• Nie Znaleziono Wyników

W latach dwudziestych XX wieku

N/A
N/A
Protected

Academic year: 2021

Share "W latach dwudziestych XX wieku"

Copied!
27
0
0

Pełen tekst

(1)
(2)

W latach dwudziestych XX wieku pojawiły się koncepcje teoretyczne, które pozwoliły przewidzieć jądrowy rezonans magnetyczny, przez szereg lat eksperymentatorzy usiłowali bez skutku odkryć to zjawisko doświadczalnie. Dopiero w końcu roku 1945 udało się dokonać odkrycia jądrowego rezonansu magnetycznego (NMR - ang. nuclear magnetic resonance) jednocześnie dwu grupom uczonych w USA. Bloch, Hansen i Packard w Uniwersytecie Stanford wykryli rezonans protonowy wody metodą indukcji jądrowej. PurcelI, Torrey i Pound w Uniwersytecie Harvard dokonali odkrycia rezonansu protonowego parafiny metodą mostkową.

Początkowo zjawisko NMR było domeną zainteresowań fizyków, ale już w kilka lat po odkryciu okazało się ono bardzo cennym narzędziem badania chemicznej struktury molekuł. Niezwykle szybko postępuje obecnie rozwój zastosowań NMR w chemii i w medycynie i coraz częściej kosztowna aparatura NMR zajmuje poczesne miejsce

w laboratoriach chemicznych, fizycznych i w klinikach medycznych.

http://www.medwow.com

(3)

Ekranowanie jądra i przesunięcie chemiczne

Jądra w molekule są otoczone powłokami elektronowymi, które stanowią swego rodzaju ekran osłaniający jądra przed działaniem zewnętrznego pola magnetycznego.

Na jądra działa pole mniejsze od przyłożonego pola zewnętrznego.

Mechanizm ekranowania polega na tym, że zewnętrzne pole magnetyczne indukuje krążenie ładunku elektronowego w płaszczyźnie prostopadłej do kierunku pola.

Główny udział w tym ruchu elektronów przypada elektronom walencyjnym. Warto zauważyć, że opisywany ruch elektronów nie jest identyczny z krążeniem elektronów po orbitach wokółjądrowych w modelu Bohra, lecz jest dodatkowym zjawiskiem wywołanym przez zewnętrzne pole magnetyczne. Indukowany ruch ładunku po obwodzie zamkniętym wywołuje pojawienie się momentu magnetycznego, którego wektor skierowany jest, w myśl reguły przekory, zawsze przeciwnie do kierunku pola indukującego. Podobnie jak w makroskopowym magnesie linie sił indukowanego pola magnetycznego wychodzą z jednego bieguna, zakrzywiają się i wchodzą do bieguna przeciwnego. Wektor indukowanego pola zmniejsza indukcję Bo pola zewnętrznego i na tym właśnie polega

zjawisko ekranowania (przesłaniania) jądra przez otaczające elektrony.

(4)

Oczywiście, ekranowanie jest tym większe, im większa jest gęstość elektronowa wokół jądra. Oprócz tego bardzo ważny jest fakt, że wielkość ekranowania jest wprost proporcjonalna do indukcji Bo pola zewnętrznego. Pole efektywne Bef działające na jądro wynosi więc

Indukowane na elektronach pole DB jest proporcjonalne do Bo, a współczynnikiem

proporcjonalności jest stała ekranowania s, która jest miarą gęstości elektronowej wokół jądra.

Stałe ekranowania protonów są bardzo małymi liczbami rzędu 10-6-10-5. Dla jąder ciężkich mających wiele elektronów wartość stałej

ekranowania sięga l0-2

Opisywany efekt nazywa się lokalnym efektem diamagnetycznym.

W molekułach sytuacja się komplikuje. Oprócz elektronów na zapełnionych powłokach o kulistym rozkładzie wokół jąder mamy do czynienia z

elektronami walencyjnymi o elipsoidalnej (osiowej) symetrii rozkładu

gęstości. Może się więc zdarzyć, że chociaż dane jądro w molekule ulega efektowi diamagnetycznemu własnych elektronów obniżającemu pole zewnętrzne Bo, to linie sił pola indukowanego na sąsiednim jądrze będą zwiększać Bo w otoczeniu pierwszego jądra.

