• Nie Znaleziono Wyników

Computational analysis of self-pitching propellers performance in open water

N/A
N/A
Protected

Academic year: 2021

Share "Computational analysis of self-pitching propellers performance in open water"

Copied!
13
0
0

Pełen tekst

(1)

Ocean Engineering 64 (2013) 122-134

ELSEVIER

C o n t e n t s l i s t s a v a i l a b l e at S c i V e r s e S c i e n c e D i r e c t

Ocean Engineering

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / o c e a n e n g

Computational analysis of self-pitching propellers performance

in open water

S. Leone, C. Testa, L. Greco *, F. S a l v a t o r e

CNR-INSEAN, The Italian Ship Model Basin, Via di Vallerano 128. 00139 Rome, Italy

A R T I C L E I N F O A B S T R A C T

T h i s p a p e r p r e s e n t s a n u m e r i c a l s t u d y on s e l f - p i t c h i n g p r o p e l l e r s ( S P P ) in o p e n w a t e r a i m e d at the p r e d i c t i o n of t h e p e r f o r m a n c e i n t e r m s of e q u i l i b r i u m p i t c h - s e t t i n g a n d d e l i v e r e d t h r u s t a n d torque. D i f f e r e n t l y f r o m o t h e r t y p e s of propeller, S P P - b l a d e s a r e able to f r e e l y rotate about the pivot axis u p to the s p i n d l e m o m e n t d u e to the c e n t r i f u g a l forces b a l a n c e s that g e n e r a t e d by the h y d r o d y n a m i c loads. In the a t t e m p t to p r o v i d e a r e l i a b l e p r e d i c t i o n o f SPP p e r f o r m a n c e , the e m p h a s i s of t h e w o r k is on p r o p e l l e r h y d r o d y n a m i c s m o d e l l i n g ; in detail, t h e B o u n d a r y E l e m e n t IVIethod ( B E M ) a n d B l a d e E l e m e n t M o m e n t u m T h e o r y ( B E M T ) are h e r e i n p r o p o s e d as fast a n d a c c u r a t e h y d r o d y n a m i c s o l v e r s . B o t h a p p r o a c h e s a r e w i d e l y u s e d in the f r a m e w o r k of r o t a t i n g - b l a d e s p r o p u l s i o n but their a p p l i c a t i o n to s e l f - p i t c h i n g p r o p e l l e r s is n o n s t a n d a r d . H e n c e , SPP d r a w b a c k s a n d p o t e n t i a l i t i e s a r e h i g h l i g h t e d through c o m p a r i s o n s w i t h n u m e r i c a l a n d e x p e r i m e n t a l a v a i l a b l e d a t a . T h e final goal of the p a p e r is to p r o v i d e s o m e g u i d e l i n e s on t h e e f f e c t i v e n e s s a n d r o b u s t e n e s s o f B E M / B E M T - h y d r o d y n a m l c s w h e n a p p l i e d to S P P - b l a d e s ; this m i g h t h a v e p r a c t i c a l i m p l i c a t i o n s for p r e l i m i n a r y d e s i g n a n d o p t i m a l d e s i g n process. © 2 0 1 3 E l s e v i e r Ltd. A l l rights r e s e r v e d . Article history: Received 2 April 2012 Accepted 24 February 2013 Available online 28 March 2013 Keywords:

Self-pitching propellers Hydrodynamics

Boundary Element Method Blade Element Momentum Theory

1. I n t r o d u c t i o n S e l f - p i t c h i n g p r o p e l l e r s (SPP) are u n c o n v e n t i o n a l p r o p e l l e r types w h e r e blades a u t o m a t i c a l l y a d j u s t t h e i r p i t c h t o s u i t t h e a p p l i e d l o a d , a c c o r d i n g t o the p r e v a i l i n g w o r i d n g c o n d i t i o n s . Fig. 1 s h o w s a sketch o f a t h r e e - b l a d e d s e l f - p i t c h i n g p r o p e l l e r . F r o m t h e k i n e m a t i c s t a n d p o i n t , blades f r e e l y t u r n a b o u t a n axis o r t h o g o n a l t o t h e s h a f t ( s p i n d l e axis) so t h a t , w h e n t h e s h a f t rotates, c e n t r i f u g a l f o r c e causes t h e blades t o s w i n g o u t w a r d s w h e r e a s h y d r o d y n a m i c forces t e n d t o p u s h t h e m i n w a r d s ; t h e o p e r a t i n g s e t t i n g is f i n a l l y a c h i e v e d w h e n blades t a k e u p a stable e q u i l i b r i u m p o s i t i o n d u e t o t h e balance b e t w e e n c e n t r i f u g a l a n d h y d r o d y n a m i c loads. T h i s f e a t u r e a l l o w s SPP t o o f f e r g o o d p e r f o r m a n c e i n b o t h ahead a n d reverse m o t i o n . P r e v i o u s research, c a r r i e d o u t i n t h e 1980s a n d e a r i y 1990s, d e m o n s t r a t e s t h e a d v a n t a g e s o f u s i n g f r e e p i t c h i n g p r o p e l l e r s i n t e r m s o f e f f i c i e n c y a n d s h o w s t h a t t h e t o r q u e c h a r a c t e r i s t i c o f t h i s t y p e o f p r o p e l l e r is f l a t t e r t h a n i n case o f a c o n v e n t i o n a l s c r e w w i t h r i g i d p i t c h s e t t i n g (see M i l e s et al., 1 9 9 2 ) w i t h s o m e b e n e f i t s i n t e r m s o f c o u p l i n g b e t w e e n engine a n d p r o p e l l e r s y s t e m s . As s h o w n i n M i l e s et a l . ( 1 9 9 2 ) , t h e e f f i c i e n c y c u r v e o f a s e l f - p i t c h i n g p r o p e l l e r i n o p e n w a t e r f o r m s an e n v e l o p e a r o u n d t h e m a x i m u m

•Corresponding author. Tel.: -F39OS50299313; fax: + 3 9 06 5070619. E-mail address: luca.greco@cnr.it (L. Greco).

0029-8018/$-see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.Org/10.1016/j.oceaneng.2013.02.012

e f f i c i e n c i e s a c h i e v e d w h e n t h e s a m e p r o p e l l e r operates at r i g i d p i t c h settings w i t h i n c r e a s i n g p i t c h r a t i o s . T h i s h y d r o d y n a m i c b e h a v i o u r s t e m s f r o m t h e c a p a b i l i t y o f t h e blades t o a d j u s t t h e m s e l v e s t o a d o p t t h e m o s t e f f i c i e n t p i t c h a n g l e as a f u n c r i o n o f t h e o p e r a t i n g c o n d i t i o n s . For these reasons, SPP have b e c o m e an a p p e a l i n g p r o p u l s i o n u n i t f o r s a i l i n g y a c h t s w h e r e t h e increase o f p r o p e l l e r t h r u s t a n d t h e r e d u c t i o n o f b o t h t r a i l i n g d r a g a n d s h a f t RPM are c h a l l e n g i n g tasks t o be a c h i e v e d , e s p e c i a l l y f o r p r o p e l l e r d i a m e t e r s o f i n c r e a s i n g size. A l t h o u g h SPP are p r i m a r i l y c o n c e i v e d as a u x i l i a r y p r o p u l s i o n systems f o r s a i l i n g yachts, t h e y are o f t e n used also as e n e r g y g e n e r a t i o n devices. Such a v e r s a r i -l i t y makes s e -l f - p i t c h i n g p r o p e -l -l e r s a v e r y a t t r a c t i n g r o t a t i n g - b -l a d e d e v i c e i n t h e range o f l o w - p o w e r engines. L o o k i n g at t h e l i t t l e a v a i l a b l e l i t e r a t u r e o n SPP, i t is easy t o recognise h o w t h e c o m p u t a t i o n a l t o o l s used f o r t h e n u m e r i c a l i n v e s t i g a t i o n are t y p i c a l l y based o n s i m p l i f i e d h y d r o d y n a m i c m o d e l l i n g , y i e l d i n g a r o u g h e s t i m a t i o n o f t h e p e r f o r m a n c e o f t h e p r o p e l l e r ; d e s p i t e t h e h i g h a c c u r a c y a n d r e l i a b i l i t y a c h i e v e d by C o m p u t a t i o n a l F l u i d D y n a m i c s (CFD) i n t h e c o n t e x t o f m a r i n e p r o p e l l e r d e s i g n a n d p e r f o r m a n c e analysis, n o a t t e m p t t o a p p l y m o r e a d v a n c e d h y d r o d y n a m i c a p p r o a c h e s is f o u n d . These c o n s i d e r a t i o n s have i n s p i r e d t h e p r e s e n t w o r k t h a t proposes a n u m e r i c a l c o m p a r i s o n b e t w e e n t h e c a p a b i l i t i e s o f t w o c o m p u t a t i o n a l h y d r o d y n a m i c approaches f o r t h e s t u d y o f t h e h y d r o m e c h a n i c b e h a v i o u r o f SPP i n o p e n w a t e r , n o n - c a v i t a t i n g f l o w c o n d i t i o n s . I n details, t h e Blade E l e m e n t M o m e n t u m T h e o r y

(2)

S. Leone et al. / Ocean Engineering 64 (2013) 122-134 123

_ . • '

Fig. 1. Sketch of self-pitching propeller.

