• Nie Znaleziono Wyników

master 2021/6/7 13:34 page 1 #1

N/A
N/A
Protected

Academic year: 2022

Share "master 2021/6/7 13:34 page 1 #1"

Copied!
40
0
0

Pełen tekst

(1)

z x y

My

Mx σzdA y x

G y

My

Mx

x

z x y

τzxdA y x

G y

τyzdA

xC

yC

C Mt

Mt

Qy

Qx

Qy

Qx N

N

C G

N = Z

A

σzzdA Qy =

Z

A

τyzdA Qx =

Z

A

τzxdA

Mx≡ M(G,x) = Z

A

σzzydA My ≡ M(G,y)=−

Z

A

σzzxdA Mt≡ M(C,z)=

Z

A

yz(x− xC)− τzx(y− yC)] dA

(2)

a b

F

R

F

R y x C G,C

τsz

C G

x y Qx

c

F

R Qx

N y

x

G C

G l Mt

My Mx

(a) (b)

(c) (d)

a b ˆ

v

A

B D

l z

F

F R

R C

G l F a

F l Rb

(e) a b

Qy z

(3)

k1 k2

P P0

u0=−u

u0k1= uk1

u0k2= uk2

θ0 = θ

θ0k2=−θk2

θ0k1=−θk1

P

P0 u0= u

u0k1=−uk1

u0k2=−uk2

θ0 =−θ

θk20 = θk2 θk10 = θk1

k1 k2

F0 =−F

Fk10 = Fk1

Fk20 = Fk2

C0 = C

Ck20 =−Ck2

Ck10 =−Ck1

F0 = F

Fk10 =−Fk1

Fk20 =−Fk2

C0 =−C

Ck20 = Ck2 Ck10 = Ck1













Figure 1: An overview of symmetrical and skew-symmetrical (general- ized) loading and displacements.

(4)

G,x z y

ρx

∆z

v(z) θ

θ + ∆θ

z ∆θ y

∆z

∆θ

ρx+ y cy∆z

(a) (b) (c)

G,y z

x

ρy

∆z

u(z)

φ

φ + ∆φ

∆φ

z x

∆z ρy− x

bx∆z

(d) (e) (f)

∆φ

z = a + bx + cy (1)

dθ dz = 1

ρx

, θ =−dv

dz, d2v

dz2 =− 1 ρx

(2) dφ

dz = 1 ρy

, φ = +du

dz, d2u dz2 = + 1

ρy

(3)

σz = Ezz = Ez



¯

− 1 ρy

x + 1 ρx

y



(4)

N = ZZ

A

EzzdA = EA¯ (5) Mx =

ZZ

A

EzzydA = EJxx

1

ρx − EJxy 1

ρy (6)

My =− ZZ

A

EzzxdA =−EJxy

1 ρx

+ EJyy

1 ρy

(7)

(5)

z x y

My

Mx

σzdA y x

G

∆z s y

My

Mx

x

EA = ZZ

A

Ez(x, y) dA (8)

EJxx = ZZ

A

Ez(x, y)yy dA (9)

EJxy = ZZ

A

Ez(x, y)yx dA (10) EJyy =

ZZ

A

Ez(x, y)xx dA (11)

¯

 = N

EA. (12)

1 ρx

= MxEJyy+ MyEJxy EJxxEJyy− EJ2xy

(13) 1

ρy = MxEJxy + MyEJxx

EJxxEJyy− EJ2xy

(14) 1

ρeq = s 1

ρ2x + 1

ρ2y (15)

σz= Ezz (16)

= αM + βM + γN (17)

(6)

α x, y, Ez, EJ∗∗

= Ez(x, y) −EJxyx + EJyyy EJxxEJyy− EJ2xy

(18)

β x, y, Ez, EJ∗∗

= Ez(x, y)−EJxxx + EJxyy EJxxEJyy− EJ2xy

(19) γ x, y, Ez, EA

= Ez(x, y) 1

EA. (20)

(xN, yN)≡ ¯eρ2xρy

ρ2x+ ρ2y,− ¯eρxρ2y ρ2x+ ρ2y

!