(5)

W molekule HX (halogenowodór) ustawionej tak, że oś wiązania jest prostopadla do kierunku pola Bo, na proton działa niewielki moment magnetyczny indukowanna małej gęstości elektronów w jego bezpośrednim otoczeniu, a oprócz tego duży moment magnetyczny indukowany na bogatym w elektrony atomie X, którego linie sił pola mają wokół protonu zwrot zgodny ze zwrotem pola zewnętrznego. Po zsumowaniu efektów zewnętrzne pole Bo na protonie jest zwiększone, czyli stała ekranowania zmniejszona. Jest to efekt paramagnetyczny.

(6)

Bezładne ruchy molekuł powodują, że orientacja molekuł względem kierunku linii sił pola Bo jest przypadkowa. Wobec tego trzeba rozpatrzyć drugą skrajną orientację molekuły HX przedstawioną na rys. b, w której oś wiązania XH jest równoległa do kierunku pola Bo. W tym przypadku wszystkie linie sił indukowanych momentów magnetycznych są w otoczeniu protonu skierowane przeciwnie do kierunku linii sił pola Bo obniżając je, czyli powodując zwiększenie ekranowania protonu. Ze względu na bezładność ruchu molekuł wydawałoby się, że efekty pochodzące od elektronów atomu X na protonie powinny się uśrednić do zera.

Jednakże tak nie jest, ponieważ tensor podatności magnetycznej wokół atomu X jest anizotropowy i przy orientacji a) jest indukowany na atomie X mniejszy moment magnetyczny niż przy orientacji b).

Ostatecznie więc elektrony atomu X zwiększają ekranowanie protonu w molekułach halogenowodorów.

(7)

W molekułach aromatycznych, oprócz lokalnego efektu diamagnetycznego i efektu paramagnetycznego, występuje jeszcze jeden efekt wynikający z delokalizacji aromatycznych elektronów p na dużym obszarze pierścienia. Pod wpływem zewnętrznego pola magnetycznego elektrony p krążą po całym pierścieniu, co wywołuje indukowanie dużego momentu magnetycznego na protony leżące na obrzeżu pierścienia działają linie sił skierowane zgodnie z kierunkiem zewnętrznego pola magnetycznego. Protony aromatyczne są więc silnie odekranowane

Anizotropia podatności powoduje, że po statystycznym uśrednieniu orientacji w efekcie wypadkowa dominuje efekt paramagnetyczny

orientacji a) i ostatecznie protony aromatyczne są silnie odekranowane (odsłonięte).

(8)

Bardzo przekonywającym przykładem tych wywodów jest molekuła polimetylenobenzenu (rys. c). Protony grup metylenowych leżących w pobliżu 6-krotnej osi symetrii pierścienia mają zwiększone ekranowanie,

natomiast protony grup metylenowych znajdujących się w pobliżu obrzeży pierścienia mają zmniejszone ekranowanie. Opisywany efekt nazywa się efektem międzyatomowych prądów diamatnetycznych.

(9)

Warunek rezonansowy ulega zmodyfikowaniu

Rozkład elektronów w molekule jest zróżnicowany i różne są stałe ekranowania w molekułach, a nawet w grupach funkcyjnych jednej molekuły. Te same jądra, np. protony, wymagają więc różnych indukcji pola Bo, aby osiągnąć warunek rezonansowy przy zadanej częstości promieniowania v. Pojawia się możliwość doświadczalnego wyznaczenia stałych ekranowania, a tym samym zdobycia informacji o rozkładzie elektronów walencyjnych w różnych częściach molekuły. Nie mamy jednak możliwości zmierzenia z dostateczną dokładnością v i Bo, dlatego stosujemy pomiar względny w odniesieniu do wybranego wzorca.

(10)

Wielkość d nazwano przesunięciem chemicznym. Jak wynika z ostatniego wzoru przesunięcie chemiczne określa różnicę stałych ekranowania jąder

we wzorcu i w próbce.