( B E M T ) a n d B o u n d a r y E l e m e n t M e t h o d ( B E M ) are used, t h r o u g h -o u t t h e paper, as h y d r -o d y n a m i c s-olvers f -o r t h e e v a l u a t i -o n -o f t h e h y d r o l o a d s f o r c i n g t h e e q u a t i o n o f b l a d e m o t i o n . N o t e t h a t t h e BEMT a p p r o a c h h a s j u s t b e e n a p p l i e d i n t h e past t o SPP (see M i l e s et al., 1 9 9 2 ) as w e l l as t o c o n v e n t i o n a l m a r i n e p r o p e l l e r s (see B e n i n i , 2 0 0 4 ) , p r o v i n g t o be a n e f f e c t i v e p r e d i c t i o n t o o l as f a r as c o m p l e x i t y a n d c o m p u t a t i o n a l e f f o r t s are c o n c e r n e d . H o w e v e r , t o o v e r c o m e t h e d r a w b a c k s o f a p p r o a c h e s l i k e BEMT based o n t w o d i m e n s i o n a l f l o w a s s u m p t i o n s a n d p r o v i d e a general r e p r e s e n t a -t i o n o f -t h r e e - d i m e n s i o n a l f l o w e f f e c -t s a r o u n d a r b i -t r a r i l y shaped bodies, B E M h y d r o d y n a m i c s is p r o p o s e d : t o t h e a u t h o r s ' k n o w l -edge, t h e a p p l i c a t i o n o f B E M h y d r o d y n a m i c s is a n o v e l t y i n t h e f r a m e w o r k o f SPP. The assessment o f t h e a f o r e m e n t i o n e d h y d r o d y n a m i c s m o d e l -l i n g is f i r s t c a r r i e d o u t o n a c o n v e n t i o n a -l c o n t r o -l -l a b -l e - p i t c h p r o p e l l e r (CPP) t h r o u g h a d e t a i l e d c o m p a r i s o n b e t w e e n n u m e r i c a l a n d e x p e r i m e n t a l results. T h e n , t w o s e l f p i t c h i n g p r o p e l l e r -t y p e s are n u m e r i c a l l y i n v e s -t i g a -t e d a n d -t h e o b -t a i n e d resul-ts are c o m p a r e d w i t h a v a i l a b l e n u m e r i c a l a n d e x p e r i m e n t a l data. 2 . S e l f - p i t c h i n g b l a d e e q u i l i b r i u m e q u a t i o n A s e l f p i t c h i n g p r o p e l l e r i n u n i f o r m a x i a l onset f l o w is c o n s i d e r e d . The r e s u l t i n g p r o p e l l e r f l o w is a n a l y s e d u n d e r c a v i t a t i o n -f r e e c o n d i t i o n s . The c o o r d i n a t e s y s t e m i n t r o d u c e d t o describe t h e rigid b o d y m o t i o n o f a s e l f - p i t c h i n g blade is t h e r e f e r e n c e f r a m e (0,X/„Y6,Zb) c e n t e r e d at t h e p i v o t ( s p i n d l e ) axis a n d rigidly c o n -n e c t e d t o t h e blade, see Figs. 2 a -n d 3. The e q u a d o -n g o v e r -n i -n g t h e b l a d e m o t i o n a b o u t t h e p i v o t axis is o b t a i n e d f r o m t h e conserva-d o n o f a n g u l a r m o m e n t u m e q u a t i o n w r i t t e n i n t o t h e b l a conserva-d e r e f e r e n c e a n d p r o j e c t e d o n t o t h e s p i n d l e axis Zt. This p r o c e d u r e y i e l d s

J^ë+hyO" cos{2c)+(J^~]yy)^ sm{2e) = m], + m'^ (1) w h e r e JzzJxxJyyJxy are t h e c o m p o n e n t s o f t h e i n e r d a t e n s o r w i t h

respect t o t h e axes o f the blade r e f e r e n c e f r a m e , e is t h e v a r i a t i o n o f a n g u l a r p i t c h s e t d n g due t o t h e f r e e r o t a d o n a b o u t t h e s p i n d l e axis a n d Q is the b l a d e a n g u l a r v e l o c i t y a b o u t t h e s h a f t axis X

Fig. 2. Blade reference: X^Yt plane view. Quantity e/, (blade offset) denotes the distance of blade root with respect to the X(,=0 plane.

0 , Xb Fig. 3. Blade reference: X^Zi, plane view.

(see Fig. 1). A t t h e right h a n d side o f Eq. ( 1 ) , t h e f o r c i n g t e r m c o m e s f r o m h y d r o d y n a m i c a n d b l a d e w e i g h t m o m e n t s a b o u t t h e s p i n d l e axis, a n d m ^ , r e s p e c t i v e l y . N o t e t h a t t h e s p i n d l e m o m e n t is a d m e d e p e n d e n t t e r m because o f t h e c h a n g e o f p o s i t i o n o f blade c e n t r e o f g r a v i t y d u r i n g t h e p r o p e l l e r r e v o l u d o n . A t t h i s stage i t is u s e f u l t o observe t h a t t h e r a t e o f change o f t h e s p i n d l e m o m e n t w i t h respect t o angle c is a n i n d e x o f ' b l a d e p i t c h s t i f f n e s s t h a t s t r o n g l y affects t h e o s c i l l a d o n p e r i o d o f t h e b l a d e a b o u t t h e Zt axis. Previous r e s e a r c h o n t h e s u b j e c t (see M i l e s et al., 1 9 9 2 ) h i g h l i g h t s t h a t n u m e r i c a l l y p r e d i c t e d b l a d e -p i t c h o s c i l l a d o n f r e q u e n c i e s f o r s e l f - -p i t c h i n g -p r o -p e l l e r s i n s t a l l e d o n s m a l l b o a t s are t y p i c a l l y less t h a n o n c e p e r r e v a n d , i n t u r n s , b l a d e p i t c h s e t t i n g can be a s s u m e d t o be stable. T h i s c o n c l u s i o n is f u r t h e r s u p p o r t e d b y r e s u l t s o f c a v i t a t i o n t u n n e l tests (see Fig. 4 ) s h o w i n g a SPP m o d e l d e v e l o p i n g a stable c a v i t a t i n g t i p - v o r t e x i n t h e s a m e f a s h i o n o f a f i x e d p i t c h p r o p e l l e r ; t h u s , t h e a x i s y m -m e t r i c f l o w a s s u -m p t i o n holds, r e q u i r i n g , i n t u r n s , a l l blades t o u n d e r g o t h e same s y n c h r o n o u s p i t c h i n g m o t i o n . A l t h o u g h t h i s b e h a v i o u r d e p e n d s o n blade m a t e r i a l a n d shape, as w e l l as b l a d e s p i n d l e axis bearings, t h e n u m e r i c a l i n v e s d g a d o n c a r r i e d o u t t h r o u g h o u t t h e p a p e r is p e r f o r m e d u n d e r t h e m a i n a s s u m p t i o n

(3)

124 S. Leone et al / Ocean Engineering 64 (2013) 122-134

Fig. 4. Self-pitching propeller cavitation tests taken from Miles et al. (1992),

t h a t blade p i t c h o s c i l l a t i o n s f r e q u e n c i e s are v e r y l o w , so t h a t t h e static a p p r o x i m a t i o n m a y be r e a s o n a b l y a d o p t e d .

T h e r e b y , b y n e g l e c t i n g t h e m f j , t e r m , Eq. ( 1 ) y i e l d s t h e f o l l o w -i n g e q u -i l -i b r -i u m e q u a t -i o n f o r e:

J^yQ^ cos(2£e)-hÜ^. -Jyy)^ Sin(2£e) = mfiiCe) (2) w h e r e £e indicates t h e v a r i a t i o n o f blade p i t c h setting at t h e e q u i l i b r i u m p o s i t i o n . Eq. ( 2 ) states t h a t an e q u i l i b r i u m c o n d i t i o n Ce is achieved w h e n t h e spindle m o m e n t s due to c e n t r i f u g a l a n d h y d r o d y n a m i c fields are balanced. For g i v e n SPP geometry, m a t e r i a l a n d o p e r a t i n g conditions, the l e f t - h a n d - s i d e o f Eq. ( 2 ) is c o m p l e t e l y d e f i n e d . The e v a l u a t i o n o f the h y d r o d y n a m i c spindle m o m e n t m f , represents the crucial p o i n t to d e t e r m i n e blade p i t c h e q u i l i b r i u m Ce a n d hence t h e overall p r o p e l l e r p e r f o r m a n c e ; i n v i e w o f this fact, BEM and BEMT h y d r o d y n a m i c approaches are here o u t l i n e d . Details are g i v e n i n A p p e n d i x A f o r completeness.

C o n s i d e r i n g p r o p e l l e r h y d r o d y n a m i c s m o d e l l e d b y BEMT, t h e s p i n d l e m o m e n t m f , m a y be e x p r e s s e d as

m f , = / (dTyp-dFQXp) dr (3)

