• Nie Znaleziono Wyników

Równowagi fazowe – układy wieloskładnikowe

N/A
N/A
Protected

Academic year: 2022

Share "Równowagi fazowe – układy wieloskładnikowe"

Copied!
21
0
0

Pełen tekst

(1)

1

Chem. Fiz. TCH II/08 1

Równowagi fazowe – układy wieloskładnikowe

Podstawowe definicje (c.d.)

Gazy zawsze tworzą jedną fazę

(ciągłą)

Ciecze (dwuskładnikowe) mogą tworzyć roztwory lub nie (rozpuszczalność częściowa)

Faza.

Ciała stałe są często fazą rozproszoną

Patrz też Wykład VII, slajd „Wprowadzenie do równowag fazowych (1)”.

Faza – dla danej substancji – jej postać charakteryzująca się jednorodnym

składem chemicznym i stanem

fizycznym. W obrębie fazy niektóre intensywne funkcje stanu (np. gęstość) mają jednakową wartość.

Fazy w zasadzie dają się mechanicznie oddzielić od siebie. Nie jest wymagana ciągłość fazy. W tych ostatnich przypadkach możemy mówić o fazie ciągłej – rozpraszającej i nieciągłej – rozproszonej. W skrajnych przypadkach mamy do czynienia: w układach ciało stałe – ciecz z dyspersjami (zawiesiny, układy koloidalne), w układach ciało stałe – gaz i ciecz – gaz z aerozolami (mgły, dymy). W takich układach z bardzo rozproszoną fazą istotną rolę zaczynają odgrywać właściwości powierzchni granicznej.

(2)

Chem. Fiz. TCH II/08 2

Podstawowe definicje (2)

2) Składniki niezależne – są to składniki, których stężenia w układzie można, przynajmniej w pewnym zakresie, zmieniać dowolnie. Ich liczbę można wyznaczyć odejmując od liczby składników (bez przy- miotnika) liczbę możliwych reakcji chemicznych, zachodzących mię- dzy nimi w danych warunkach.

Składnikiem niezależnym nie są np. jony w roztworach elektro-

litów, bowiem zawsze trzeba razem z nimi dodać towarzyszą-

cy im jon o przeciwnym znaku.

W pozostającym w równowadze (chemicznej) układzie:

CaCO

3

(s) = CaO(s) + CO

2

(g) są tylko 2 (dwa) składniki

niezależne.

Równaniem wiążącym trzeci składnik jest równanie reakcji i odpowiednia stała równowagi.

(3)

3

Chem. Fiz. TCH II/08 3

Podstawowe definicje (3)

3) Liczba stopni swobody – liczba parametrów, jakie można zmie- niać w układzie, przynajmniej w pewnym zakresie, bez zmiany liczby istniejących w nim faz. Inaczej – najmniejsza liczba parametrów wystarczająca do jednoznacznego zdefiniowania stanu układu.

W obszarach (płaszczyznach) istnienia jednej fazy mamy dwa stopnie swobody – można zmieniać P i T. Wzdłuż linii (dwie fazy współistnieją) – tylko jeden parametr – drugi jest narzucony. Punkt potrójny nie ma w ogóle stopni swobody – jest to tzw. stan inwariantny.

(4)

Chem. Fiz. TCH II/08 4

Równowaga w układzie wieloskładnikowym

Rozpatrujemy analogicznie jak dla układu jednoskładnikowego:

P=const T=const

Ponieważ rozpatrujemy stan równowagi:

zatem: a ponieważ:

musi być spełnione:

=

Y

J J

dn

dg

α

µ

α

=

Y

J J

dn dg

β

µ

β

= 0 +

= dg

α

dg

β

dg

( ) = 0

Y

J J

J β

dn

α

µ

µ dn

J

0

= 0

J

J β

α

µ

µ lub też: µ

αJ

= µ

βJ

Warunek równowagi międzyfazowej w układzie jednoskładnikowym znamy z wykładu VII; slajd „Termodynamika równowagi fazowej (1)”.

Rozpatrujemy tutaj układ wieloskładnikowy, dwufazowy (α i β). Można oczywiście dowieść analogicznym, choć odpowiednio bardziej rozbudowanym rozważaniem, że potencjały chemiczne danego składnika są równe w kilku fazach będących równocześnie w równowadze między sobą. Zastanowimy się teraz, ile faz może ze sobą współistnieć.