Wartość d jest liczbą niemianowaną. W protonowym rezonansie magnetycznym jest ona rzędu 10-6. Aby więc uniknąć niewygodnego mnożnika 10-6 wprowadzono mnożnik 106 do definicji d i w ten sposób pojawiła się pseudojednostka część na milion, w języku angielskim part per milion, a w skrócie ppm. Ostatecznie więc przesunięcie chemiczne d definiujemy wzorem

(11)

Dla substancji organicznych wybrano jako wzorzec tetrametylosilan, (CH3)4Si w skrócie TMS zarówno dla 1H NMR jak i dla 13e NMR. Protony tetrarametylosilanu są silnie ekranowane i to wszystkie jednakowo, co daje w widmie protonowym pojedynczy, ostry sygnał leżący przy dużej indukcji pola Bo. W większości badanych próbek protony są ekranowane słabiej i sygnały leżą przy mniejszych wartościach Bo, a większych wartościach v, Jeżeli przyjmiemy, że d wzorca TMS jest równe zeru, to zgodnie ze wzorami wartości d próbek będą dodatnie, ale malejące w miarę wzrostu stałej ekranowania. Aby uniknąć odwrotnej proporcjonalności wprowadzono skalę t przesunięć chemicznych

Przesunięcia chemiczne w skali t protonów w większości próbek wyrażają się liczbami od 0 do 10, przy czym t =10 dla sygnału wzorca TMS. Protony grup karboksylowych i inne podobnie "kwasowe" są tak słabo ekranowane, że ich wartości t są mniejsze od zera. Wzrost wartości t oznacza wzrost ekranowania, a tym samym wzrost indukcji pola Bo potrzebnego do osiągnięcia warunku rezonansu.

(12)

etanol

(13)

Większość molekuł ma nierównocenne grupy protonów. Klasycznym przykładem jest molekuła etanolu. W tej molekule najsilniej ekranowane są protony grupy metylowej, najsłabiej - proton grupy hydroksylowej.

Powierzchnie pod konturem sygnałów proporcjonalne do liczby równocennych protonów dających sygnał. W przypadku etanolu powierzchnie pod konturami sygnałów mają się więc do siebie jak 1: 2 : 3.

(14)
(15)

Momenty magnetyczne jąder oddziałują ze sobą podobnie jak igły magnetyczne. Oddziaływania te nie przejawiają się na zewnątrz, dopóki układ nie znajdzie się w zewnętrznym polu magnetycznym, ponieważ bezładne orientacje momentów uśredniają efekt wypadkowy do zera.

Dopiero w zewnętrznym polu magnetycznym, które orientuje wszystkie spiny w układzie według reguł kwantowania momentów pędu, uzewnętrzniają się oddziaływania momentów magnetycznych między sobą.

Oddziaływania te nazywamy sprzężeniami spinowo-spinowymi. Jak zwykle w fizyce, wielkość oddziaływań zależy od wartości momentów magnetycznych oraz od ich wzajemnej odległości. Łatwo dają się obserwować oddziaływania przenoszone przez elektrony walencyjne, czyli poprzez wiązania chemiczne. Chociaż elektrony w wiązaniach chemicznych są sparowane, to jednak jeden z nich znajduje się bliżej jednego jądra, a drugi bliżej drugiego jądra. Elektron "czuje", jaka jest orientacja momentu magnetycznego jego jądra w zewnętrznym polu magnetycznym i przekazuje "informację" o tym drugiemu elektronowi wiązania, a ten z kolei przekazuje ją swemu jądru. Dlatego zjawisko to nazywa się sprzężeniem spinowo-spinowym. Jego wielkość określa stała sprzężenia J, wyrażona w Hz.

Sprzężenie spinowo-spinowe

(16)

Sprzężenie spinowo-spinowe

Gdy orientacja spinów sprzęgających się jąder jest względem siebie

antyrównoległa,

uznajemy umownie, iż stała sprzężenia J, będąca miarą wielkości sprzężenia, ma znak dodatni; jeśli zaś orientacja spinów sprzęgających się jąder jest równoległa

względem siebie, to stała sprzężenia ma znak ujemny.

Sprzężenia poprzez nieparzystą liczbę wiązań są w zasadzie dodatnie, a prze:

parzystą liczbę wiązań ujemne.