;

ˆ nk =q

ρ2x+ ρ2y

 1 ρx, 1

ρy

 ,

ˆ n=q

ρ2x+ ρ2y



−1 ρy, 1

ρx

 ,

λ

Mx

My



=

"1

ρx

1 ρy

#

= 1

EJxxEJyy− EJ2xy

EJyy EJxy

EJxy EJxx



| {z }

[EJ ]

Mx

My



(21)

(7)

z x

y

σz|P+ ∂σ∂zz Pdz dxdy σz|Pdxdy

P

τzx|P + ∂τ∂xzx Pdx dydz

τzx|Pdydz

τyz|P+ ∂τ∂yyz

Pdy dzdx τyz|Pdzdx

P ≡ (x, y, z) dP ≡ (dx, dy, dz) qzdxdydz

P + dP

Sy = dMx

dz , Sx=−dMy

dz , (22)

z

dz = α x, y, Ez, EJ∗∗

Sy− β x, y, Ez, EJ∗∗

Sx (23)

zx

dx +dτyz

dy +dσz

dz + qz = 0 (24)

¯ τzit =

Z

A

z

dz dA, (25)

¯ τzi= 1

t Z

t

τzidr (26)

¯ τzit =

Z

A

ySy Jxx

+xSx Jyy



dA = y¯A Jxx

Sy+x¯A Jyy

Sx, (27)

¯

τzit = qzi= Z s

0

Z t/2

−t/2

z

dz drdς ≈ Z s

0

z dz

r=0tdς. (28)

¯

τzi(s)t(s) = q(s) = Z s

a

z

dz tdς + ¯τzi(a)t(a)

| {z }

qA

. (29)

τ (s) = S1

f (s) + S2

f (s) + τ f (s) + τ f (s) (30)

(8)

G

z

D dz

t A

¯ τzi

Mx

My

Mx+ dMx

My+ dMy

Sx

Sx

Sy Sy

z z= 0

¯

τzi τ¯zi

t A t A

A

B

(a) (b) (c) (d)

S1u S2u τAu τBu

≡ [1 stress unit ] f;S1(s) f;S2(s) f;A(s) f;B(s)

(9)

∆U = Z

s

τ2 2Gsz

t∆zds (31)

∂∆U

∂ ¯τi

= ¯δit∆z (32)

(10)

Kt= 4A2 H 1

tdl (33)

τmax= Mt

2tminA (34)

.

KT ≈ 1 3

Z l 0

t3(s)ds (35)

KT ≈ 1 3

X

i

lit3i (36)

τmax= Mttmax KT

(37)

(11)

qi = ∂U

∂Qi

dU dl = 1

2







 N Mx

My

Qx Qy

Mt







>







a1,1 g1,2 g1,3 i1,4 i1,5 i1,6 0 b2,2 e2,3 i2,4 i2,5 i2,6

0 0 b3,3 i3,4 i3,5 i3,6

0 0 0 c4,4 f4,5 h4,6 0 0 0 0 c5,5 h5,6

0 0 0 0 0 d6,6













 N Mx

My

Qx Qy

Mt







, (38)

a1,1= 1

EA {b2,2, b3,3, e2,3} = {Jyy, Jxx, 2Jxy} E JxxJyy− Jxy2

 d6,6= 1

GKt {c4,4, c5,5, f4,5} ={χx, χy, χxy} , GA

(12)

uP = u + z (1 + ˇz) cos θ

p1− sin2φ sin2θsin φ vP = v− z (1 + ˇz) cos φ

p1− sin2φ sin2θsin θ

wP = w + z (1 + ˇz) cos φ cos θ

p1− sin2φ sin2θ − 1

! ,

ˇ

z(z) = 1 z

Z z 0

z

= 1 z

Z z

0 − ν

1− ν (x+ y) dς,

uP = u + zφ (39)

vP = v− zθ (40)

wP = w. (41)