w h e r e rt,oss indicates t h e r a d i u s o f b l a d e r o o t . Coordinates (Xp,yp) d e f i n e t h e l o c a t i o n ( i n t h e XbV;, p l a n e ) o f t h e c e n t r e o f pressure o f a n e l e m e n t a l blade s e c d o n b e t w e e n r a d i a l s t a d o n s r a n d r+dr respect t o t h e b l a d e f r a m e o f r e f e r e n c e , w h e r e a s dT a n d dpQ r e p r e s e n t sectional h y d r o d y n a m i c f o r c e c o m p o n e n t s d e f i n e d i n Fig. 3 5 . Eq. ( 3 ) h i g h l i g h t s h o w t h e p r e d i c t i o n o f t h e s p i n d l e m o m e n t b y BEMT is l a r g e l y a f f e c t e d b y t h e i d e n t i f i c a t i o n o f t h e local c e n t r e o f pressure. Since t h i s p o s i t i o n depends b o t h o n t h e o p e r a d n g c o n d i d o n s a n d h y d r o f o i l c h a r a c t e r i s d c s ( p i t c h i n g m o m e n t a n d l i f t c o e f f i c i e n t s ) , a p r e l i m i n a r y t w o - d i m e n s i o n a l f l o w analysis m u s t be p e r f o r m e d i n case o f blade-shape sections n o t d o c u m e n t e d i n t h e l i t e r a t u r e . D i f f e r e n t l y , p r o p e l l e r m o d e l l i n g b y B E M p r o v i d e s a f u l l y t h r e e -d i m e n s i o n a l f l o w -d e s c r i p t i o n a n -d h y -d r o -d y n a m i c l o a -d i n g r e s u l t s as t h e c o m b i n a d o n o f n o r m a l a n d t a n g e n t i a l stress o n s o l i d surfaces. Blade s p i n d l e m o m e n t m f , is t h e n o b t a i n e d as m f , = ƒ ( - p r X n - i - r r x t) k d S (4) w h e r e Sg represents t h e blade s u r f a c e w h i l e p a n d T i n d i c a t e pressure a n d t a n g e n d a l stress o n SB. S y m b o l r is t h e v e c t o r i d e n d f y i n g t h e p o s i d o n o f a s u r f a c e p o i n t w i t h respect t o t h e o r i g i n o f t h e blade r e f e r e n c e f r a m e , t is t h e u n i t t a n g e n t v e c t o r t o SB a n d a l i g n e d t o local s t r e a m l i n e s , n is t h e u n i t n o r m a l v e c t o r t o Sg w h e r e a s k defines t h e u n i t v e c t o r a l i g n e d t o t h e axis. 3. N u m e r i c a l r e s u l t s I n t h i s s e c d o n BEMT a n d B E M h y d r o d y n a m i c m o d e l s are a p p l i e d t o t h e s t u d y o f SPPperformance i n o p e n w a t e r c o n d i -t i o n s . As s -t a -t e d b e f o r e , -t h e e v a l u a d o n o f -t h e h y d r o d y n a m i c s p i n d l e m o m e n t mf, plays a c r u c i a l r o l e i n t h e d e t e r m i n a d o n o f t h e e q u i l i b r i u m p i t c h s e t t i n g Ce (see Eq. ( 2 ) ) . For t h i s reason, a p r e l i m i n a r y i n v e s t i g a t i o n is c a r r i e d - o u t o n a c o n v e n d o n a l c o n t r o l l a b l e - p i t c h p r o p e l l e r (CPP) w h e r e t h e s p i n d l e m o m e n t e s t i m a t i o n is a n issue o f p r i m a r y i m p o r t a n c e f o r t h e s i z i n g o f its p i t c h - c o n t r o l m e c h a n i s m . To t h i s a i m , r e s u l t s o f t h e e x p e r i m e n t a l c h a r a c t e r i s a d o n o f t h e DTRC 4 4 0 2 CPP m o d e l i n B o s w e l l et al. ( 1 9 7 5 ) are c o m p a r e d t o n u m e r i c a l r e s u l t s o b t a i n e d b y t h e p r e s e n t h y d r o d y n a m i c f o r m u l a d o n s . S p e c i f i c a l l y , p r o p e l l e r t h r u s t T, t o r -q u e Q, a n d s p i n d l e m o m e n t m ^ are a n a l y s e d f o r t h r e e b l a d e n o n d i m e n s i o n a l l i n e a r p i t c h s e t t i n g s (P/D). The f o l l o w i n g d e f i n i -t i o n s o f f o r c e a n d m o m e n -t c o e f f i c i e n -t s are u s e d ; T Q prfiD^ (5) w h e r e D, n a n d p d e n o t e p r o p e l l e r d i a m e t e r , r o t a t i o n a l speed a n d w a t e r d e n s i t y , r e s p e c t i v e l y . A t h r e e - d i m e n s i o n a l v i e w o f t h e DTRC 4 4 0 2 p r o p e l l e r is d e p i c t e d i n Fig. 5; m a i n g e o m e t r y p a r a m e t e r s are l i s t e d i n Table 1. A l l results o f c o m p u t a t i o n a l studies b y B E M d e s c r i b e d h e r e a f t e r are o b t a i n e d b y u s i n g p r o b l e m d i s c r e t i s a t i o n settings w h i c h e n s u r e n e g l i g i b l e s e n s i t i v i t y o f r e s u l t s t o f u r t h e r d i s c r e t i s a d o n r e f i n e m e n t s . Results o f g r i d s e n s i t i v i t y studies are n o t d e s c r i b e d here f o r the sake o f conciseness.

Fig. S. Sketch of DTRC-P4402 controllable-pitch propeller.

Table 1

P4402 propeller main geometry parameters.

Blades number, Z 5-CPP

Propeller diameter, D 234.29 mm

Nominal pitch, P/Droy 1.061

Expanded area ratio 0.829

Skew (r/K=0.7) 6.44=

Rake (r/R=0.7) 0.0 mm

Hub/propeller diameter ratio 0.29

(4)

S, Leone et al. / Ocean Engineering 64 (2013) 122-134 125

Figs. 6 - 8 s l i o w t h e n u m e r i c a l - e x p e r i m e n t a l c o m p a r i s o n at P/D equal to 0.8, 1.061 and 1.2, respectively, w h e n BEMT-h y d r o d y n a m i c s is used. For tBEMT-hese c o m p u t a t i o n s , sectional aerody-namics properties come f r o m Castagneto a n d M a i o l i ( 1 9 6 8 ) . A t P / D = 0 . 8 , KT and KQ predictions are very g o o d f o r all advance-ratios. However, correlations t e n d t o w o r s e n w h e n blade p i t c h setting P/D increases (see Figs, 7 a n d 8) albeit t h e y r e m a i n acceptable f o r a w i d e range o f o p e r a t i n g conditions. N u m e r i c a l o v e r - p r e d i c t i o n s i n t e r m s o f Kj a n d /Cq arise at advance ratio greater t h a n 0.5 d u e t o the lack o f a realistic h u b m o d e l l i n g i n the BEMT approach w h e r e local f l o w a c c e l e r a t i o n is described i n a s i m p l i f i e d w a y b y t h e G o l d s t e i n -T a c h m i n j i factors (see A p p e n d i x A). -This conclusion is c o n f i r m e d b y an analysis ( n o t s h o w n here f o r conciseness) w h e r e a c o m p a r i s o n b e t w e e n B E M and BEMT predictions o f hubless p r o p e l l e r forces

-0.6 I 1 ^ i > i I

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Advance ratio, J

Fig. 6 . P4402 performance: BEMT vs experiments at P/D=0.8.

Advance ratio, J

Fig. 7. P4402 performance: BEMT vs experiments at P/D=1.061.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 A d v a n c e ratio, J

Fig. 8. P4402 performance: B E M T v s experiments at P/D=1.2.

-0.6 I 1 i ' i i I 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Advance ratio, J

Fig. 9. P4402 performance: BEM vs experiments at P/D=0.8.

shows an excellent a g r e e m e n t at h i g h advance ratios. Conversely, n u m e r i c a l u n d e r - p r e d i c t i o n s f o r Kr a n d KQ at l o w advance r a t i o m a y be p a r t i a l l y e x p l a i n e d b y t h e r o u g h d e s c r i p t i o n o f the w a k e - f i e l d b e h i n d t h e p r o p e l l e r d i s k a n d b l a d e s e c d o n a l d r a g . F i g u r e s a b o v e also s h o w s a t i s f a c t o r y r e s u l t s b e t w e e n B E M T p r e d i c t i o n s a n d e x p e r i m e n t s , as l o n g as Ks c o e f f i c i e n t is c o n c e r n e d ; s p i n d l e m o m e n t c o m p u t a t i o n s s t e m h e r e f r o m a s u i t a b l e t u n i n g process o n t h e f l o w - c u r v a t u r e c o r r e c d o n fi (see Eq. ( 1 5 ) , A p p e n d i x A ) , t a i l o r e d t o f i t d n g e x p e r i m e n t s a t n o m i n a l p i t c h s e t d n g . A v a l u e o f H = 0 . 0 7 5 has b e e n used f o r a l l P/D setdngs. N u m e r i c a l e x p e r i -m e n t a l a g r e e -m e n t i n t e r -m s o f Kj a n d KQ i -m p r o v e s w h e n B E M hydrodynamics is used t o p r e d i c t o p e n - w a t e r propeller performance (see Figs. 9 - 1 1 ) . As s h o w n , the i n c l u s i o n o f the h u b g e o m e t r y and t h e m o d e l l i n g o f t r a i l i n g - w a k e v o r r i c i t y effects yield a better agreement

(5)

126 S. Leone et al. / Ocean Engineering 64 (2013) 122-134

a

- 0 . 4

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1.0 1.2 A d v a n c e r a t i o , J

Fig. 10. P4402 performance: BEM vs experiments at P/D=1.0S1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 Advance ratio, J

Fig. n . P4402 performance: BEM vs experiments at P/D=1.2.

w i t l i measured data, b o t h at h i g h and l o w advance ratio. Nonetheless, a n enhancement i n the m o d e l l i n g o f viscous f l o w (see A p p e n d i x A ) is expected t o yield better results, especially i n t e r m s o f torque coefficient p r e d i c t i o n at l o w ] values. Above outcomes demonstrate t h a t BEM h y d r o d y n a m i c s predicts CPP-performance slightly bed:er t h a n BEMT approach. Dealing w i t h the spindle m o m e n t . Figs. 9 - 1 1 s h o w h o w BEM-computations are as fair as those c o m p u t e d by t h e B E M T m o d e l l i n g , w i t h o u t i n t r o d u c i n g a n y s o r t o f e m p i r i c a l c o r r e c t i o n . Such a r e s u l t d e m o n s t r a t e s t h e i m p o r t a n t r o l e p l a y e d b y t h r e e - d i m e n s i o n a l e f f e c t s i n t h e e v a l u a t i o n o f Ks. Nevertheless, t h e s i m p l i f i e d BEMT m o d e l l i n g is s t i l l a s u i t a b l e s o l v e r once t h e e m p i r i c a l p a r a m e t e r n is p r o p e r l y t u n e d .

