• Nie Znaleziono Wyników

A method for accurate force calculations in potential flow

N/A
N/A
Protected

Academic year: 2021

Share "A method for accurate force calculations in potential flow"

Copied!
14
0
0

Pełen tekst

(1)

A Method for Accurate Force Calculations in Potential Flow

Heinrich Söding, Instit ut für Schiffbau Hamburg1 TECHISCIE UNIVERSIT1T

Laboratorium voor

ScheepShYdrOm0i Archief

i

Introduction

MekeiWeg 2, 2628 CD Deift

Three-dimensional potential flows are traditionally calculated using thIpt nrtnoi 01

Hess and Smith (1962) or similar methods. Foi- a few hundred or a few thousand panels on one half of the wetted ship huh surface, such methods give velocities and pressures with a relative accuracy of some 10_2 to some iU. To determine the wave resistance of merchant ships. however, we can tolerate relative inaccuracies of 1 10 at most because the wave resistance is

a very small quantity compared to stagnation pressure times wetted surface. The inaccuracies of the usual panel methods are obvious when the wave resistance coefficient C,, is plotted over speed: Instead of the correct limiting value O for small speed. one often finds a limiting value

in the range of +2 i0

to ±iO. That was one reason for .Jcnsen (1988) to introduce the

spliei-e niethod'; hut also with this method noti-zero C values for small speed show that the accuracy of this method is still tiot fully sufficient for resistance prediction.

The following remedies to this problem could be conceived:

- to subtract the resistance coefficient found for small speed from the results for arbitrary speed;

- to use Lagahli's theorem instead of pressure integrations to calculate the resistance; - to cleternune the resistance from tile far-fleld waves.

The fit-st method is at least dubious auch probably inaccurate for higher speed. It eliminates also a very useful accuracy check. Tile secoiid niethod cannot account for the actual inunersion of the ship, at least not exactly. Further, this method avoids oniy one part (maybe one half) of the inaccuracy. The third method requires a larger area of the free surface around the ship to be discretized than would be necessary if tile resistance were derived froni integrating the pressure over the hull, and it causes additional coinplexJty of the program.

Another application of resistance values in potential flow is connected to Navier-Stokes flow computations foi- tile afterbody only. To determine the viscous resistance of a total ship

from such a calculation, one has to add the resistance of the forebody to the Navier-Stokes resistance' of tile afterbody. Because flow separation effects are very small in the forebod. the forebody resistance can be estimated as a sum of two parts: (1) the viscous resistance

of the forebody determined by boundary-layer calculations or simply from the plate friction coefficient together with a foi-m factor; (2) the pressure resistance on the forebody determined, e.g., by a. panel method. (The pressure resistance of a closed body, but not of a half-body, is zero in potential flow.) Foi- this application we need the potential pressure resistance of the forebody with an accuracy of about 1O times stagnation pressure times vetted hull surface.

The method described hiere produces such accurate predictions of forces on half-bodies or full bodies in unbounded ideal fluid. Applications to wave-resistance calculations have not yet been tested. The purpose of the method is not to increase the accuracy of computed velocity and pressure at points on the hull or within tite fluid; iristea.d it aims to accurately determine the velocity and pressure avelage over surface patches. Surface patches are small parts of the body surface which together cover the body surface without overlaps or gaps; in the present miplemen tation they are curved triangles or quadrilaterals.

High accuracy of velocity and pressure at arbitrary points on tile hull would require very fine patches and extreme care in reproducing tile curvature of tite hull in the computational model. By restricting tile accuracy requirements on the practically interesting patch averages.

'Li.mmersie.th 90, D 22305 Hamburg, Germany

(2)

a simple, fast, second-order accurate method is found. For moderate patch numbers the error of hull forces is decreased to less than 10% compared to other known methods.

2

Considerations about panel methods for exterior incompressible flow

Panel methods and other potential flow calculation methods approximate the potential () at a point .ïofa flow around a smooth body by that of tite incoming how (here -Ux for uniform flow of velocity U in negative r direction) plus a linear superposition of functions pj():

= -Ux +>

ii().

(1)

The functions j(.i) satisfy the differential equation = O (which corresponds to the con-dition of incompressibility) and the boundary concon-dition in infinity V( ) = (U, 0, 0) (vanishing disturbance of the incoming flow) exactly. The accuracy is thus determined by the errors in satisfying the body boundary condition which requires that there is no flow through the body surface.