(17)

O wartości stałej sprzężenia spinowo-spinowego decydują współczynniki magnetogiryczne g jąder i ich wzajemna odległość mierzona liczbą wiązań chemicznych i charakterem wiązań. Wiązania spolaryzowane przenoszą sprzężenie słabiej niż wiązania kowalencyjne; wiązania typu (J przenoszą sprzężenie lepiej niż wiązania typu s gdyż o sprzężeniu decyduje udział gęstości elektronowej o charakterze s, która na jądrze jest różna od zera, w odróżnieniu od orbitalu p mającego na jądrze płaszczyznę węzłową.

(18)

Na ogół sprzężenie ujawnia się w widmie wtedy, gdy oddziałujące jądra są odległe od siebie nie więcej niż o trzy wiązania. Oczywiście ze wzrostem liczby wiązań łączących rozpatrywane jądra oddziaływanie szybko maleje i powyżej trzech wiązań staje się trudne do zaobserwowania. Jednak dość często spotykamy przypadki przejawiania się w widmie sprzężeń poprzez cztery, a nawet pięć wiązań chemicznych.

Oddziaływanie momentów magnetycznych jąder zależnie od wzajemnej orientacji oznacza przyciąganie lub odpychanie, czyli obniżenie lub podwyższenie energii. Powoduje to rozszczepienie poziomów energetycznych, zróżnicowanych uprzednio

przez pole zewnętrzne.

(19)
(20)

Liczba składowych P w multiplecie wynosi p = 2nl+ 1

gdzie n jest liczbą równocennych jąder rozszczepiających o kwantowej liczbie

spinowej l.

(21)
(22)

Procesy relaksacji

relaksacja spinowo-sieciowa lub relaksacja podłużna Energia spinowa

przekształca się w energię ruchów translacyjnych molekuł sieci.

W cieczach protonowy czas T; jest rzędu 1 s, w ciałach stałych bywa dłuższy, w gazach krótszy.

Wartość TI ze wzrostem lepkości w cieczach maleje, ale po przejściu układu do stałego stanu skupienia znów rośnie. Protony w różnych

grupach funkcyjnych w tej samej molekule mają różne czasy relaksacji.

(23)

relaksacja spinowo-spinowa lub relaksacja poprzeczna

proces relaksacji spinowo-spinowej rozciąga się w czasie, który

oznaczamy T2

Wydawałoby się, że relaksacja spinowo-spinowa niczego w układzie nie zmienia.

Pochłonięta energia pozostaje na poziomach spinowych. Czas T2 określa jednak czas

życia cząstki na danym poziomie energetycznym, a z tym się wiąże rozmycie

poziomu w myśl zasady

nieoznaczoności Heisenberga

(24)

Aparatura

(25)

Wiązanie wodorowe i chemiczna wymiana protonów

(26)
(27)

Zastosowanie NMR w biologii i medycynie

Cytaty

Powiązane dokumenty

Protony i neutrony również mają swój własny moment pędu zwany spinem i związany z nim własny spinowy moment magnetyczny. Dla protonu te dwa wektory mają taki sam kierunek, a

Jak to rozważaliśmy w paragra- fie 32.4, cząstka poruszająca się po orbicie ma zarówno moment pędu EL, jak i (ponieważ jej tor jest równoważny maleńkiej pętli z

Nie należy jednak brać tego rysunku dosłownie, ponieważ wektora EL nie umiemy wykryć w żaden sposób.. Zatem rysowanie go tak jak na rysunku 41.5 to wyłącznie wsparcie

Each household has three pillars of coloured fiches representing the energy consumption (heat and electricity), the energy production, and the CO2-emissions. The potential areas

Parafia dobromiejska i jej ludność w świetle spisu z 1695 roku. Komunikaty Mazursko-Warmińskie nr

The conceptual design was based on a steady-state water balance built in MSExcel and Visual Basic (Microsoft, Redmond, USA) and complemented with phreeqC simulations

Coley'a — Studies in Chemistry — ukazała się jako część pierwsza szerzej zakrojonej edycji pod wspólnym tytułem Case Histories in Science (z W. Książka nawiązuje wy-

Momenty magnetyczne atomów zmieniły orientację i ustawiły się wzdłuż tego pola oznacza to że wektory momentów pędu ustawiają się antyrównolegle do pola o indukcji