Next, s e l f - p i t c h i n g propellers are considered. I n order to compare n u m e r i c a l r e s u l t s w i t h a v a i l a b l e e x p e r i m e n t a l d a t a , p r o p e l l e r p e r f o r m a n c e is f i r s t s t u d i e d b y a s s u m i n g t h a t blades are b l o c k e d w i t h respect t o s p i n d l e axis r o t a t i o n s a n d o p e r a t e at a g i v e n p i t c h s e t t i n g . To t h i s a i m m o d e l p r o p e l l e r P2, e x p e r i m e n t a l l y s t u d i e d i n M i l e s et a l . ( 1 9 9 2 ) , is i n v e s t i g a t e d ; a s k e t c h o f t h i s p r o p e l l e r is s h o w n i n Fig. 12. For c o m p l e t e n e s s , s o m e m a i n g e o m e t r y p a r a -m e t e r s are l i s t e d i n Table 2. P e r f o r -m a n c e at f i x e d p i t c h s e t t i n g c o r r e s p o n d i n g t o 0.8 a n d 1.2, respectively, is i n v e s t i g a t e d . For b o t h cases, t w o p r o p e l l e r m o d e l s w i t h t h e s a m e g e o m e t r i c a l characteristics, e x c e p t f o r t h e b l a d e o f f s e t e^, have b e e n t e s t e d i n M i l e s et a l . ( 1 9 9 2 ) . A d e f i n i t i o n o f blade o f f s e t is g i v e n i n Fig. 2 . F r o m a p h y s i c a l s t a n d p o i n t , a d i f f e r e n t p r o p e l l e r o f f s e t i m p l i e s o n l y a s h i f t o f t h e p r o p e l l e r b l a d e a l o n g t h e s h a f t axis a n d h e n c e i t s h o u l d a f f e c t t h e s p i n d l e m o m e n t a n d , s l i g h t l y , t h e t o r q u e . Nevertheless, t h i s is n o t c o n f i r m e d b y e x p e r i m e n t a l results s h o w n i n M i l e s e t a l . ( 1 9 9 2 ) w h e r e t h e same p r o p e l l e r , w i t h 6^ = 0 . 1 8 0 a n d e/i = 0.20D, r e s p e c t i v e l y , e x h i b i t s r e l e v a n t discrepancies i n t e r m s o f m e a s u r e d Kj a n d KQ c o e f f i c i e n t s . The a u t h o r s i n M i l e s et a l . ( 1 9 9 2 ) p o s t u l a t e t h a t such a b e h a v i o u r i n e x p e r i m e n t s is d u e t o a n u n c e r t a i n t y i n t h e p i t c h / d i a m e t e r r a t i o s e t t i n g o f a b o u t 0.05 a r o u n d t h e n o m i n a l P/D at 70% o f blade r a d i u s . Thus, i n t h e f o l l o w i n g i t is a s s u m e d t h a t e x p e r i m e n t a l r e s u l t s are a f f e c t e d b y a n u n c e r t a i n t y o f 0.05 i n t e r m s o f n o m i n a l P/D. Figs. 13 a n d 14 d e p i c t t h r u s t a n d t o r q u e c o e f f i c i e n t s at P / D = 0 . 8 . P e r f o r m a n c e p r e d i c t e d b y B E M T a n d B E M e x h i b i t s discrepancies w i t h r e s p e c t t o e x p e r i m e n t s . S p e c i f i c a l l y , B E M c o m p u t a t i o n s o v e r e s t i m a t e Kj a n d KQ o v e r t h e w h o l e range o f advance r a r i o values, a l b e i t t h e e x p e r i m e n t a l t r e n d is w e l l p r e d i c t e d ; c o n v e r s e l y , BEMT p r e d i c -rions i n t e r s e c t t h e e x p e r i m e n t a l curves so t h a t c o m p u t a t i o n s are s l i g h t l y closer t o e x p e r i m e n t s , e v e n t h o u g h t h e slope o f t h e c u r v e s is n o t w e l l e s r i m a t e d , especially at l o w ] values. For t h i s a n a l y s i s , s e c t i o n a l a e r o d y n a m i c s p r o p e r t i e s i n t h e BEMT m o d e l are t a k e n f r o m A b b o t t a n d v o n D o e n h o f f ( 1 9 5 8 ) . A c o m m o n f e a t u r e o f n u m e r i c a l c o m p u t a r i o n s is t h e t h r u s t o v e r e s t i m a r i o n at h i g h values o f t h e a d v a n c e c o e f f i c i e n t . Such n u m e r i c a l b e h a v i o u r

Fig. 12. Sketch of P2 self-pitching propeller.

Table 2

Self-pitching propeller P2 geometry parameters.

Blades number, Z 3-SPP

Propeller diameter, D 300.0 m m

Design nominal pitch, P/D 1.0 (const.)

Blade area ratio 0.39

Rake

Hub/propeller diameter ratio 0.233

Offset 54.0 mm, 60.0 mm

(6)

S. Leone et ai / Ocean Engineering 64 (2013) 122-134 127 0.35 0.30 0.25 0.20 ^ 0.15 0.10 0.05 0.00 -0.05 1 1 I I I I EXP • B E M T *

-1

i BEM ..

\ i i 1

-•

1 1

i i i •

xsi

: : : ! ! ! • N S . i i i i i i 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Advance ratio, J

F i g . 1 3 . F2 thrust coefficient: numerical vs experiments at P/D=0.8.

0.35 0.30 0.25 0.20 ^ 0.15 0.10 0.05 h 0.00 -0.05

!

l l l l l BEMT - present formulation

BEMT-Miles etal (1992) • j - 1

1 i j i

1

--

\

1 p ^ 5 s j ^ i

-i i i i i i 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Advance ratio, J

F i g . 1 5 . P2 thrust coefficient: present BEMT formularion compared to numerical data in Miles et al. (1992) at P/D=0.8.

0.35 0.35

a

-0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Advance ratio, J

F i g . 1 4 . P2 torque coefficient: numerical vs experiments at P/D=0.8.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1

Advance ratio, J

F i g . 1 6 . P2 torque coefficient: present BEMT formulation compared to numerical data in Miles et al. (1992) at P/D=0.8.

m a y be e x p l a i n e d b y t h e l i m i t s , o f b o t h solvers, i n d e s c r i b i n g h u b e f f e c t s o n p r o p e l l e r loads; i n f a c t , t h e shape o f t h e SPP h u b is d i f f e r e n t f r o m t h e c y l i n d r i c a l g e o m e t r y used i n B E M s i m u l a t i o n s o r m o d e l l e d b y t h e G o l d s t e i n - T a c h m i n j i f a c t o r s i n t h e B E M T solver. A k i n t o t h e analysis p e r f o r m e d o n CPP p r o p e l l e r - t y p e s , a n e n h a n c e d d e s c r i p t i o n o f viscous p h e n o m e n a , r o u g h l y m o d e l l e d i n b o t h BEMT a n d BEM approaches, s h o u l d i m p r o v e n u m e r i c a l p r e d i c t i o n s at l o w j values. For t h e sake o f completeness. Figs. 15 and 16 d e p i c t the n u m e r i c a l c o m p a r i s o n b e t w e e n p e r f o r m a n c e p r e d i c t e d b y t h e p r e s e n t BEMT m o d e l and t h a t i n M i l e s e t a l . ( 1 9 9 2 ) ; as s h o w n , t h e a g r e e m e n t is excellent.

N e x t , P/D = 1.2 p i t c h s e t t i n g is c o n s i d e r e d i n Figs. 17 a n d 1 8 . As expected, BEMT solver s h o w s a l i m i t e d c a p a b i l i t y i n c a p t u r i n g

p r o p e l l e r p e r f o r m a n c e w h e n the sectional angle o f a t t a c k increases, w h e r e a s B E M c o m p u t a t i o n s h i g h l i g h t a v e r y g o o d a g r e e m e n t e s p e c i a l l y . i n t e r m s o f Kj. A n u n d e r p r e d i c t i o n o f t h e t o r q u e c o e f f i c i e n t is o b s e r v e d f o r } values less t h a n 0.65 d u e t o t h e d e t r i m e n t a l e f f e c t o f t h e a p p r o x i m a t e m o d e l l i n g o f v i s c o s i t y d r i v e n p h e n o m e n a . F i n a l l y , e q u i l i b r i u m c o n d i t i o n s ( i n t e r m s o f p i t c h s e t t i n g ) f o r t h e p r o p e l l e r - t y p e h a v i n g a n o f f s e t v a l u e o f 6^ = 0 . 1 8 0 are a n a l y z e d i n Fig. 19, w h e r e p i t c h - d i a m e t e r r a t i o is c o n s i d e r e d at 70% o f b l a d e r a d i u s . E x p e r i m e n t a l results are d e p i c t e d w i t h t h e u n c e r t a i n t y o f 0.05 a r o u n d t h e m e a s u r e d n o m i n a l P/D. C o m p u t a -t i o n s s h o w -t h a -t BEMT p r e d i c -t i o n s y i e l d r e a s o n a b l e a g r e e m e n -t

(7)

128 S. Leone et ai / Ocean Engineering 64 (2013) 122-134

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Advance ratio, J

F i g . 1 7 . P2 thrust coefficient: numerical vs experiments at P/D=1.2.

