.06)×104,respectively.TheVMDexpectationisBR

η

e+e)=1.104 [7]. The SND experiment has also mea- suredtheslopeofthetransitionformfactorfromthe Mee invari- ant mass distribution, on the basis of 213 events: bφη= (3.8± 1.8)GeV2 [5].TheVMDexpectationisbφη=1 GeV2[7].

Duetothelargedatasample, wehaveperformedthreediffer- entmeasurements:

(1) thedeterminationofthebranchingfractionoftheφ

η

e+e decay;

(2) thedirectmeasurementofthetransitionformfactorslopebφη withafittothedileptoninvariantmassspectrum;

(3) theextraction ofthe |Fφη|2 asa functionof thedilepton in- variantmass.

2. TheKLOEdetector

DAΦNE, the Frascati φ-factory, is an e+e collider running at center of mass energy of ∼1020 MeV. Positron and electron beams collide at an angle of

π

-25 mrad, producing φ mesons nearlyatrest.TheKLOEexperimentoperatedatthiscolliderfrom 2000to2006, collecting2.5 fb1.The KLOEapparatusconsistsof alargecylindricalDriftChambersurroundedbyalead-scintillating fiberelectromagneticcalorimeterbothinsertedinsideasupercon- ducting coil, providinga 0.52 Taxial field.The beampipe atthe interactionregionisaspherewith10cmradius,madeofa0.5 mm thickBeryllium–Aluminumalloy.Thedriftchamber[8],4 mindi- ameterand3.3 mlong,has12,582 all-stereotungstensensewires and 37,746 aluminum field wires, with a shell made of carbon fiber-epoxycompositewithan internalwallof∼1 mm thickness.

The gas used is a 90% helium, 10% isobutane mixture. The mo- mentumresolutionis

σ

(p)/p0.4%.Verticesarereconstructed with a spatial resolution of ∼3 mm. The calorimeter [9], with a readout granularity of ∼ (4.4.4)cm2, for a total of 2440 cells arranged in five layers, covers 98% of the solid angle. Each cell is read out atboth ends by photomultipliers,both inampli- tude andtime. The energydeposits areobtained fromthesignal amplitude whilethe arrival times andthe particles positions are obtainedfromthe timedifferences. Cellscloseintime andspace are groupedintoenergyclusters. Energyandtimeresolutions are

σ

E/E =5.7%/

E (GeV) and

σ

t =57 ps/

E (GeV)100 ps, re- spectively.Thetrigger[10]usesbothcalorimeterandchamberin- formation.Inthisanalysistheeventsareselectedbythecalorime- tertrigger,requiringtwoenergydepositswithE>50 MeV forthe barrelandE>150 MeV fortheendcaps.

Machineparametersaremeasuredonlinebymeansoflargean- gle Bhabha scatteringevents. The average value ofthe center of mass energy isevaluated witha precision of about30 keV each 200 nb1ofintegratedluminosity.Collecteddataareprocessedby aneventclassificationalgorithm[11],whichstreamsvariouscate- goriesofeventsindifferentoutputfiles.

3. Branchingratio

Theanalysisofthedecaychainφ

η

e+e,

η

3

π

0,hasbeen performed ona data sample of about1.7 fb1. The Monte Carlo (MC) simulation forthe signal has beenproduced with dΓ (φ

η

e+e)/dMee accordingtoVMDmodel.Thesignalproductioncor- responds to an integrated luminosity one hundred times larger than collected data. Final state radiation has been included us- ing PHOTOSMonte Carlo generator [12]. For the background, all φ decays andthe not resonant e+e

ωπ

0 process have been simulatedwithastatisticstwotimeslargerthandata.

AllMCproductionstakeintoaccountchangesinDAΦNEoper- ation andbackground conditionsona run-by-runbasis. Data-MC correctionsforclusterenergiesandtrackingefficienciesareevalu- atedwithradiativeBhabhaandφ

ρπ

samples,respectively.The mainstepsoftheanalysisare:

(1) apreselection requiring two tracks ofopposite signextrapo- latedtoacylinderaroundtheinteractionpointand6prompt photoncandidates;

(2) aloose cut on the sixphoton invariant mass: 400<M6γ <

700 MeV;

(3)

Fig. 1. Recoilmassagainstthee+epairforthedatasampleafterpreselectioncuts.