In so-called collocation methods this condition is satisfied at a number of points (collocation points) distributed on the body surface. The methods of Hess orni Smith (1962) and Jensen

(1988), but not the present method, are such collocation methods. To obtain small errors of the body boundary condition also between the collocation points, collocation methods have to use sufficiently smooth functions (Z). In Hess and Smith's method, the potential of sources distributed with constant source density over plane panels is used as p(.Z); the panels approximate the surface patches. Other methods arrange the panels not at the body surface,

but within the body ( Webster 1975), or they use curved panels with linearly varying source

density. These modifications smooth the functions for points ou the body surface and thus improve the accuracy for a giveil number of panels.

Better accuracy can he obtained by satisfying the body boundary condition in the average

over each surface patch. That means: the total flux through each surface patch is made to

vanish. Such niethods have been used before: but in connection with the functions pj(.) corre-sponding to sources distributed over panels, they require ittiinerical integrations to determine

the total flux due to each (.), and these integrations introduce additional errors and cost computer time. Difficulties arise also from the fact that the gradient of the panel potential tends to infinity at the panel edges; this makes integrations Rear tite panel edges inaccurate or impossible.

3

PrincipIes of the present method

The present method satisfies the condition of no flux through each surface patch, i.e. it satisfies tite body boundary condition in the average over each surface patch. Contrary to the usual panel methods. it uses no source panels (distributed sources) hut the potential of point sources a.s functions p(F). Therefore it is called hiere a. patch method, not a panel muelliod. The point sources may be placed at the approximate centres of tite surface patches. The flux through a polygon induced by a poiut source caii be determined exactly; thus numerical integrations are avoided if the surface patches are bounded by polygons. Oit a generally curved surface tite patch boundaries are curves; they are approximated simply by straight hues. The error introduced if the edges of a surface patch are curves instead of straight lines are conservative: a positive error in one patch is compensated by a negative error of equal magnitude in the adjacent patch. Titus errors introduced by curved patch boundaries may he expected to have little effect. The area enclosed between a curved panel side and tite straight-line connection of the end points of the panel side is proportional to the third lower of the panel length. Thus the error decreases strongly with decreasing panel size. The flow through titis area could he

app roxiina.ted if titis correction were found wort Itwhtile.

(3)

a

Fig. 1. Source point S and patch ABC

The functions () used here. i.e. the potential of point sources, may he considered less

smooth than typical panel source potentials. However, smooth p() are required only by col-location methods. not necessarily by methods satisfying tile boundary condition in theaverage over patches. In fact, averaging the boundary condition over a patch has a similar effect as averaging the source location over a panel. In spite of this, smoothing of j(.) is advantageous also here. I do this he shifting the sources from the body surface somewhat into the interior of the body (which is often called desingularisation').

Panel methods have to avoid evaluating V near to the panel boundaries because VØ is not smooth (frequently infinite) there. The present method must avoid to evaluate V at or near the patch centres because there, near the point sources, corresponding difficulties occur.

My program uses triangles and quadrilaterals as surface patches. The curvature of the

patch sides is neglected. For determining velocities and pressurès on the hull, quadrilaterals are divided by a diagona.l into two triangles. For non-plane quadrilaterals, of the two possible subdivisions one produces a concave. the other a convex patch: the convex subdivision is chosen. The average velocity V within each triangle is determined not as an analytical derivative of i), but from the difference of the potential evaluated a.t the three corner points of the triangle. Errors are again conservative. i.e. an error of the poteittial in one corner point produces errors of different signs in the triangles around this point.

Tile l)1'eSSU1e depends quadratically on the absolute value of the velocity. Using the average

velocity in Bernoulli's equation would result in a pressure average being too high in cases

of non-constant absolute velocity. To decrease tlus error, the pressure average is determined from integrating a quadratical approximation of the velocity derived froni the potential and its gradient at the three corners of each triangle.

4 Details

The body boundary condition is

(2)

where 7 is the inward normal vector ou the hull and n1 is its z component. p() is 1/distance between . and the ith source point; q1 is the negative source strength of this source divided by

4ir.

Fig. I shows a triangular patch ABC and a source poilit S. Integrating (2) over tile area. ABC gives

(1(aX

2 q1c1 = O. (3)

Tile first terni is the volume flow through ABC due to the uniform flow; tite index i indicates

the z component of the vector product of two side vectors of the triangle (Fig. I). The ¿th

term of the sum in (3) 15 tile volume flow through ABC induced by the ith source

is tite solid angle in which ABC is seen from 5. This is easily verified: Tile tota.l volume flow

(4)

--approaching the ith sink (source with negative source strength) is 4irq. As the flow is directed radially to S. the flow passing the triangle ABC is proportional to the solid angle a in wiuch the triangle is seen froui S. lt would amount to the total flow 4rq for a solid angle of 47r (all directions).