' 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Advance ratio, J

F i g . 1 8 . P2 torque coefficient: numerical vs experiments at P/D=1.2.

w i t h m e a s u r e m e n t s f o r / r a n g i n g f r o m 0.4 t o 0.6, w h e r e a s o v e r -e s t i m a t i o n a t } l-ess t h a n 0.5 a n d u n d -e r -e s t i m a t i o n a t J g r -e a t -e r t h a n 0.8 are p r e s e n t . T h e m a j o r drawbacl< i n BEIVIT p r e d i c t i o n s is i n t e r m s o f slope o f t h e P/D c u r v e t h a t is q u i t e f a r f r o m t h e m e a s u r e d one. N o t e t h a t B E M T c o m p u t a t i o n s are o b t a i n e d t h r o u g h a t a i l o r i n g process o n t h e e m p i r i c a l p a r a m e t e r / i (see Eq. ( 1 5 ) , A p p e n d i x A ) , t o m a t c h n u m e r i c a l results a n d e x p e r i m e n t s : i n t h i s case t h e p r o c e d u r e y i e l d s ^ = 0.5. Conversely, B E M c o m p u t a t i o n s h i g h l i g h t a v e r y g o o d agree-m e n t w i t h agree-m e a s u r e agree-m e n t s f o r J r a n g i n g f r o agree-m 0.2 t o 0.9; a l t h o u g h a t h i g h e r ] v a l u e s a n o v e r e s t i m a t i o n o f e q u i l i b r i u m P/D is revealed, t h e g l o b a l t r e n d is g e n e r a l l y w e l l d e s c r i b e d . T h r u s t a n d t o r q u e c o r r e s p o n d i n g t o t h e b l a d e e q u i l i b r i u m p i t c h angle are s h o w n i n Figs. 2 0 a n d 2 1 . I n d e t a i l . Fig. 2 0 s h o w s B E M T a n d B E M p r e d i c t i o n s i n t e r m s o f Kj i n s e l f - p i t c h i n g c o n d i t i o n s : as

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Advance ratio, J

F i g . 1 9 . P2 in self-pitching condition: equilibnum pitch setting.

' 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Advance ratio, J

F i g . 20. P2 in self-pitching condition: thrust coefficient.

e x p e c t e d , BEMT p r o v i d e s s a t i s f a c t o r y p r e d i c t i o n s o n l y i n t h e r a n g e b e t w e e n 0.4 a n d 0.6 w h e r e t h e e q u i l i b r i u m p i t c h s e t t i n g is w e l l c a p t u r e d . O u t o f t h i s range, B E M T is u n a b l e t o d e s c r i b e t h e h y d r o m e c h a n i c b e h a v i o u r o f t h e SPP. D i f f e r e n t l y , B E M c a l c u l a -t i o n s p r o v i d e p e r f o r m a n c e p r e d i c -t i o n s -t h a -t are i n v e r y g o o d a g r e e m e n t w i t h e x p e r i m e n t s , o v e r t h e w h o l e range o f o p e r a t i n g c o n d i t i o n s . T o r q u e analysis is s h o w n i n Fig. 2 1 . E x p e r i m e n t a l r e s u l t s w i t h a n d w i t h o u t t r a n s i t i o n s t r i p s a t t a c h e d t o t h e blades are p r o v i d e d t o h i g h l i g h t scale e f f e c t s o n KQ. M o d e l tests are p e r f o r m e d at d i f f e r e n t p r o p e l l e r r o t a t i o n a l speed a n d i n f l o w v e l o c i t y t o have a d v a n c e r a t i o r a n g i n g b e t w e e n 7 = 0 . 2 a n d J=2.0. C o r r e s p o n d i n g l y , Reynolds n u m b e r at 70% o f b l a d e s p a n

v a r i e d b e t w e e n 1.48 x 10'' at l o w J a n d 0.6 x l O ' ' a t h i g h ] . Same t e s t i n g c o n d i t i o n s are used f o r b o t h u n s t r i p p e d a n d s t r i p p e d blade m o d e l s . S i m i l a r l y t o KT p r e d i c t i o n s , B E M T c a l c u l a t i o n s p r o v i d e s a t i s f a c t o r y results w h e r e t h e e q u i l i b r i u m p i t c h s e t t i n g is w e l l

(8)

S. Leone et ai / Ocean Engineering 64 (2013) 122-134 129 0.8 0,7 0.0 EXP Str O EXP no str • B E t ^ T » -BEM J i i L 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Advance ratio, J

Fig. 21. P2 in self-pitcliing condition: torque coefficient.

Table 3

Self-pitching propeller P2fl geometry parameters.

Blades number, Z 3-SPP

Propeller diameter, D 250,0 mm Design nominal pitch, P/D 0.682 (const.)

Blade area ratio 0.41

Rake

Hub/propeller diameter ratio 0.206

Offset 41.75 mm

Blade sections airfoil Refiex

c a p t u r e d ( 0 . 5 < ; < 0 . 7 ) . N e v e r t i i e l e s s , BEMT d a t a are c h a r a c -t e r i s e d b y a d i f f e r e n -t slope w i -t h r e s p e c -t -t o e x p e r i m e n -t s . These results are o b t a i n e d b y a s s u m i n g t w o d i m e n s i o n a l a i r f o i l c h a r -acterisrics o f secrion at 70% o f b l a d e r a d i u s as r e p r e s e n t a t i v e o f a l l secdons s p a n w i s e . Such a w i d e l y used a p p r o a c h i n t h e f r a m e w o r k o f s e c d o n a l a e r o d y n a m i c theories has a d i f f e r e n t i m p a c t o n b l a d e t h r u s t a n d t o r q u e p r e d i c d o n s ; i n f a c t , s m a l l v a r i a d o n s o f s e c d o n a l d r a g m a y d e t e r m i n e large d i f f e r e n c e s i n t h e p r e d i c t e d t o r q u e w h e r e a s a l i m i t e d e f f e c t o n b l a d e t h r u s t is n o d c e d . Conversely, BEM c o m p u t a t i o n s are i n g o o d a g r e e m e n t w i t h r e s p e c t t o n o strips e x p e r i m e n t a l d a t a f o r J < 0.8 w h i l s t e x h i b i t r e l e v a n t d i f f e r -ences w i t h respect t o t h e e x p e r i m e n t a l strip d a t a f o r / < 1.0. T h e v i s c o u s - f l o w correction present i n the BEM m o d e l (see A p p e n d i x A ) is so a p p r o x i m a t e d t h a t i t m a y b e t o o a m b i d o u s t r y i n g t o e s t a b l i s h a r e l a d o n s h i p b e t w e e n n u m e r i c a l r e s u l t s a n d e f f e c t s o n b l a d e loads i n d u c e d b y s d m u l a d n g t u r b u l e n t flow at l e a d i n g edge o f b l a d e m o d e l i n e x p e r i m e n t s .

N e x t , B E M and BEMT m o d e l s are a p p l i e d t o t h e analysis o f a n e w s e l f - p i t c h i n g p r o p e l l e r ( h e r e a f t e r r e f e r r e d t o as t h e P2^) h a v i n g t h e same p l a n f o r m as p r o p e l l e r P2, b u t d i f f e r e n t s e c d o n a l a i r f o i l s . S o m e g e o m e t r i c a l p a r a m e t e r s are d e s c r i b e d i n Table 3. I n Figs. 2 2 - 2 4 BEM a n d BEMT c o m p u t a t i o n s are c o m p a r e d i n t e r m s o f SPP-performance a n d s p i n d l e m o m e n t at i m p o s e d p i t c h s e t t i n g c o r r e s p o n d i n g t o p i t c h / d i a m e t e r r a d o o f 0.682 ( n o m i n a l p i t c h ) . P r o p e l l e r P2^ blades have been d e s i g n e d b y p r o p e l l e r m a n u f a c -t u r e r (see M i l e s e-t al., 1 9 9 2 ) a n d n u m e r i c a l l y i n v e s -t i g a -t e d w i -t h i n t h e f r a m e w o r k o f a n o n g o i n g research p r o j e c t . S e c t i o n a l a e r o -d y n a m i c c h a r a c t e r i s t i c s u s e -d i n B E M T m o -d e l l i n g c o m e f r o m a d e v o t e d a n a l y s i s p e r f o r m e d b y t h e m a n u f a c t u r i n g c o m p a n y

p a r t n e r i n t h e p r o j e c t . N u m e r i c a l results d e m o n s t r a t e a g o o d a g r e e m e n t b e t w e e n BEM a n d BEMT p r e d i c d o n s i n t e r m s o f Kjand KQ c o e f f i c i e n t s . C o n s i d e r i n g t h e s p i n d l e m o m e n t Ks, Fig. 2 4 h i g h -l i g h t s a n e x c e -l -l e n t a g r e e m e n t , e x c e p t f o r s m a -l -l d i f f e r e n c e s at -l o w ] values. N o t e t h a t , d u e t o t h e lack o f e x t e n s i v e e x p e r i m e n t a l k n o w l e d g e o n c o n s i d e r e d SPP m o d e l s , t h e p a r a m e t e r fi i n t h e BEMT m o d e l has been t u n e d t o g e t t h e best a c c o r d a n c e w i t h B E M r e s u l t s a t t h e n o m i n a l p i t c h c o n d i d o n ; a fi v a l u e o f 0.33 has b e e n f o u n d a n d k e p t c o n s t a n t f o r t h e o t h e r p i t c h s e t d n g s discussed i n t h e f o l l o w i n g . A n e x p e c t e d i m p r o v e m e n t o f BEMT t u n i n g process m a y be a c h i e v e d t h r o u g h d e d i c a t e d e x p e r i m e n t a l tests o n SPP m o d e l s . For a P/D v a l u e o f 0.528, b l a d e s e c d o n s o p e r a t e at a n 0.30 0.25 0.20 0.15 0.10 ) ^ 0.05 0.00 -0.05 -0.10 -0.15 -0.20 I I I ! l l l l l BEMT • -BEM

-e-i -e-i -e-i 1 -e-i -e-i -e-i -e-i -e-i 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Advance ratio, J

Fig. 22. P2^ thrust coefficient: numerical BEM vs BEMT predictions at nominal P/D=0.682.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Advance ratio, J

Fig. 23. P2A torque coefficient: numerical BEM vs BEMT predictions at nominal P/D = 0.682.

(9)

130 S. Leone et al. / Ocean Engineering 64 (2013) 122-134 o CNJ -0.20 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Advance ratio, J

F i g . 2 4 . P2/1 spindle moment coefficient: numerical BEM vs BEMT predictions at nominal P/D=0.682.

a

-0.20

0.0 0.1 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0,9 1.0 Advance ratio, J

F i g . 2 6 . P2A torque coefficient: numerical BEM vs BEMT predictions at P/D=0.528.