Thefirstpeakontheleftcorrespondstotheηmass.Thesecondpeakat590 MeV isduetoKSπ+πeventswithawrongmassassignment.

(3) a3

σ

cutontherecoilmassagainstthee+epair,Mee(recoil), showninFig. 1:536.5<Mee(recoil)<554.5 MeV1;

(4) acutontheinvariantmassandthedistancebetweenthetwo tracksextrapolatedtothebeampipeandatthedriftchamber wallsurfaces,torejectphotonconversion;

(5) a cut based on the time of flight (TOF) of the tracks to the calorimeter to reject events with charged pions in the final state.

Thesecutsare describedindetails inRef.[13],whichreportsthe resultsfor a search ofa light vector boson using the same data sample. The Mee andcosψ2 distributions, after the Mee(recoil) cutandattheendoftheanalysischain,areshowninFig. 2,com- paredtoMCexpectations.Theresidualbackgroundcontamination isconcentratedathighmassesandisdominatedbyφKSKL

π

+

π

3

π

0 eventswithanearly KL decay.

The analysis efficiency for signal events as a function of the e+e invariantmassisshowninFig. 3for5 MeV massbins.Itis about10%atlowmassesandincreasesto∼35% at460 MeV,due tothelargeracceptanceforhighermomentumtracks.

At the end of the analysis chain, 30,577 events are selected, with∼3% backgroundcontamination.Afterbintobinbackground subtraction, 29,625±178 φ

η

e+e,

η

3

π

0, candidates are presentinthedataset.

Thebranching ratio hasbeencalculated usingbin-by-bin effi- ciencycorrection:

BR



φη

e+e

=

iNi

/ 

i

σ

φ

×

L

×

BR

( η

3

π

0

) .

(4) The luminosity measurement is obtained using very large angle Bhabhascattering events[14],giving an integratedluminosity of L= (1.68±0.01)fb1. The effective φ production cross section takes into account the center of mass energy variations (at 1%

level)[15]:

σ

= (3310±120)nb.ThevalueoftheBR(

η

3

π

0)= (32.57±0.23)% istakenfrom[16].Ourresultis:

BR



φη

e+e

= (

1

.

075

±

0

.

007

±

0

.

038

) ×

104

,

(5) where the error includes the uncertainties on luminosity and φ production cross section. The systematic error has been evalu- ated moving by ±1

σ

the analysis cuts on the recoil mass and

1 We observed a shift of about 2 MeV with respect to the η mass (547.85 MeV).Theshiftisduetothetreatmentoftheenergylossfortheelec- tronsinthetrackingreconstruction,thatassumestheenergylossforpions.

2 Thecosψ variableisdefinedastheanglebetweentheηandthee+ inthe e+erestframe.

TOF, and by ±20% thoserelated to conversion cuts (Table 1). In ordertoevaluate thesystematicduetothevariationoftheanal- ysisefficiencyforlow Mee values,the BRhasbeenmeasured for Mee>100 MeV, wherethe efficiency has a smoother behaviour.

Thesesystematicsarenegligiblewithrespecttothenormalization error.

4. Measurementoftheelectromagnetictransitionformfactor

Thefitprocedure,basedontheMINUITpackage[17],isapplied totheMee distribution,afterabin-by-binbackgroundsubtraction.

Analysisefficiencyandsmearingeffectshavebeenfoldedintothe theoreticalfunction ofEq.(1),usingasfree parametersΛφη with anoverallnormalizationfactor.TheMeedistributionisthenfitted, inthewholerange,usinga binwidthof5MeV,byminimizinga

χ

2 function,definedas:

χ

2

=

N

i=1

(

NiDATA

Nexpectedi

)

2

σ

i2

,

(6)

where NDATA is the number of event in the reconstructed i-th MeebinafterbackgroundsubtractionandNexpectedistheexpected numberofeventsinthesamebin,evaluatedbyperformingacon- volutionofthe theoreticalfunction withreconstruction effectsas follows:

Nexpectedi

=

N

j=1

ftheory

(

mj

) ·

p



Meej

,

Miee

· 

j

,

(7)

where ftheory(mj)istheintegratedVMDspectruminthe j-thbin, p(Meej,Miee) is the probability for an eventgenerated with mass mjtobereconstructedinthei-thbinand



j isthereconstruction efficiencyinthe j-thbin.Theprobability p(Meej,Meei )isshownin Fig. 4.Smearingeffectsareoftheorderoffew%.Theresolutionon the Mee variablehasbeenevaluatedforeach massbinapplyinga GaussianfittotheMee(rec.)Mee(true)distribution.Itis∼2 MeV forMee<350 MeV andthenimprovesto1 MeVforhighervalues.