(5)

5

Chem. Fiz. TCH II/08 5

Reguła faz Gibbsa (1)

Jeśli policzymy ile parametrów (stopni swobody) F musimy podać, aby jednoznacznie określić stan układu zawierającego C niezależnych

składników i P faz:

Zmiennych stężeniowych: C – 1 dla każdej fazy, oraz

P(C – 1) dla wszystkich faz, a uwzględniwszy P i T: P(C – 1)+2

Jak wykazaliśmy, dla każdego składnika: µ

αJ

= µ

βJ

... µ

βJ

= µ

γJ

...

co daje: P – 1 równań dla jednego składnika, oraz C(P – 1)

Skróty F, C, P pochodzą z języka angielskiego: degrees of Freedom, Components, Phases.

C – 1 dla każdej fazy, bowiem ułamków molowych wystarczy podać właśnie tyle, suma musi wynosić 1.

(6)

Chem. Fiz. TCH II/08 6

Reguła faz Gibbsa (2)

co daje: P – 1 równań dla jednego składnika, oraz C(P – 1) dla wszystkich składników. Pomniejsza to liczbę parametrów koniecz-

nych do scharakteryzowania układu (czyli liczbę stopni swobody):

F = P(C – 1) + 2 – C(P – 1) = C – P + 2

Jest to reguła faz Gibbsa.

Z reguły faz zastosowanej do układu jednoskładnikowego wynika, że

maksymalna liczba faz współistniejących (dla F= 0) wynosi P=3. Zatem stan inwariantny w układzie jednoskładnikowym odpowiada punktowi potrójnemu.

Obserwowany przez nas punkt poczwórny na układzie fazowym dla helu był albo artefaktem (błędem, choć istnieje w źródle, skąd go przerysowywałem) i w rzeczywistości są tam bardzo blisko położone dwa punkty potrójne, albo hel znów jest czymś arcywyjątkowym. Mimo przeprowadzonego śledztwa, nie potrafię rozstrzygnąć. Opowiadam się jednak za słusznością reguły faz (czyli pierwsza możliwość wytłumaczenia – dwa punkty potrójne).

(7)

7

Chem. Fiz. TCH II/08 7

Równowaga ciecz-gaz w układzie dwuskładnikowym

Warunek równowagi w układzie jednoskładnikowym:

T=const

β

α

µ

µ =

w szczególności, dla układu ciecz – gaz: µ

c

= µ

g

Potencjał chemiczny gazu dany jest równaniem:

0

ln

0

P RT P

g g

= µ + µ

Nad czystym składnikiem A:

gA* gA0

ln

oA0 cA* *A

P

RT p µ µ

µ

µ = + = =

Nad mieszaniną, dla A:

A cA A

gA

gA

P

RT p µ µ

µ

µ =

0

+ ln

0

= =

Łącznie daje to:

o

A A A

A

p

RT ln p

*

+

= µ µ

Potencjał chemiczny gazu określiliśmy na wykładzie V; slajdy: „Entalpia swobodna a lotność gazów (1)” i „Potencjał chemiczny mieszanin gazowych (1)”.

Prężność PAnad mieszaniną jest prężnością cząstkową. Na razie zakładamy zachowanie par jak gazu doskonałego.

(8)

Chem. Fiz. TCH II/08 8

Prawo Raoulta (1)

Stwierdzone empirycznie (dla „podobnych” cieczy): p

A

= x

A

p

oA

Co ostatecznie pozwala zapisać: µ

A

= µ

A*

+ RT ln x

A

Roztwory spełniające prawo Raoulta w całym zakresie stężeń (składu) nazywamy roztworami doskonałymi

(idealnymi).

T=const

W prawie Raoulta xAoznacza ułamek molowy składnika A w cieczy.

Ostatnie równanie posłuży nam do zdefiniowania roztworu doskonałego, prawo Raoulta jest raczej konsekwencją istnienia takiego roztworu, aniżeli

odwrotnie.

Zauważmy, że w ostatnim równaniu nie ma już założenia o idealności gazu

(wszystko dotyczy roztworów).

Na wykresie prawo Raoulta jest

podobne do prawa Daltona, gdzie jednak na osi X odłożony był ułamek molowy w gazie, zaś linia ciśnienia

sumarycznego była pozioma.