0.30 0.25 0.20 0.15 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 B E M T « -BEM

-e-J I I L 1 I I L 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Advance ratio, J

F i g . 2 5 . P2A thrust coefficient: numerical BEM vs BEMT predictions at P/D=0.528.

angle o f a t t a c k l o w e r t h a n t h e p r e v i o u s c o n d i t i o n : as a conse-quence, v i s c o u s - f l o w a n d t h r e e - d i m e n s i o n a l f l o w e f f e c t s are s u p p o s e d t o have less i m p a c t o n t h r u s t a n d t o r q u e . H e n c e a b e t t e r a g r e e m e n t b e t w e e n B E M T a n d B E M r e s u l t s is e x p e c t e d , see Figs. 25 a n d 2 6 . Nevertheless, Fig. 27 s h o w s a w o r s e n i n g i n t h e n u m e r i c a l a g r e e m e n t i n t e r m s o f s p i n d l e m o m e n t values. Such a b e h a v i o u r is due t o t h e f a c t t h a t t h e t u n i n g process o f t h e e m p i r i c a l p a r a m e t e r /.i ( t o m a t c h B E M r e s u l t s ) has b e e n based o n n o m i n a l p i t c h s e t t i n g . A t p i t c h values l a r g e r t h a n t h e n o m i n a l one, P/D = 0.759, h i g h e r blade l o a d i n g c o n d i t i o n s m a k e t h r e e -d i m e n s i o n a l f l o w e f f e c t s m o r e r e l e v a n t ; t h u s , l a r g e r -discrepancies i n t h e p r e d i c t i o n o f KT, KQ a n d Ks are e x p e c t e d , as c o n f i r m e d b y r e s u l t s s h o w n i n Figs. 2 8 - 3 0 . 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Advance ratio, J

F i g . 2 7 . P2^ spindle moment coefficient: numerical BEM vs BEMT predictions at P/D = 0.528.'

F i n a l l y , n u m e r i c a l s i m u l a t i o n s w h e r e p r o p e l l e r blades are l e f t f r e e t o a d j u s t p i t c h a c c o r d i n g t o b l a d e l o a d i n g at d i f f e r e n t values o f t h e advance c o e f f i c i e n t are c o n s i d e r e d . O b t a i n e d e q u i l i b r i u m p i t c h - s e t t i n g values ( a n d c o r r e s p o n d i n g Kjand KQ) are d e p i c t e d i n Figs. 3 1 - 3 3 , r e s p e c t i v e l y . C o m p u t a t i o n s s h o w t h a t B E M T a n d B E M m o d e l s p r o v i d e p e r f o r m a n c e a n d p i t c h s e t t i n g c u r v e s w i t h d i f -f e r e n t slopes. T h i s r e s u l t c o n -f i r m s a t r e n d a l r e a d y o b s e r v e d -f o r t h e P2 p r o p e l l e r i n Figs. 1 9 2 1 , w h e r e t h e c o m p a r i s o n w i t h e x p e r i -m e n t a l data is d e p i c t e d . Since B E M h y d r o d y n a -m i c s y i e l d s loads p r e d i c t i o n s a c c o u n t i n g d i r e c t l y f o r t h e presence o f t h r e e d i m e n -s i o n a l e f f e c t -s , i t i-s rea-sonable t o a -s -s u m e t h a t t h e m o -s t r e a l i -s t i c r e s u l t s are t h o s e associated t o B E M f o r m u l a t i o n .

(10)

S. Leone et ai / Ocean Engmeering 64 (2013) 122-134 131

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Advance ratio, J

F i g . 2 8 . tiirust coefficient: numerical BEM vs BEMT predictions atP/D=0.759.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Advance ratio, J

F i g . 3 0 . P2^ spindle moment coefficient: numerical BEM vs BEMT predictions at P/D=0.759. 0.30 0.25 0.20 0.15 0.10 ^ 0.05 o 0.00 -0.05 -0.10 -0.15 -0.20 1 1 1 BEMT • -BEM

-e-J L J I i L 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Advance ratio, J

F i g . 2 9 . P2/, torque coefficient: numerical BEM vs BEMT predictions atP/D=0.759.

4. C o n c l u s i o n s I n t h i s paper, c a p a b i l i t i e s a n d d r a w b a c k s o f t w o c o m p u t a t i o n a l m e t h o d o l o g i e s a i m e d at t h e analysis o f s e l f - p i t c h i n g p r o p e l l e r s i n u n i f o r m f l o w are i n v e s t i g a t e d b y c o m p a r i s o n s w i t h n u m e r i c a l a n d e x p e r i m e n t a l a v a i l a b l e d a t a . I n t h e a t t e m p t t o p r e d i c t self-p i t c h i n g self-p r o self-p e l l e r s self-p e r f o r m a n c e , t h e Blade E l e m e n t M o m e n t u m T h e o r y a n d B o u n d a r y E l e m e n t M e t h o d are used as h y d r o d y n a m i c solvers t o y i e l d the f o r c i n g t e r m s o f b l a d e m o t i o n e q u a t i o n .

BEMT approach stems f r o m a n o n l i n e a r c o m b i n a t i o n o f Blade Element a n d M o m e n t u m T h e o r y ; i t is based o n sectional steady aerodynamics, enhanced t h r o u g h a s i m p l i f i e d v o r t e x line approach to account f o r t h r e e - d i m e n s i o n a l f l o w effects. O n the o t h e r h a n d ,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Advance ratio, J

F i g . 3 1 . P2^ in self-pitching condidon: equilibrium pitch setring. BEM vs BEMT numerical simulations. B E M m o d e l is a f u l l y t h r e e - d i m e n s i o n a l , unsteady h y d r o d y n a m i c solver based o n t h e a s s u m p t i o n o f p o t e n t i a l f l o w s . G u i d e l i n e s d e r i v e d f r o m t h e n u m e r i c a l s t u d y h e r e i n p e r f o r m e d c o n f i r m t h e effectiveness o f t h e B E M T b a s e d a p p r o a c h . S p e c i f i c a l l y , t h r u s t a n d t o r q u e c o e f f i c i e n t s p r e d i c t e d a t f i x e d p i t c h -s e t t i n g o f p r o p e l l e r blade-s are r e a -s o n a b l e i n ca-se o f m o d e r a t e l y l o a d e d p r o p e l l e r s w o r k i n g close t o d e s i g n c o n d i t i o n . Conversely, at advance r a t i o causing blade o v e r l o a d i n g o r u n d e r l o a d i n g , t h r e e -d i m e n s i o n a l f l o w e f f e c t s b e c o m e -d o m i n a n t a n -d B E M T p r e -d i c t i o n s can p r o v e t o b e u n r e l i a b l e . C o n c e r n i n g w i t h s p i n d l e m o m e n t p r e d i c t i o n s , BEMT requires a d e v o t e d t a i l o r i n g process a i m e d at d e t e c t i n g f l o w - c u r v a t u r e c o r r e c t i o n e f f e c t s . T h i s f a c t m a k e s BEMT

(11)

132 S. Leone et al / Ocean Engmeering 64 (2013) 122-134 0.5 0.4 0.3 0.2 0.1 0.0 n [— i B E M T -BEM • 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Advance ratio, J

Fig. 3 2 . P2A in self-pitcliing condition: thrust coefficient.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Advance ratio, J

Fig. 3 3 . P2A in self-pitching condition: torque coefficient.

f o r m u l a t i o n q u e s t i o n a b l e f o r t h e n u m e r i c a l analysis o f s e l f -p i t c h i n g -p r o -p e l l e r s -p e r f o r m a n c e . S -p e c i f i c a l l y , i f m o d e l - t u n i n g d a t a are n o t a v a i l a b l e n u m e r i c a l p r e d i c t i o n s m a y c o n s i s t e n t l y d e v i a t e f r o m r e a l i t y . I n c o n t r a s t t o t h i s , B E M h y d r o d y n a m i c s o v e r c o m e s m o s t o f t h e a b o v e m e n t i o n e d l i m i t a t i o n s t h a n k s t o a f u l l d e s c r i p t i o n o f t h r e e -d i m e n s i o n a l f l o w e f f e c t s a r o u n -d p r o p e l l e r bla-des. N u m e r i c a l results d e m o n s t r a t e t h a t f a i r a g r e e m e n t w i t h e x p e r i m e n t a l d a t a is f o u n d f o r b o t h f i x e d a n d s e l f p i t c h i n g blades w i t h o u t i n t r o d u -c i n g e m p i r i -c a l -c o r r e -c t i o n s t h a t r e q u i r e a d - h o -c t u n i n g a n d l i m i t t h e g e n e r a l v a l i d i t y o f results. N u m e r i c a l s t u d i e s d i s c u s s e d i n t h e p r e s e n t w o r k also i d e n t i f y v i s c o u s - f l o w m o d e l l i n g a n d t r a i l i n g v o r t i c i t y d y n a m i c s as areas o f p o s s i b l e i m p r o v e m e n t o f s t a n d a r d B E M m o d e l s f o r t h e analysis o f s e l f - p i t c h i n g p r o p e l l e r s .

The above considerations suggest the use o f BEM h y d r o d y n a m i c s i n v i e w o f applications t o p r e l i m i n a r y design a n d o p t i m i s a t i o n studies. Propeller p e r f o r m a n c e studies b y BEM i n v o l v e a greater e f f o r t as c o m p a r e d to BEMT r e q u i r e m e n t s b u t c o m p u t a t i o n a l costs are s t i l l l i m i t e d to make possible recursive calculations i n the f r a m e -w o r k o f s i m u l a t i o n based design procedures.