As a result of the fit procedure, we determine a value of the formfactorslopebφη= (1.28±0.10)GeV2,with

χ

2/ndf=1.15 and a

χ

2 probability of about13%. In Fig. 5 (top) the fit result is shown and compared with data. Fit normalized residuals, de- fined as (NiDATANiexpected)/

σ

i, are shown in Fig. 5 bottom left:

thedistributionoftheirvalueshasthecorrectGaussianbehaviour, centeredat0with

σ

=1 (Fig. 5bottomright).

SystematicsfortheMee(recoil), TOFandphotonconversioncuts havebeenevaluatedasfortheBRmeasurementandsummarized inTable 2.Systematicsrelatedtothefitprocedurehavebeeneval- uatedastheRMSofthedeviationfromthecentralvalueobtained byvaryingthemassrangeusedforthefit.Thetotalsystematicer- ror isthequadratureofallcontributions. Theresultforthe slope ofthetransitionformfactoris:

bφη=

1.28±0.10+00..0908

GeV2

.

(8)

5. TransitionformfactorasafunctionofMee

The modulussquaredof thetransitionformfactor, |Fφη(q2)|2, asafunction ofthee+e invariant mass,isobtainedby dividing binby binthe Mee spectrum ofFig. 5(top)by theone ofrecon- structed signal events, generated with FφMCη =1, after all analysis cuts. MCsample isnormalizedinorderto reproducethenumber ofeventsinthefirstbinofdata.InTable 3,thevaluesof|Fφη(q2)|2 asafunctionofthedileptoninvariantmass,withthecorrespond- ingstatisticalerrorsarereported.

(4)

Fig. 2. Data-MCcomparisonforMee(left)andcosψ(right)distributionsaftertheMee(recoil)cut(top)andattheendoftheanalysischain(bottom).Thesignalproduction correspondstoanintegratedluminosityonehundredtimeslargerthancollecteddata.

Fig. 3. Analysisefficiencyasafunctionofe+einvariantmassfordifferentsteps oftheselectionprocedure.TheToFcutis100% efficientonsignalevents,sothat thesymbolscorrespondingtoconversionandToFcutsarealmostsuperimposed.

Table 1

Systematicson thebranching ratio.Relativevariation ofeach contributionwith respecttotheMee(recoil),TOF,photonconversion,eventclassificationcutsarere- ported.

CUT BR variation

Mee(recoil) ±1σ (−0.1/+0.6)%

TOF ±1σ (+0.01/−0.1)%

Photon conversion ±20% (−0.1/+0.1)%

Event classification Mee>100 MeV0.1%

Total (0.2/+0.6)%

The|Fφη(q2)|2 distributionhasbeenfittedasafunctionofthe invariantmasswithtwofreeparameters,onecorrespondingtothe normalizationandtheother toΛφη , asshownin Fig. 6,together withthepredictionsformtheVMDandfromRef.[3].Fromthisfit, thevalueoftheslopebφη is:

Fig. 4. Smearingmatrix:reconstructedvsgeneratedMeevaluesforφηe+eMC events.

bφη

= (

1

.

25

±

0

.

10

)

GeV2

,

(9) in agreement within the uncertainties with the value obtained fromthe fitto the invariantmass spectrum(Eq. (8)) andconsis- tentwiththereproducibilityofthemeasurement.

6. Conclusions

Analyzing the φ

η

e+e decay channel, a precise measure- ments of both,the BR

η

e+e), andthetransition formfac- tor slope bφη are obtained. We measured a value of BR

η

e+e)= (1.075±0.007±0.038)×104 andavalueoftheslope ofbφη= (1.28±0.10+00..0908)GeV2.

TheBR

η

e+e)isinagreementwithVMDpredictions[7]

and with the SND and CMD-2 results [5,6]. The transition form factor slope is in agreement with VMD predictions [7], with a precision that is a factor of five better than previous SND mea- surement.