∂w

∂x = ¯γzx− φ (42)

∂w

∂y = ¯γyz+ θ (43)

x= ∂uP

∂x = ∂u

∂x + z∂φ

∂x (44)

y = ∂vP

∂y = ∂v

∂y − z∂θ

∂y (45)

γxy = ∂uP

∂y + ∂vP

∂x (46)

=

∂u

∂y +∂v

∂x

 + z

 +∂φ

∂y − ∂θ

∂x



(47)

e =



∂u

∂x∂v

∂y

∂u

∂y +∂v∂x

 =

 ex

ey gxy

 ≡ Q (48)

(13)

κ =



+∂φ∂x

∂θ∂y +∂φ∂y∂θ∂x

 =

 κx

κy

κxy

 (49)

P≡  = e + z κ . (50)

 σx

σy τxy

 = σ = D  = D e + z D κ , (51)

D = E

1− ν2

1 ν 0 ν 1 0 0 0 1−ν2

 , (52)

z =− ν

1− ν (x+ y) . (53)

q =

 qx

qy

qxy

 =Z

h

σ dz

= Z

h

D dz

| {z }

a

e + Z

h

D zdz

| {z }

b

κ (54)

qz =

 qxz qyz



qxz = Z

h

τzxdz qyz= Z

h

τyzdz. (55)

m =

 mx my mxy

 =Z

h

σ zdz

= Z

h

D zdz

| {z }

b ≡ bT

e + Z

h

D z2dz

| {z }

c

κ . (56)

 q m



=

 a b

bT c

  e κ



(57)

(14)

υ= 1 2

 q m

> e κ



(58)

= 1 2

 e κ

>

a b

bT c

  e κ



. (59)

a = h D b = 0 c = h3

12D , γz =

 γ¯yz

¯ γzx



qz =

 qxz

qyz



υ= 1

2q>z γz = 1

2qxzγ¯xz+1

2qyzγ¯yz. (60) υ= 1

>z χ Z

h

G dz

| {z }

Γ

γz (61)

qz = Γ γz. (62)

G = E

2 (1 + ν)

 1 0 0 1

 ,

τzx(z) =− Z z

h

2+o

∂σx

∂x +∂τxy

∂y dz (63)

τyz(z) =− Z z

h2+o

∂τxy

∂x +∂σy

∂y dz. (64)

D123 =

E1

1−ν12ν21

ν21E1

1−ν12ν21 0

ν12E2

1−ν12ν21

E2

1−ν12ν21 0

0 0 G12

 (65)

 σ1

σ2

τ12

 = T1

 σx

σy

τxy

 1

2

γ12

 = T2

 x

y

γxy

 (66)

(15)

T1 =

 m2 n2 2mn n2 m2 −2mn

−mn mn m2− n2

 (67)

T2 =

 m2 n2 mn

n2 m2 −mn

−2mn 2mn m2− n2

 (68)

m = cos(α) n = sin(α) (69)

T−11 (+α) = T1(−α) T−12 (+α) = T2(−α) (70)

σ = D  D ≡ Dxyz= T−11 D123T2 (71)

G =

n2Gz1+ m2G2z mnGz1− mnG2z

mnGz1− mnG2z m2Gz1+ n2G2z

 .

kx= 12F l

Ebh3 (72)

mx= mx my= 0 κx= kx κy =−νkx,

mx= mx my= νmx κx= 1− ν2

kx κy= 0.

g(y)≥ 0 (73)

f (y)≥ 0 (74)

g(y)· f(y) = 0, (75)

(16)

f (ξ, η)def= X

i

Ni(ξ, η)fi (76)

Ni(ξ, η)def= 1

4(1± ξ) (1 ± η) , (77)