F i n a l l y , a great deal o f i n t e r e s t is o n t h e b e h a v i o u r o f SPPs i n t h e presence o f s p a t i a l l y a n d / o r t e m p o r a l l y v a r y i n g f l o w s a r i s i n g d u r i n g o f f - d e s i g n c o n d i t i o n s , as m a n e u v e r s o r r o u g h sea. The i n v e s t i g a t i o n o f s u c h o p e r a t i n g c o n d i t i o n s is c h a l l e n g i n g since i t r e q u i r e s t h e c o m b i n e d analysis o f b o t h blades d y n a m i c s a n d h y d r o d y n a m i c s , i n a h y d r o e l a s t i c f a s h i o n . I n t h i s c o n t e x t , a c r u c i a l p o i n t is t h e e v a l u a t i o n o f blades d y n a m i c e q u i l i b r i u m c o n d i t i o n t o p e r f o r m a f u r t h e r s t a b i l i t y analysis. I n a u t h o r s ' o p i n i o n such a n a c t i v i t y , b e y o n d t h e scope o f t h i s paper, r e p r e s e n t s a n u r g e n t n e e d f o r h y d r o d y n a m i c i s t s t o a d e q u a t e l y i n v e s t i g a t e advantages a n d d i s a d v a n t a g e s o f SPPs against o t h e r s c r e w p r o p e l l e r systems i n o f f - d e s i g n c o n d i t i o n s . A c k n o w l e d g m e n t s Part o f t h e w o r k d e s c r i b e d i n t h i s p a p e r w a s p e r f o r m e d i n t h e f r a m e w o r k o f t h e EUFP7 Research P r o j e c t H y M A R , ' H i g h E f f i -c i e n -c y H y b r i d D r i v e T r a i n s f o r S m a l l a n d M e d i u m Sized M a r i n e C r a f t ' , G r a n t no. 2 6 2 5 5 2 . A p p e n d i x A T h i s s e c t i o n h i g h l i g h t s t h e m a i n aspects o f B E M T a n d B E M m o d e l l i n g p r o p o s e d i n t h i s w o r k . M o r e d e t a i l s m a y be f o u n d i n l i t e r a t u r e papers c i t e d h e r e a f t e r . I n t h e f o l l o w i n g a g i v e n p r o p e l l e r w o r k i n g at a s p e c i f i e d a d v a n c e r a t i o J = V/^/nD is c o n s i d e r e d , w h e r e VA r e p r e s e n t s t h e a d v a n c e v e l o c i t y , D is t h e p r o p e l l e r d i a m e t e r a n d n = Q/2n is t h e r o t a t i o n a l speed.

A.l. Blade Element Momentum Theory

T h i s a p p r o a c h is e s s e n t i a l l y a s t r i p t h e o r y m e t h o d , i n h e r e n t l y steady, t h a t c o m b i n e s basic p r i n c i p l e s f r o m Blade E l e m e n t T h e o r y (BET) a n d M o m e n t u m T h e o r y ( M T ) , i n c l u d i n g s o m e aspects o f v o r t e x t h e o r y . I t a l l o w s a q u i t e r e l i a b l e p r e d i c t i o n o f t h e l o a d d i s t r i b u t i o n a l o n g t h e blade s p a n f o r m o d e r a t e l y l o a d e d p r o p e l -lers w o r k i n g at, or near, t h e i r d e s i g n c o n d i t i o n (see C a r l t o n , 1 9 9 4 ) . T h e n u m e r i c a l a l g o r i t h m a p p l i e d t h r o u g h o u t t h e p a p e r f o l l o w s t h e a p p r o a c h p r e s e n t e d i n M i l e s et a l . ( 1 9 9 2 ) . I n d e t a i l , f r o m the M T t h e i n c r e m e n t a l t h r u s t a n d e f f i c i e n c y o f a r o t o r a n n u l u s o f the p r o p e l l e r d i s k recast (see T o d d a n d C o m s t o c k , 1 9 6 7 ) dT , =4nprViakd1+akp) 11 = Q^r^ a' (6) w h e r e p is the fluid d e n s i t y , r is t h e l o c a l d i s t a n c e o f t h e a n n u l u s f r o m t h e r o t a t i o n a l axis w h e r e a s kfl a n d kc r e p r e s e n t t h e G o l d -s t e i n - T a c h m i n j i c o r r e c t i o n f a c t o r -s (-see C a r i t o n , 1 9 9 4 ) a t t h e p r o p e l l e r d i s k a n d i n t h e u l t i m a t e w a k e , r e s p e c t i v e l y . I n a d d i t i o n , o = Vi/VA is t h e a x i a l i n f l o w f a c t o r , y, i n d i c a t e s t h e i n d u c e d -v e l o c i t y a t t h e p r o p e l l e r d i s k a n d a' is t h e r o t a t i o n a l - i n f l o w f a c t o r (see Fig. 3 4 ) . A k i n t o t h e M T a p p r o a c h , t h r u s t a n d e f f i c i e n c y o f a Blade E l e m e n t o f l e n g t h dr i n s p a n w i s e d i r e c t i o n m a y be e x p r e s s e d t h r o u g h t h e Blade E l e m e n t T h e o r y as (see T o d d and C o m s t o c k , 1 9 6 7 )

(12)

S. Leone et aL / Ocean Engineering 64 (2013) 122-134 133

F i g . 3 4 . Blade section velocity diagram.

dT dr n = pcTi/lci+afd . .

COS(0+)')

< cos y 1 - 0 ' tgcj) l + a t g ( ( ^ + y ) (7) w h e r e Z is t h e p r o p e l l e r blades n u m b e r , c is t h e l o c a l c h o r d o f b l a d e s e c t i o n a t r a d i u s r, cl is t h e local l i f t - c o e f f i c i e n t w h i l s t tgy = cd/cl, b e i n g cd t h e s e c t i o n a l d r a g c o e f f i c i e n t ; f o r each b l a d e s e c t i o n , s u c h c o e f f i c i e n t s are a s s u m e d t o be k n o w n f r o m t a b u l a r data. F u r t h e r m o r e , f r o m t h e b l a d e v e l o c i t y d i a g r a m s h o w n i n Fig. 3 4 , 0 a n d i n d i c a t e t h e g e o m e t r i c a l p i t c h a n d l o c a l i n f l o w angles r e s p e c t i v e l y , VR = V^O + a ) / s i n (f> is t h e v e l o c i t y o f t h e fiuid r e l a t i v e t o t h e b l a d e section, a = ( ö - ( / ) ) is t h e l o c a l angle o f a t t a c k ( A O A ) w h e r e a s tg/( = V ^ / f l r .

The set o f non-linear equations given b y Eqs. ( 6 ) and ( 7 ) m a y be suitably rearranged b y equating the expressions o f t h r u s t a n d e f f i c i e n c y f r o m M T and BET approaches respectively, and observing t h a t tgcf) = tgP(^'l+d)/{1~a'y. this procedure yields a n o n - l i n e a r equation w r i t t e n i n t e r m s o f the u n l m o w n i n f l o w angle cj). For t h e s o l u t i o n seeldng, the choice o f the starting-value cpg is a crucial p o i n t ; a reasonable initial-guess m a y be assumed f r o m t h e linearised BEMT approach, v a l i d f o r s m a l l values o f cp (see Leishman, 2006), y i e l d i n g

fack VA\\CTCI, r (ud,. \

(8)

w h e r e ?. = (VA + Vi)/QR s (PQT/R, a indicates the r a t i o b e t w e e n blade and disk areas, whereas R and c/^ are blade radius and sectional l i f t slope coefficient, respectively. Once the converged s o l u t i o n f o r the i n f l o w angle cj) is achieved, the operative AOA at each blade section is k n o w n and, i n turns, the angle y is f o u n d ; the axial i n f l o w factor m a y be t h e n d e t e r m i n e d b y

(tg<l>-tgp)

[tg(itg(l>tgi4>+y)+tgp] (9)

whereas t h e f u r t h e r i n t e g r a t i o n o f Eq. (7) radially across t h e blade yields t h e t o t a l t h r u s t delivered by the propeller. Similarly, spanwise i n t e g r a t i o n o f the incremental torque

dr

l p c Z r V ^ ( l + a ) ^ d - i i B M ± Z L

2 sin (p cos y

(10)

provides p r o p e l l e r t o r q u e (see T o d d and Comstock, 1967). By assum-i n g t h a t e l e m e n t a l t h r u s t and t o r q u e act at the centre o f pressure cp o f blade sections (see Fig. 35), spindle m o m e n t due t o t h e h y d r o d y n a m i c

F i g . 3 5 . Forces acting on a blade section: contribution to spindle moment.

P r o j e c t e d A r e a

F i g . 3 6 . Propeller geometrical features and local force due to elemental torque.

loads is g i v e n by

m f , = / (dTyp-dF^Xp) dr (11)

w h e r e Vboss indicates the radius o f the propeller hub, (Xpj/p,Zp) d e f i n e the location o f the centre o f pressure o f the elemental section w i t h respect to t h e blade f r a m e o f reference, dpQ = (dQ,/r)cos £, comes f r o m the elemental torque, w i t h £, representing the angle, measured o n the projected plane, b e t w e e n t h e Z/, axis a n d vector ( c p - 0 ) (see Fig. 36). Distances Xp and yp d e p e n d o n blade o p e r a t i n g c o n d i t i o n s ; as s h o w n i n T o d d and Comstock (1967), t h e y m a y be obtained b y yp = r sin ^

Xp = -eh + ng6-^ngO

( 1 2 )

w h e r e e;, a n d è represent the blade offset f r o m the p i v o t axis (see Fig. 2 ) a n d t h e rake angle, respectively, w h i l s t t h e ^ angle m a y be c o m p u t e d by

[r2-h(rtgO)2]V2 (13)

being dhd a n d d^p the distance o f the blade generator line f r o m the leading edge o f the section and the l o c a t i o n o f t h e centre o f pressure f r o m the leading edge, respectively (see Fig. 3 7 ) . Neglecting

(13)

134 S. Leone et aL / Ocean Engineering 64 (2013) 122-134

v e l o c i t y cp can be d e t e r m i n e d f r o m t h e Laplace e q u a t i o n t h r o u g h t h e f o l l o w i n g b o u n d a r y i n t e g r a l r e p r e s e n t a t i o n :