The rules of spherical geometry give as the sum of the angles between each pair of planes 5.-IB. SBC, and SCA minus 7r:

= 3SAB,SBC + I3SBC,SCA + J3SC,,SAB - ir (4) where. e.g..

[(.x

Th

x (ilx)].

/3S.4B,SEÌC = arctan . (.5)

(Ax B)(BxC)IBI

Here

.,

ê, (7 are the vectors pointing froni the source point S to the panel corners A, B, C. Further details referring to the non-uniqueness of arctan and of aj (Q'j +47r is equivalent to a)

may be seen in the program in the Appendix.

A simpler approximate formula is used if the distance d between patch vertices and source point exceeds a given limit. typically .5 times the maximum panel length. In this case the solid angle is approximated as

= f/d

(6)

where f is the patch area projected on a plane normal to the direction from the source to the patch centre:

1A+B+C

d=kTI;

f=x.

(7)

For a c1uadrilateral patch, results for two triangles are added.

Source points are arranged on the straight lines normal to the surface through the patch

centres. Patch centres are approximated as the average of the 3 or 4 patch vertices. The procedure for determining a gives results changing froni 2 to 2ir if the source point moves

from inside the body through the patch plane to outside. To avoid difficulties following from this discontinuity and prolleiìs of numerical accuracy, and to smooth tite functions j, the

sources are pla.ced inside the body in a user-specified distance from the body surface. If this distance brings a source closer to time centre plane than 1/4 of the body breadth (in y direction) a.t the panel centre, the distance is decreased for those panels so that the sources are placed midway between body surface and centre plane.

To account for port-starboard synimetry, patches are assumed on port side only. but sources of equal strength are assumed both ou port and starboard side when determining the sum in (3). Other symmetry planes (e.g. the undisturbed water plane) are handled correspondingly.

Equations (3) for each patch form a. linear system froni wInch the unknowns qj are deter-mined. I use an elimination of the most important elements below the main diagonal iii the coefficient matrix followed by a. Cauß-Seiclel iteration. hut other methods may be used as well. With known qj one can determine o and V at all patch corners using (1) and its gradient

= (U.0,0)+

qV(F).

(S) From the values at corners .4, B, C of a triangle, the average velocity within the triangle is found as

= Vo =

(& òc,) -.

- AB +

(B )

-

'i_mc

-b114ß

vit h

= and n .,-

-

c - --- b.

(5)

With known and the corner velocities Q, ÎB,VC, tile pressure force on the tríaiigle can be

determined:

- I

[P

'

f = n

J

pda = n

J

(U - v) da.

(11)

To evaluate this expression. tile velocity within the triangle is approximated as

(12)

r is the 'triangle coordinate' directed to A: r is

1 at A and O at the line BC.

s and t

are the corresponding 'triangle coordinates' directed to R and C respectively. Using this tri-quadratic f formula, the integral of i over the triangle area in (il) is found after some algebraic nianipula.tions as

f2da

=

f da.

+

VB_V)2+(Vc_U)2

(13)

5

Results

As a. first test, the flow around a deeply submerged sphere in uniform inflow in negative

s (lirectioti was investigated. For sphere radius 1 and inflow velocity 1, the force on 1/8 of

the sphere having positive s, y and negative z coordinates (corresponding to tile port lorebody of a half-spherical ship) was determined. Exact values are

= ir/64 = 0.04909 and

f, = -f. = lLir/128 = 0.26998. Only triangular patches were used (Fig. 2). Tests showed that coiubuung triangles in pairs to quadrilaterals gave practically tile same accuracy with a little more than half tile number of panels. Table i gives numerical results of my method. It indicates that the force errors decrease about proportionally to the square of the patch length, i.e. inversely to the panel number. In this example, errors depend substantially on the distance of tile sources from tite sphere surface which was chosen as 10% of tile sphere radius for the data of Table 1. If a source distance proportional to the panel size is used, the errors decrease approximately proportional to the 1.5th power of the patch length.