∂f

∂ξ =

f2− f1

2



| {z }

[∆f /∆ξ]12

1− η 2



| {z }

N1+N2

+

f3− f4

2



| {z }

[∆f /∆ξ]43

1 + η 2



| {z }

N4+N3

= aη + b (78)

∂f

∂η =

f4− f1 2

 1− ξ 2

 +

f3− f2 2

 1 + ξ 2



= cξ + d. (79)

f (ξ, η) =

N1(ξ, η) · · · Ni(ξ, η) · · · Nn(ξ, η)







 f1

... fi

... fn







= N (ξ, η) f , (80)

x ξ

= m ξ

= X4 i=1

Ni ξ

xi, (81)

m ξ

=

 x(ξ, η) y(ξ, η)



x(ξ, η) = X4

i=1

Ni(ξ, η)xi y(ξ, η) = X4 i=1

Ni(ξ, η)yi.

f (ξ, η)def= X

i

Ni(ξ, η)fi (82)

"∂f

∂ξ

∂f

∂η

#

=

"∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

#

| {z }

J>(ξ,η; xi)

"∂f

∂f∂x

∂y

#

(83)

(17)

"∂f

∂ξ∂f

∂η

#

=X

i

"∂N

i

∂N∂ξi

∂η

#

fi. (84)

J>(ξ, η) =

"∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

#

(85)

=X

i

"∂N

i

∂ξ 0

∂Ni

∂η 0

# xi+

"

0 ∂N∂ξi 0 ∂N∂ηi

# yi

!

(86)

"∂f

∂x∂f

∂y

#

= J>−1

"

. . . ∂N∂ξi . . . . . . ∂N∂ηi . . .

#



 ... fi

...



 (87)

= J>−1

"∂ N

∂ξ

∂ N

∂η

#

| {z }

L (ξ,η; xi), or just L (ξ,η)

f (88)

Z 1

−1

f (ξ)dξ≈ Xn

i=1

f (ξi)wi; (89)

p(ξ)def= amξm+ am−1ξm−1+ . . . + a1ξ + a0 Z 1

−1

p(ξ)dξ = Xm j=0

(−1)j + 1 j + 1 aj

r (aj, (ξi, wi))def= Xn

i=1

p(ξi)wi− Z 1

−1

p(ξ)dξ (90)

∂r (aj, (ξi, wi))

∂aj = 0, j = 0 . . . m (91) Z b

a

g(x)dx = Z 1

−1

g (m(ξ))dm dξ dξ≈

Xn i=1

g (m(ξi)) dm dξ

ξ=ξi

wi. (92)

m(x) =

1− ξ 2



| {z } a +

1 + ξ 2



| {z } b.

(18)

dm

dξ = dN1

dξ a + dN2

dξ b = b− a 2 Z b

a

g(x)dx≈ b− a 2

Xn i=1

g

b + a

2 +b− a 2 ξi



wi. (93) Z 1

−1

Z 1

−1

f (ξ, η) dξdη≈ Xp

i=1

Xq j=1

f (ξi, ηj) wiwj (94) Z 1

−1

Z 1

−1

f (ξ, η) dξdη≈ Xpq l=1

f ξl

wl (95)

ξl= (ξi, ηj) , wl = wiwj, l = 1 . . . pq (96)

dAxy = 1 2!

1 x (ξP , ηP ) y (ξP , ηP ) 1 x (ξP + dξ, ηP ) y (ξP + dξ, ηP ) 1 x (ξP + dξ, ηP + dη) y (ξP + dξ, ηP + dη) +

+ 1 2!

1 x (ξP + dξ, ηP + dη) y (ξP + dξ, ηP + dη) 1 x (ξP , ηP + dη) y (ξP , ηP + dη) 1 x (ξP , ηP ) y (ξP , ηP )

. (97)

A = 1 2!