E x p a n d e d A r e a

Fig. 3 7 . Propeller geometrical features: expanded area.

the drag c o n t r i b u t i o n , d^p m a y be evaluated by

OTla

d cos « + 0.25C (14)

once t h e local l i f t coefficient and the p i t c h i n g m o m e n t c o e f f i c i e n t w i t h respect to the aerodynamic centre {cmac) are l<nown. The p i t c h i n g m o m e n t c o e f f i c i e n t m a y be corrected f o r the effects i n d u c e d by t h e v a r i a t i o n o f the i n f l o w factors a and a' across the blade w i d t h t h a t cause a curved f l o w experienced by propeller sections; this f l o w cui-vature is equivalent to a change i n the e f f e c t i v e camber o f h y d r o f o i l s , b o t h as a m o u n t o f camber and its c h o r d w i s e d i s t r i b u t i o n . F o l l o w i n g the scheme proposed b y L u d w i e g a n d Ginzel (see Miles et al., 1992), one obtains

cm'^^ = cmac+l.i{k]k2-1)d (15) w h e r e /x is a n e m p i r i c a l parameter d e p e n d i n g o n the m e a n - l i n e shape

o f the h y d r o f o i l and operating conditions, k^ a n d k j are the camber c o r r e c t i o n coefficients (see Eckhardt and M o r g a n , 1955) accounting for c u r v a t u r e effects whereas cl is the l i f t coefficient.

A.2. Boundary Element Method

S t a r r i n g f r o m mass a n d m o m e n t u m c o n s e r v a t i o n e q u a t i o n s f o r a n i n c o m p r e s s i b l e f l o w , a g e n e r a l f o r m u l a t i o n t o d e s c r i b e a t h r e e -d i m e n s i o n a l b o -d y a r b i t r a r i l y m o v i n g w i t h r e s p e c t t o a f l u i -d is d e r i v e d . D e t a i l s o f t h e p r e s e n t f o r m u l a t i o n c a n be f o u n d i n Greco e t a l . ( 2 0 0 4 ) . A s s u m i n g t h a t t h e i n c o m i n g f l o w is i n v i s c i d a n d t h e v e l o c i t y p e r t u r b a t i o n i n d u c e d b y t h e b o d y is i r r o t a r i o n a l e x c e p t f o r a t h i n l a y e r o f v o r t i c i t y shed a t p r o p e l l e r b l a d e s t r a i l i n g edges, i t is p o s s i b l e t o i n t r o d u c e a scalar p o t e n t i a l cp a n d r e p r e s e n t t h e p e r t u r b a d o n v e l o c i t y i n g r a d i e n t f o r m as v = V t p . Mass c o n s e r v a -t i o n e q u a -t i o n y i e l d s -t h a -t -t h e v e l o c i -t y p o -t e n -t i a l is g o v e r n e d b y -t h e Laplace e q u a d o n V^<p = 0, w h e r e a s t h e m o m e n t u m e q u a t i o n m a y be m a n i p u l a t e d t o o b t a i n B e r n o u l l i ' s e q u a t i o n dtp 1 . P 1 (16) I n Eq. ( 1 6 ) , w r i t t e n i n t h e r o t a t i n g f r a m e o f r e f e r e n c e (0,Xj,,y)„Zb), V, d e n o t e s t h e v e l o c i t y o f f l o w i n c o m i n g t o t h e p r o p e l l e r disk, q = V(p+Vi t h e t o t a l v e l o c i t y a n d gZo is t h e h y d r o s t a t i c h e a d . A classical d e r i v a t i o n (see M o r i n o , 1 9 9 3 ) y i e l d s t h a t the p e r t u r b a t i o n

(17)

w h e r e Sp denotes t h e b o d y surface {i.e.,, the p r o p e l l e r ) , Sw is t h e t r a i l i n g v o r d c a l surface ( t h e w a k e ) , a n d n is the u n i t n o r m a l t o these surfaces. The s y m b o l A denotes d i s c o n t i n u i t y o f q) across t h e w a k e surface, a n d G, 8C/8n are r e s p e c t i v e l y u n i t source a n d d i p o l e s i n g u l a r i d e s i n t h e u n b o u n d e d t h r e e - d i m e n s i o n a l space. Eq. ( 1 7 ) is used t o e v a l u a t e cp a n d h e n c e t h e v e l o c i t y f i e l d o n t h e b o d y surface a n d i n t h e f l u i d d o m a i n once q u a n t i t y 8(p/8n is d e t e r m i n e d b y i m p o s i n g the i m p e r m e a b i l i t y c o n d i t i o n o n Sp a n d A<p is d e t e r -m i n e d b y u s i n g a K u t t a - t y p e c o n d i t i o n . Once pressure o n t h e s o l i d surface is d e t e r m i n e d by Eq. ( 1 6 ) , a n d d e n o t i n g by T t h e t a n g e n t i a l (viscous) stress o n Sp, h y d r o d y n a m i c forces f a n d m o m e n t s m o a c t i n g o n t h e p r o p e l l e r are c o m p u t e d as f = <p ( - p n - h T t ) d S m o = 9 ( - p r X n - j - t r x t) dS ./Sp (18) w h e r e r = x - X o , t is t h e u n i t t a n g e n t t o Sp a l i g n e d t o local s t r e a m l i n e s . P r o p e l l e r t h r u s t T a n d t o r q u e Q easily f o l l o w b y t a k i n g a x i a l c o m p o n e n t s o f f a n d mo respectively. N e x t , s p i n d l e m o m e n t mff is e v a l u a t e d as t h e c o m p o n e n t o f m o a l o n g b l a d e s p i n d l e axis i n t e g r a t e d o n a single blade. R e c a l l i n g B E M is b a s e d o n i n v i s c i d f l o w a s s u m p t i o n s , a d d i -t i o n a l m o d e l l i n g is r e q u i r e d -t o p r e d i c -t -t h e -t a n g e n -t i a l s-tress x a n d h e n c e t o e s t i m a t e v i s c o s i t y c o n t r i b u t i o n s t o p r o p e l l e r loads i n Eq. ( 1 8 ) ; i n t h e p r e s e n t w o r k , a s e m i - e m p i r i c a l a p p r o a c h is u s e d i n w h i c h l o c a l d i s t r i b u t i o n o f x o n b l a d e surface is d e r i v e d f r o m classical l a w s f o r a t t a c h e d l a m i n a r a n d t u r b u l e n t b o u n d a r y l a y e r o n a f l a t p l a t e (see C a r i t o n , 1 9 9 4 ) . I f l o c a l e f f e c t i v e a n g l e o f a t t a c k is h i g h e r t h a n a p r e s c r i b e d t h r e s h o l d , v i s c o s i t y e f f e c t s i n Eq. ( 1 8 ) have t o be f u r t h e r c o r r e c t e d t o a p p r o x i m a t e l y a c c o u n t f o r t h e a d d i d o n a l d r a g i n d u c e d b y b o u n d a r y l a y e r f l o w s e p a r a t i o n . R e f e r e n c e s

Abbott, LH., von Doenhoff, A.E., 1958. Theory of Wing Sections. Dover Publications, Inc., New York.

Benini, E., 2004. Significance of Blade Element Theory in performance prediction of marine propellers. Ocean Eng. 31, 957-974.

Boswell, R., Nelka, J., Kader, R., 1975. Experimental Spindle Torque and Open-Water Performance of Two Skewed Controllable-Pitch Propellers. Report 4753. Carlton, J.S., 1994. Marine Propellers and Propulsion. Butterworth-Heinemann Ltd. Castagneto, E., Maioli, P., 1968. Studio Teorico e Sperimentale sulla Dinamica dei Profili Portanti per Eliche Navali. Tecnica Italiana—Rivista di Ingegneria (in Italian) XXXIil.

Eckhardt, M., Morgan, W., 1955. A propeller design method. Trans. Soc. Naval Archit. Marine Eng, Am. (SNAME) 63, 325-374.

Greco, L , Salvatore, P., Di Felice, F., 2004. Validation of a quasi-potential flow model for the analysis of marine propellers wake. In: Proceedings of the 25th ONR Symposium on Naval Hydrodynamics, St. John's. Newfoundland (Canada), office of Naval Research.

Leishman. J.C,, 2006. Principles of Helicopter Aerodynamics. Cambridge University Press.

Miles, A., Wellicome, J., Molland, A., 1992. The technical and commercial devel-opment of self-pitching propellers. In: Meeting of the Royal Institute for Naval Architecture (RINA). Southampton (UK), RINA, pp. 133-146.

Morino, L., 1993. boundary integral equations in aerodynamics. Appl. Mech. Rev. 46, 445-466.

Todd, F H . , Comstock, J.P., 1967. Pnnciples of Naval Architecture. The Society of Naval Architects and Marine Engineers, SNAME.

Cytaty

Powiązane dokumenty

Select the area of the panel (by clicking) and the third icon from the left in the Options of FE Mesh Generation toolbar.. In the window shown

[r]

Le réalisme de la connaissance, le pluralism e de l’étre, la conception de l’essence comme subsistence, l’identification de l’acte d ’etre, l’apprehension

Connected arrays of slots loaded with artificial dielectric have a number of advantages to realized wideband wide- scanning array apertures.. Their are low-profile, simple to

sowieckiej dywizji piechoty gwardii Armii Czerwonej przewidziana była prokuratura wojskowa, sąd polowy oraz oddział informacji, który stał się zalążkiem kontrwywiadu Wojska

For all the targets, except the one in the focal zone of the transducer (Figure 5C), the proposed method outperforms the other methods mainly because the lower noise level results in

Ponieważ na gruncie postanowień Karty NZ i treści Deklaracji zasad prawa międzynarodowego (1970) zakaz interwencji w sprawy wewnętrzne obejmuje zarówno przypadki

[r]