Thetransitionformfactorhasbeenused[18]toderivetheup- perlimitfortheproductionofalightdarkbosonU inφ

η

U

η

e+e decay. Present measurement confirms the exclusion plot

(5)

Fig. 5. Top:fittothe Mee spectrumfortheDalitzdecaysφηe+e,withηπ0π0π0,inlogarithmicscale.Bottomleft:normalizedfitresidualsvsMee.Bottom right:distributionofnormalizedvalueswithsuperimposedaGaussianfit.

Table 2

Systematicson bφη. Relative variation ofeach contributionwith respect to the Mee(recoil),TOF,photonconversion,fitmassrangecutsarereported.

CUT bφηvariation

Mee(recoil) ±1σ (+4.4/−3.0)%

TOF ±1σ (+3.2/−1.5)%

Photon conversion ±20% (−4.1/+1.9)%

Fit limits Meefit range ±3.8%

Total (+6.9/6.5)%

Fig. 6. Fittothe|Fφη|2distributionasafunctionoftheinvariantmassoftheelec- tronpositronpair,withabinningof5 MeV.Thebluecurveisthefitresult,andin dashedbluethefunctionsobtainedforΛφη= Λφη±1σarereported.VMDexpec- tationsaresuperimposedinpinkdashedlinewhilethecurveobtainedfromRef.[3]

isreportedinredemptydots.(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

Table 3

Transitionformfactor|Fφη|2oftheφηe+edecay.

Mee(MeV) |Fφη|2 δ|Fφη|2 Mee(MeV) |Fφη|2 δ|Fφη|2 Mee(MeV) |Fφη|2 δ|Fφη|2

2.50 1.00 0.01 157.50 1.17 0.09 312.50 1.57 0.17

7.50 1.05 0.02 162.50 1.13 0.09 317.50 1.28 0.16

12.50 1.03 0.02 167.50 0.98 0.08 322.50 1.19 0.16

17.50 0.99 0.03 172.50 1.03 0.09 327.50 1.38 0.18

22.50 0.97 0.04 177.50 1.28 0.10 332.50 1.21 0.18

27.50 1.00 0.04 182.50 1.03 0.09 337.50 1.35 0.19

32.50 0.93 0.04 187.50 1.21 0.10 342.50 1.39 0.20

37.50 1.03 0.05 192.50 0.90 0.09 347.50 2.08 0.26

42.50 0.95 0.05 197.50 1.25 0.10 352.50 1.50 0.25

47.50 0.95 0.05 202.50 1.12 0.10 357.50 1.30 0.24

52.50 1.01 0.05 207.50 1.05 0.10 362.50 1.13 0.28

57.50 1.01 0.05 212.50 1.13 0.10 367.50 1.20 0.27

62.50 1.03 0.05 217.50 1.04 0.10 372.50 1.87 0.29

67.50 1.08 0.06 222.50 1.14 0.10 377.50 1.76 0.29

72.50 1.04 0.06 227.50 1.27 0.11 382.50 1.02 0.29

77.50 0.96 0.06 232.50 1.18 0.11 387.50 1.49 0.31

82.50 1.09 0.06 237.50 1.06 0.10 392.50 1.58 0.36

87.50 1.06 0.06 242.50 0.83 0.10 397.50 1.79 0.38

92.50 1.01 0.06 247.50 1.20 0.11 402.50 1.54 0.37

97.50 1.08 0.07 252.50 1.11 0.11 407.50 2.08 0.43

102.50 0.98 0.07 257.50 1.52 0.13 412.50 1.40 0.48

107.50 1.06 0.07 262.50 1.33 0.12 417.50 2.24 0.59

112.50 0.97 0.07 267.50 1.39 0.13 422.50 1.40 0.59

117.50 1.12 0.08 272.50 1.24 0.13 427.500.14 1.36

122.50 1.05 0.08 277.50 1.32 0.13 432.50 0.28 3.02

127.50 0.96 0.07 282.50 1.39 0.14 437.50 5.36 3.59

132.50 1.09 0.08 287.50 1.18 0.13 442.50 2.75 3.68

137.50 1.06 0.08 292.50 1.20 0.13 447.50 6.97 4.10

142.50 1.08 0.08 297.50 1.27 0.14 452.50 1.44 3.79

147.50 1.06 0.08 302.50 1.22 0.14 457.50 3.43 4.91

152.50 1.11 0.09 307.50 1.30 0.15

(6)

obtainedby KLOEinthemassrange(5<MU<470)MeV, where bφη=1 GeV2 wasassumed[13].