1 x1 y1 1 x2 y2

1 x3 y3

, H = 1 n!

1 x1

1 x2 ... ... 1 xn+1

(98)

dAxy ≈ 1 2!

1 x y

1 x + xdξ y + ydξ 1 x + xdξ + xdη y + ydξ + y

+

+ 1 2!

1 x + xdξ + xdη y + ydξ + ydη 1 x + xdη y + y

1 x y

dAxy = 1 2

1 x y

0 x y

0 x y

dξdη + 1 2

0 x y 0 x y

1 x y

dξdη

(19)

dAxy = 1 2

x y

x y

dξdη + 1 2

x y

x y dξdη

dAxy =

x y

x y

| {z }

|JTPP; x , y )|

dAξη (99)

ZZ

Axy

g(x, y)dAxy = Z 1

−1

Z 1

−1

g (x (ξ, η) , y (ξ, η))|J(ξ, η)| dξdη, (100) ZZ

Axy

g( x )dAxy ≈ Xpq

l=1

g x ξl J(ξl)

wl (101)

(20)

X(ξ, η) Y (ξ, η) Z(ξ, η)

 = Xn i=1

Ni(ξ, η)

 Xi

Yi Zi

 ,

 x(ξ, η) y(ξ, η) z(ξ, η)

 = Xn

i=1

Ni(ξ, η)

 xi yi zi

(102)

 u(ξ, η) v(ξ, η) w(ξ, η)

 = X4

i=1

Ni(ξ, η)

 ui vi wi

 (103)

 θ(ξ, η) φ(ξ, η) ψ(ξ, η)

 = X4

i=1

Ni(ξ, η)

 θi φi ψi

 (104)

u =



 ... ui

...



 v =



 ... vi

...



 w =



 ... wi

...



θ =



 ... θi

...



 φ =



 ... φi

...



 ψ =



 ... ψi

...



u(ξ, η) = N (ξ, η) u v(ξ, η) = N (ξ, η) v d>=

u> v> w> θ> φ> ψ>

(105)

∂u

∂x∂u

∂y



= J0−1

"

. . . ∂N∂ξi . . . . . . ∂N∂ηi . . .

#

| {z }

L (ξ,η; xi) or just L (ξ,η)



 ... ui

...



 (106)





∂u

∂x∂u

∂y

∂v

∂x∂v

∂y



=

L (ξ, η) 0 0 L (ξ, η)



| {z }

Q (ξ,η)

u v



(107)

(21)





∂θ

∂x∂θ

∂φ∂y

∂φ∂x

∂y



= Q (ξ, η)

θ φ



(108)

 ex ey gxy

 =

+1 0 0 0

0 0 0 +1

0 +1 +1 0

| {z }

H0





∂u

∂x∂u

∂y

∂v

∂x∂v

∂y



= H0Q (ξ, η)

u v

 (109)

 κx κy

κxy

 =

0 0 +1 0

0 −1 0 0

−1 0 0 +1

| {z }

H00





∂θ

∂x∂θ

∂y

∂φ

∂x∂φ

∂y



= H00Q (ξ, η)

θ φ

 (110)

e =h

H0Q (ξ, η) 0 0 0 0i

| {z }

Be(ξ,η)

d (111)

κ =h

0 0 0 H00Q (ξ, η) 0i

| {z }

Bκ(ξ,η)

d . (112)

 (ξ, η, z) = Be(ξ, η) + z Bκ(ξ, η)

d ; (113)

¯γzx

¯ γyz



= L (ξ, η) w +

 0 + N (ξ, η)

− N (ξ, η) 0

 θ φ



, (114)

γ¯zx

¯ γyz



=



0 0 L (ξ, η) 0

− N (ξ, η)

N (ξ, η)

0 0



| {z }

Bγ(ξ,η)

d (115)

d>=

u> v> w> θ> φ> ψ>

(116)

G>=

U> V> W> Θ> Φ> Ψ>

(117)