(9)

9

Chem. Fiz. TCH II/08 9

Prawo Raoulta (2)

Ciecze podobne chemicznie

Ciecze różniące się właściwościami chemicznymi

Wykresy (od lewej) odpowiadają

układom: Benzen – Toluen, Aceton –

Disiarczek węgla, Chloroform – Aceton.

Wszystkie dla 298,15 K.

Układ pierwszy zachowuje się prawie idealnie zgodnie (spełnia całkowicie) prawo Raoulta, układ drugi wykazuje odchylenia dodatnie, zaś trzeci –

ujemne.

(10)

Chem. Fiz. TCH II/08 10

Układ dwuskładnikowy a reguła faz

C = 2, czyli F + P = 4 Wniosek (1):

W układzie dwuskładnikowym możliwy jest punkt poczwórny.

Wniosek (2):

W układzie dwuskładnikowym możliwy są 3 stopnie swobody (parametry definiujące stan układu). Będą to, ciśnienie, temperatu- ra oraz ułamek molowy jednego ze składników. Aby móc przedsta- wiać wykresy fazowe na płaszczyźnie (w dwóch wymiarach), zwykle ustala się warunki jako izotermiczne lub izobaryczne, kiedy to F + P = 3 (dla T = const lub P = const).

Wniosek (1) dotyczy stanu inwariantnego, gdy F=0.

Wniosek (2) dotyczy układu, w którym istnieje tylko 1 faza, P=1.

(11)

11

Chem. Fiz. TCH II/08 11

Diagram fazowy ciecz-para (1a)

T=const X

B

=const

a

para nie nasycona XB=yB

a

Krzywa rosy pokazuje zależność prężności pary nasyconej P (obu składników) od jej składu X=y.

Krzywa wrzenia pokazuje zależność prężności pary nasyconej P od składu cieczy z którą para ta jest w równowadze, X=x.

(12)

Chem. Fiz. TCH II/08 12

Diagram fazowy ciecz-para (1b)

T=const X

B

=const

a

para nie nasycona XB=yB

rosa na ściankach

para nasycona

XB=yB

b a

b

Krzywa rosy pokazuje zależność prężności pary nasyconej P (obu składników) od jej składu X=y.

Krzywa wrzenia pokazuje zależność prężności pary nasyconej P od składu cieczy z którą para ta jest w równowadze, X=x.

(13)

13

Chem. Fiz. TCH II/08 13

Diagram fazowy ciecz-para (1c)

T=const X

B

=const

a

para nie nasycona XB=yB

rosa na ściankach

para nasycona

XB=yB

b

ciecz para nasycona xB<XB<yB

c

a b c

Krzywa rosy pokazuje zależność prężności pary nasyconej P (obu składników) od jej składu X=y.

Krzywa wrzenia pokazuje zależność prężności pary nasyconej P od składu cieczy z którą para ta jest w równowadze, X=x.

(14)

Chem. Fiz. TCH II/08 14

Diagram fazowy ciecz-para (1d)

T=const X

B

=const

a

para nie nasycona XB=yB

rosa na ściankach

para nasycona

XB=yB

b

ciecz para nasycona xB<XB<yB

c

ciecz resztka

para nasyconej

xB=XB

d

a b c d

Krzywa rosy pokazuje zależność prężności pary nasyconej P (obu składników) od jej składu X=y.

Krzywa wrzenia pokazuje zależność prężności pary nasyconej P od składu cieczy z którą para ta jest w równowadze, X=x.

(15)

15

Chem. Fiz. TCH II/08 15

Diagram fazowy ciecz-para (1)

T=const X

B

=const

a

para nie nasycona XB=yB

rosa na ściankach

para nasycona

XB=yB

b

ciecz para nasycona xB<XB<yB

c

ciecz resztka

para nasyconej

xB=XB

d

tylko ciecz xB=XB

e

a b c d e

Krzywa rosy pokazuje zależność prężności pary nasyconej P (obu składników) od jej składu X=y.

Krzywa wrzenia pokazuje zależność prężności pary nasyconej P od składu cieczy z którą para ta jest w równowadze, X=x.