Acknowledgements

We warmly thank our former KLOE colleagues for the ac- cess to the data collected during the KLOE data taking cam- paign. We thank the DAΦNE team for their efforts in main- taining low background running conditions and their collabo- ration during all data taking. We want to thank our techni- cal staff: G.F. Fortugno and F. Sborzacchi for their dedication in ensuring efficient operation of the KLOE computing facili- ties; M. Anelli for his continuous attention to the gas system and detector safety; A. Balla, M. Gatta, G. Corradi and G. Pa- palino for electronics maintenance; M. Santoni, G. Paoluzzi and R. Rosellini forgeneral detectorsupport; C. Piscitelli forhis help during major maintenance periods. This work was supported in part by the EU Integrated Infrastructure Initiative Hadron Physics Project under contract number RII3-CT-2004-506078; by the European Commission under the 7th Framework Programme through the ‘Research Infrastructures’ action of the ‘Capacities’

Programme, Call: FP7-INFRASTRUCTURES-2008-1, Grant Agree- ment No.227431; by the PolishNational ScienceCentre through

the Grant Nos. DEC-2011/03/N/ST2/02641, 2011/01/D/ST2/00748, 2011/03/N/ST2/02652, 2013/08/M/ST2/00323, and by the Foun- dation For Polish Science through the MPD programme and the projectHOMINGPLUSBIS/2011-4/3.

References

[1]L.G.Landsberg,Phys.Rep.128(1985)301.

[2]G.Usai,etal.,NA60Collaboration,Nucl.Phys.A855(2011)189.

[3]C.Terschluesen,S.Leupold,Phys.Lett.B691(2010)191.

[4]S.Ivashyn,Prob.AtomicSci.Technol.2012 (1)(2012)179.

[5]M.N.Achasov,etal.,SNDCollaboration,Phys.Lett.B504(2001)275.

[6]R.R.Akhmetshin,etal.,CMD-2Collaboration,Phys.Lett.B501(2001)191.

[7]A.Faessler,C.Fuchs,M.I.Krivoruchenko,Phys.Rev.C61(2000)035206.

[8]M.Adinolfi,etal.,Nucl.Instrum.MethodsA488(2002)51.

[9]M.Adinolfi,etal.,Nucl.Instrum.MethodsA482(2002)364.

[10]M.Adinolfi,etal.,Nucl.Instrum.MethodsA492(2002)134.

[11]F.Ambrosino,etal.,Nucl.Instrum.MethodsA534(2004)403.

[12]E.Barberio,Z.Was,Comput.Phys.Commun.79(1994)291.

[13]D.Babusci,etal.,KLOE-2Collaboration,Phys.Lett.B720(2013)111.

[14]F.Ambrosino,etal.,KLOECollaboration,Eur.Phys.J.C47(2006)589.

[15] S.Giovannella,S.Miscetti,KLOEnote177(2002).

[16]J.Beringer,etal.,ParticleDataGroup,Phys.Rev.D86(2012)010001.

[17]http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minuit.ps.

[18]M.Reece,L.T.Wang,J.HighEnergyPhys.07(2009)051.

Cytaty

Powiązane dokumenty

Superimposed lines indicate theoretical predictions (see legend) for Q = 15 MeV (left panel) and Q = 72 MeV (right panel).The dashed line shows the prediction of the analyzing power

The dominant background sources are normalised either using only data, as in the case of the W +jets background, or using data yields in an appropriate control region (CR) to

Those changes should increase by factor of th ree th e am ount of th e delivered lum inosity w ith respect to th e perform ance reached

The first measurement of A S has been performed by the KLOE collaboration using 410 pb −1 of integrated luminosity collected at DAΦNE [16], the φ-factory of the INFN laboratories

π , the momentum of the charged secondary track in the kaon rest frame evaluated using the pion mass3. 2 The selection efficiency of the two tagging nor- malization samples are

In the ρ – ω region the systematic error is computed by adding in quadrature the contributions due to the theoretical uncertainty of the Monte Carlo generator (0. 5% [26]),

Note that the generated Monte Carlo events were scaled according to the fit to data after preselection and that the sum of all Monte Carlo events remaining after all cuts is equal to

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,