(22)

δ Υe= δ d>G . (118) σ = D (z) Be(ξ, η) + Bκ(ξ, η)z

d (119)

δ  = Be(ξ, η) + Bκ(ξ, η)z

δ d (120)

q = a Be(ξ, η) + b Bκ(ξ, η)

d (121)

m = b>Be(ξ, η) + c Bκ(ξ, η)

d , (122)

δ e = Be(ξ, η) δ d (123) δ κ = Bκ(ξ, η) δ d , (124)

δ Υi = ZZ

A

Z

h

δ >σ dzdA

= ZZ

A

Z

h

Be+ Bκz δ d>

D Be+ Bκz

d dzdA

= δ d>

ZZ

A

Z

h

B>e + B>κz

D Be+ Bκz dzdA

 d

= δ d>Kd , (125)

δ Υi = ZZ

A

δ e>q + δ κ>m dA

= δ d>

ZZ

A

B>e a Be+ b Bκ

+ B>κ b Be+ c Bκ

dA

 d

= δ d>Kσd , (126)

a , b , c

= Z

h

D

1, z, z2 dz, ZZZ

g(ξ, η, x, y, z)dΩ = (127)

= Z +1

−1

Z +1

−1

Z +h2+o

h2+o

g(ξ, η, x(ξ, η), y(ξ, η), z)dz

J (ξ, η) dξdη,

(23)

δ Υi = ZZ

A

δ γ>z qzdA

= δ d>

 h

ZZ

A

B>γΓ BγdA

 d

= δ d>Kd . (128)

δ Υi= δ Υi + δ Υi

= δ d>

K+ K d

= δ d>K d . (129)

δ d>G = δ Υe= δ Υi= δ d>K d , ∀ δ d , (130)

G = K d ; (131)

(24)

α 2

α 2

y< 0

y> 0

α 2 α 2

α 2

-a +a

-b +b

x y

x= −αy2a

y= z= ναy2a γxy = 0 exact solution, pure in-plane bending

x= −αy2a

y= 0, z=1−νν αy2a γxy = −αx2a

four noded, isop. element, in-plane trapezoidal mode

γxy= α2 γxy= 0 γxy= −α2 Cb

Ciso4

Ciso4

Cb = 1+

1−ν 2 (ab)2

1−ν2

≈ 1.48 if ν = 0.3,ab = 1

α 2

u =

1 + 1−νν22

2y2

8a2 +8a22x2

u = α28aEy22

undeformed domain a)

b)

c)

d)

residual (spurious) shear deformation;

overall error assessment:

(25)

γz ˆ41 z

z

˜ γz ˆ12 1

1

˜ w4

w1

w1

˜ w2

α α

β

β

˜¯ γyz,n1

˜¯ γzx,n1 x

y

n1 n2

n3 n4

12ˆ 41ˆ

x y (a)

(b) β

β α

α

(26)

S (ξ, η, z) =

. . . uˆi(ξ, η, z) . . . . . . vˆi(ξ, η, z) . . . . . . wˆi(ξ, η, z) . . .

 (132)

u (ξ, η, z) = S (ξ, η, z) d . (133)

˙u (ξ, η, z) = S (ξ, η, z) ˙d (134) Ekin= 1

2 ZZZ

˙u> ˙u ρdΩ (135) Ekin= 1

2 ZZZ

hS ˙di>h S ˙di

ρdΩ, (136)

Ekin = 1

2 ˙d>ZZZ

S>S ρdΩ



˙d = 1

2 ˙d>M ˙d . (137) M =

ZZZ

S>S ρdΩ, (138)

˙d>G = dEkin dt =d

dt

1

2 ˙d>M ˙d



=1 2

d¨>M ˙d + ˙d>M ¨d

= ˙d>M ¨d .