(16)

Chem. Fiz. TCH II/08 16

Diagram fazowy ciecz-para (2)

Równanie krzywej wrzenia:

(gdy spełnione jest prawo Raoulta – powinna być prostą)

) 1

(

B

o A A o A

A

p x p x

p = = −

B o B

B

p x

p =

B o A o B o A A

B

p p p p x

p

P = + = + ( − ) X

B

– ułamek molowy składnika B

w całym układzie,

x

B

– ułamek molowy składnika B w cieczy,

y

B

– ułamek molowy składnika B w parze.

(17)

17

Chem. Fiz. TCH II/08 17

Diagram fazowy ciecz-para (3)

Równanie krzywej rosy:

(gdy spełnione jest prawo Raoulta)

B A

B

B

p p

y p

= + Definicja ułamka

molowego w gazie:

Wprowadzamy prawo Raoulta:

B o B B o A o A

B o B B

o B B o

A

B o B

B

p p x p x

x p x

p x p

x y p

+

= − +

= −

) 1 ( skąd:

B o A o B o B

o B o B A

y p p p

p x p

)

( −

= −

(18)

Chem. Fiz. TCH II/08 18

Diagram fazowy ciecz-para (4)

Równanie krzywej rosy (c.d.) (gdy spełnione jest prawo Raoulta) Wyrażenie na x

B

:

B o A o B o B

B o B A

y p p p

y x p

)

( −

= −

wprowadzamy do wzoru na krzywą wrzenia, aby ciśnienie całkowite uzależnić od y

B

:,

B o A o B o A A

B

p p p p x

p

P = + = + ( − ) co daje po

przekształceniu:

oB Bo oA B

o B o A

y p p p

p P p

)

( −

= −

(19)

19

Chem. Fiz. TCH II/08 19

Diagram fazowy ciecz-para (5)

Ogladamy te same układy, co na slajdzie „Prawo Raoulta (2)”.

(20)

Chem. Fiz. TCH II/08 20

Reguła dźwigni

) (

c p

B B B

p B

c

x n y nX X n n

n + = = +

X

B

– ułamek molowy składnika B

w całym układzie, liczba moli tamże n x

B

– ułamek molowy składnika B w cieczy, n

c

y

B

– ułamek molowy składnika B w parze, n

p

.

x

B

y

B

Bilans:

c p B B

B B p c

l l x X

X y n

n =

= −

lc lp

(21)

21

Chem. Fiz. TCH II/08 21

Prawa Konowałłowa

I. Para jest bogatsza w ten składnik, którego dodanie do mieszaniny cieczy powoduje podwyższenie całkowitej prężności par mieszaniny.

II. W przypadku takiego składu fazy ciekłej, któremu od- powiada ekstremum na krzywej prężności pary w wa- runkach izotermicznych i równocześnie ekstremum temperatury na krzywej w warunkach izobarycznych, skład pary nasyconej jest równy składowi cieczy.

Uzasadnienie teoretyczne w oparciu o równanie Gibbsa – Duhema, zostanie zaprezentowane na następnym wykładzie.

Cytaty

Powiązane dokumenty

Namagnesowanie, wektor natężenia pola magnetycznego, wektor indukcji magnetycznej, podatność magnetyczna, przenikalność magnetyczna.. Zależności namagnesowania diamagnetyków i

FAKT: Na ogół jest to działanie bez sensu, bo i tak musimy wpisać punkt na li- stę kandydatów do najmniejszej i największej wartości funkcji, wyliczyć wartość funkcji w tym

wowych, z których za pomocą różniczkowania względem łuku można otrzymać każdy niezmiennik krzywej. 118); jeżeli więc między wektorami dwóch rodzin można

W krótkim horyzoncie, w przypadku krótkoterminowych stóp procen- towych, jest to przede wszystkim polityka pieniężna banku centralnego (polityka stopy procentowej) oraz popyt i

• Przy fali kondensacyjnej występuje wzrost temperatury całkowitej, podczas gdy przy fali uderzeniowej w wyniku odparowania fazy ciekłej wartość temperatury całkowitej wraca

W tym rozdziale przypominy definicje dziedziny calkowitości; dziedziny z jednoznacznością rozkładu, a następnie zdefiniujemy pojęcia ciła ułamków pierścienia oraz

Po prostu kąt odchylenia libelli od poziomu stanie się ludzkim okiem nieodróżnialny

Metoda interpretacyjna polega³a na zastosowaniu œrodowiska MATLAB do identy- fikacji parametrów hydrogeologicznych, rozumianych jako parametry filtracji wody oraz parametry