Table 1. Numerically computed forces on 1/8 of a sphere in uniform flow ;

Fig. 2. Two discretiza-tions of 1/4 sphere

i "J

The 'HSVA tanker' wa.s used as a second test. Mirror images reflected at tIte waterline and a.t tile centre plane were used. No exact results are known with one noii-trivial exception:

180 Schiffstechnik Bd. 40 - 1993 / ShipTechnology Research VoI. 40 - 1993

110. of patches 011 1/8 sphere f. error of L

f

error of h

4 -0.0400 0.0091 0.1143 0.1557

16 -0.0427 0.0064 0.2200 0.0500

64 -0.0481 0.0010 0.2581 0.0119

(6)

the longitudinal force on the whole ship is zero. For a numerical method based on pressure integration this is non-trivial because of the extreme differences in forehody and afterbody shape (Fig. 3). Results for the resistance coefficient

U. (.ietz, Institut für Schiffbau, prtvate communication

Schiffstechnik Bd. 40 - 1993 I Ship Technology Research Vol. 40 - 1993 181

Fig. 3. Three patch arrangements of HSVA tanker

Pine: Arrar.gemenc I

?ane Arrangemen; 2

?ane Arrangement

Compared to the coarsest panel arrangement 1, the finer subdivision of the section con-tour used for arrangement 2 was no improvement, whereas increasing the number of sections (arrangement 3) was helpful.

The above results of my method were produced using a source distance from the hull surface of 0.5m. Table 2 shows the effect of varying this quantity for patch arrangement 1. W'eb.tei's

C = _f1/(LT2S)

(14)

were determined using the methods of Hess and Smith (1962,) and Jensen (1988) and the

present method:

Jensen's method with patch arrangement i (Fig. 3; 421 patches): C = +1.54V i0

Present method with patch arrangement 1: C7, = -0.16. i0-Jensen's method with patch arrangement 2 (Fig. 4; 818 patches):

C = +1.90 iO

Present method with patch arrangement 2: = -0.16. iO

Jensen's method with patch arrangement :3: (Fig. 5: 780 patches):

C = +0.75

i0-Present method with patch arrangement 3:

C = +0.03 iO

(7)

i0-(1975) recommendation of using about O.5.minimum body radius of curvature is found here to give optimum results (the ship has a bilge radius of 1.63m). Smaller or zero curvature radius at

the centre plane (e.g. sharp waterline ends) need not be considered in this connetion because of the smaller source distance used for sources approaching the centre plane. Only for very fine panel arrangements the source distance should he decreased to improve tile condition nuniber of the equation system (3).

Table 2. Longitudinal forces in kN for U = i on the HSVA tanker hull

(L B - T = 253 - 38.33. 14.2 m) depending on the distance of sources from the hull surface in ni

Lagalli's equation f1 = U -47rq gives a longitudinal force coefficient ill my met hod of 0.00? iü for all patch arrangements when using four-byte arithmetic for real numbers:

without machine roundoff it would give exactly zero in this method. As explained above,

however, this is not very relevant in practice.

Naturally the longitudinal force on the fore- or afterbody alone need not be zero. However, for the IISVA tanker this force turned out to he smaller than the accuracy obtained with all panel arrangements tested here; presumably jC for a half-body of the lIS VA tanker is smaller

than 0.05 . i0.

Computing times of the patch and the sphere method are similar: about 10 minutes on

a VAX 6310 (ranging in speed between a PC and a modern workstation) for the 780 patch arrangement.

References

JENSEN, G. and SÖDENG, H. (1988), Ship wave resistance calculations, Notes on Numerical Fluid

Mech. 25, Vieweg, Braunschweig

HESS, .1.L. and SMITH, AMO. (1062), Calculation of non-lifting potential flow about arbitrary three-dimensional bodies, Douglas Aircraft Division Report E.S.40622

WEBSTER, WC. (1975), The flow about arbitrary three-dimensional smooth bodies, J. Ship Res. 19

(4)

Appendix: Fortran-77 program

C Patch method of 3D potential floc using triangles and quadrilaterals C Mirror planes y=O and zZSP

PARAMETER (NEMAX= 1000, NPMAX= 1000)

DIMENSION X(3,NEMAX),NRPE(0:4,NPMAX),Z(3),PZ(3,NPMAX),A(3),B(3),

C(3) ,AA(NPMAX,NPMAX),R(NPMAX) ,xQ(3) ,Q(NPMAX) ,xA(3) ,XB(3) ,xC(3),

& VNAC(3),VNAB(3),PHI(NEMAX),XBA(3),XCA(3),F(3),UVW(3,NENAX),

Sc VQ(3),VA(3),VB(3),VC(3)