G = M ¨d (139)

δ u (ξ, η, z) = S (ξ, η, z)δ d , (140)

δ d>F = ZZZ

(δ u )> p dΩ

= ZZZ

S δ d>

p dΩ

= δ d>

ZZZ

S>p dΩ,

F = ZZZ

S>p dΩ (141)

(27)

ˆı ˆ

ˆ ˆı

ˆk

g1

g3 g2

g5

g4

g6 g9

g8

g7

θe1n1ˆıe1

we1n2kˆe1

e1 e3

e2 e4

we1n2ˆke1

θe1n1ˆıe1

= ug2ˆıg2+ vg2ˆg2+ wg2kˆg2

= θg1ˆıg1+ ϕg1ˆg1+ ψg1kˆg1

kˆ ˆıg

kˆg∗

ˆ

g∗

ˆ ˆı ˆk

ˆı

ˆ

ˆk

Gej = Kejdej (142)

dgl =







 ugl vgl wgl

θgl ϕgl ψgl







. (143)

d>g =

d>g1 d>g2 . . . d>gl . . . d>gn

(144) F>g =

F>g1 F>g2 . . . F>gl . . . F>gn

; (145)

R>g =

R>g1 R>g2 . . . R>gl . . . R>gn

(146)

we1n2 =hˆke1, ˆıg2iug2+hˆke1, ˆg2ivg2+hˆke1, ˆkg2iwg2 (147) θe1n1 =hˆıe1, ˆıg1g1+hˆıe1, ˆg1g1+hˆıe1, ˆkg1g1 (148)

Pe1

10,7=hˆke1, ˆıg2i  Pe1

13,4=hˆıe1, ˆıg1i

Pe1

10,8=hˆke1, ˆg2i  Pe1

13,5=hˆıe1, ˆg1i

P 

=hˆk , ˆk i  P 

=hˆı , ˆk i,

(28)

node X Y Z

g1 −ac 0 +a

g2 0 +as +a

g3 +ac 0 +a

g4 −ac 0 0

g5 0 +as 0

g6 +ac 0 0

g7 −ac 0 −a

g8 0 +as −a

g9 +ac 0 −a

Uni

Vni

Wni

Θni

Φni

Ψni

uni vniwniθniϕniψni

i = 1 . . . 4

n1 n2 n3 n4

e1 g1 g2 g5 g4

e2 g2 g3 g6 g5

e3 g4 g5 g8 g7

e4 g5 g6 g9 g8

(29)

ue1ni

ve1ni

we1ni

θe1ni

ϕe1ni

ψe1ni

dg2

dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue2ni

ve2ni

we2ni

θe2ni

ϕe2ni

ψe2ni

dg2

dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue3ni

ve3ni

we3ni

θe3ni

ϕe3ni

ψe3ni

dg2

dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue4ni

ve4ni

we4ni

θe4ni

ϕe4ni

ψe4ni

dg2

dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9 Pe1

Pe2

Pe3

Pe4

(30)

dg1dg2dg3dg4dg5dg6dg7dg8dg9 Fg1

Fg2 Fg3 Fg4 Fg5 Fg6 Fg7 Fg8 Fg9

symm b

(a) (b)

(c) (d)

dej = Pejdg, ∀j. (149) Gej= KejPejdg, ∀j; (150) δ d>g Gg←ej = Pejδ dg>

Gej, ∀ δ dg (151) Gg←ej = P>ejGej (152) Gg←ej = P>ejKejPejdg; (153)

Gg =X

j

Gg←ej =



 X

j

P>ejKejPej

| {z }

Kg←ej



 dg = Kgdg, (154)

(31)

bej = (imax− imin+ 1) l, (155) b = max

ej bej (156)

Fg =X

j

P>ejFej; (157)

(32)

d1

d2

d3

1:3

0.2 mm

0 d1+ 1 d2+ 0 d3= 0.2 3 d1− 0 d2+ 1 d3= 0 I:

(a) II:

(b)

d1

d2

d3

R1

R2

R3

II

I I ∩ II

(a) configuration space (b) reaction space k αI

span (αI, αII),

⊥ II, k αII

⊥ I, k αI

⊥ αI

⊥ αII k I ∩ II

I ∩ II k αII ⊥ (I ∩ II)

X

i

αjidi = α>j d = βj

α>I =

3 0 1

βI= 0 α>II=

0 1 0

βII= 0.2 X

i

αjidi= α>j d = βj, j = 1 . . . m (158)

L>d = β . (159)

L>δ d = 0 , (160)

R =− L ` , (161)

(33)

Rj =−



 ... αji

...



 `j (162)

K d = F + R . (163)

K d + L ` = F

 K L L> 0

 d

`



=

F β



, (164)

1

2d>K d − d>F + `> L>d − β

, (165)

1

2d>K d − d>F L>d − β = 0

R =− L `. dk=X

i6=k



−αji

αjk

 di+

 βj

αjk



, j = 1 . . . m (166)

r t



=

ER ET



| {z }

E

d d =

E>R E>T

| {z }

E>≡ E−1

r t

 ,

r = ERd t = ETd ,

tj =

n−mX

h=1

λjhrh+ δj, j = 1 . . . m (167)

t = λ r + δ , (168)

d =

 E>

I λ



r +

 E>

0 δ



= Λ r + ∆ ; (169)

(34)

=

di 1

rh

0

dk λkh= 0

+

0

k= a

dk λkh k

retained dof.

tied dof.

tied dof.

dk = a fix.disp. kind

general di= rh

d = Λ r +

h

i

k

k

δ d = Λ δ r = Λ1δr1+ Λ2δr2+ . . . + Λn−mδrn−m (170) h Λh, Ri = 0 h = 1 . . . n − m, (171) or, equivalently,

Λ>R = 0 . (172)

K Λ r + ∆

= F + R (173)

K Λ r = F − K ∆

+ R , (174)

Λ>K Λ

| {z }

KR

r = Λ> F − K ∆

| {z }

FR

+ Λ>R

| {z }

=0

, (175)

KRr = FR (176)

d= Λ r+ ∆ ; (177)

R = K Λ r+ ∆

− F . (178)

dej = Pejd. (179)

e = Beej(ξ, η) dej κ = Bκej(ξ, η) dej (180)

 = Beej(ξ, η) + Bκej(ξ, η)z

dej. (181) γz= Bγej(ξ, η) dej. (182)

Cytaty

Powiązane dokumenty

Sława Awedyk (Poznań) Stig Eliasson (Mainz) Jacek Fisiak (Poznań) Edmund Gussmann (Poznań) Erik Hansen (Copenhagen) Ernst Håkon Jahr (Kristiansand) Gert Kreutzer (Cologne)

Оскільки витрати на охорону здоров’я мають зовнiшнi ефекти, то для вимірюванняїхвиходів використаємо такi статистичні показники, як

Należy zwrócić szczególną uwagę, że wszystkie trzy wyżej wymienione, stwierdzone przez TI, uniwersalne źródła korupcji w służbie zdrowia związane są z

High Order Voltage and Current Harmonic Mitigation Using the Modular Multilevel Converter STATCOM.. Kontos, Epameinondas; Tsolaridis, Georgios; Teodorescu, Remus; Bauer,

Tworzenie wzorców do klasyfi kacji i weryfi kacji poklasyfi

Chapter 10, The Nature of Exposure and Input in Early Bilingualism (pp. 193–212), while focusing on bilingual children, discusses important distinc- tions relevant to researchers

- the general matrix of savings and investment attitudes of households in Poland, which takes into account the most important forms of investing savings in

[9] Watson G.N., Treatise on the Theory of Bessel Functions, Inostrannaya Literatura, Moscow, 1949; Cambridge University Press, Cambridge, 1952.. [10] Zayed A.L., Handbook of