COMMON RLIM,IDREI,FL(3,2*NPMAX) C Reads data of NE points and NP patches

READ(7,*)NE,((X(ID,IE),1D1,3),IE=1,NE)

READ(7,*)NP, (NRPE(0,IP) ,(NRPE(IE,IP),IE=1 ,NRPE(0,IP)) ,IP=1 ,NP)

IF(NE.GT.NEMAX.OR.NP.GT.NPMAX)STOP'Too many points or panels'

WRITE(*

182 Schiffstechnik Bd. 40 - 1993 / Ship Technology Research Vol. 40- 1993

distance afterbody force forebodv force total force

0.2 -0.24 2.74 2.50

0.4 0.08 1.75 1.83

0.6 0.08 0.99 1.06

0.8 0.24 0.43 0.67

(8)

'Coordinates of point seeing all patches from interior side?'

READ(* ,*)Z

WRITE(*,*)'Mirror plane height? x midship section?' WRITE(*,*)'Minimum distance for simplified formula?' WRITE(*,*)'Sources inside body?'

READ(z ,*)zsp ,XM,RLIM,VMAX

RLIM= RL IM* *2

C For all patches DO 30 IP=l,NP C Patch centres

DO lo ID=l,3

PZ(ID,IP)=X(ID,NRPE(1,IPfl+x(ID,NRPE(2,Ipfl+x(ID,NRpE(3,Ip))

IF(NRPE(O 1?) .E .4)PZ(ID ,IP)=PZ(ID ,IP)+x(ID ,NRPE(4,IP))

10 PZ(ID, IP)=PZ(ID, IP)/NRPE(O, IP)

C Clockwize renumbering of patch vertices seen from outside DO 20 ID=l,3 A(ID)=X(ID,NRPE(3,IPfl-X(ID,NRPE(l,IP)) 20 B(ID)=X(ID,NRPE(NRPE(0,IP),IPfl-X(ID,NRPE(2,IP)) C(1)=A(2)*B(3)-A(3)*B(2) c(2)=A(3)*B(l)-A(1)*B(3) C(3)=A(1)*B(2)-A(2)*B(1) IF(C(l)*(PZ(l,IP)-Z(l))+C(2)*(PZ(2,IP)-Z(2fl+C(3)*(PZ(3,IP)-Z(3)) & .LT.0)THEN SAVENRPE(NRPE(0,IP) ,IP) NRPE(NRPE(0,IP) ,IP)=NRPE(2,IP) NRPE(2,IP)=SAVE C(l)=-C(l) C(2)=-c(2) c(3)=-C(3) ENDIF

C Renumbering for convex triangular subdivision of quadrilateral panels

IF(NRPE(0,IP) .EQ.4)THEN IF(SOLIDA(X(l,NRPE(l,IP)),X(l,NRPE(2,IP)),X(1,NRPE(3,IP)), & X(1,NRPE(4,IPfl).LT.0)THEN ISAVE=NRPE(l ,IP) NRPE(l ,IP)=NRPE(2,IP) NRPE(2,IP)NRPE(3,IP) NRPE(3,IP)=NRPE(4,IP) NRPE(4,IP)=ISAVE ENDIF ENDIF

C Determination of source point coordinates FAK=VMAX/SQRT(C(1)**2+C(2)**2+C(3)**2)

IF(PZ(2,IP)-FAK*C(2).LT.0.5*PZ(2,IP))FAKO.S*PZ(2,IP)/C(2)

PZ(i ,IP)=PZ(l ,IP)-FAX*C(l) PZ(2,IP)=PZ(2, IP)-FAK*C(2)

Pz(3 ,IP)=PZ(3 , IP)-FAK*C(3) 30 CONTINUE

C For i or 2 triangles of every patch. Vertices 11,12,13, area vector FL IDREI=0 DO 45 IP1,NP R(IP)=O DO 45 IDR=3,NRPE(0,IP) IDREI=IDREI+ 1 Ii=NRPE(l IP) 12=NRPE(IDR-1 ,IP) I3NRPE(IDR, IP) DO 38 ID'1,3 A(ID)=X(ID ,13)-X(ID ,12)

(9)

38 B(ID)=X(ID,12)-X(ID,I1)

FL(1 ,IDREI)=(A(2)*B(3)-A(3)*B(2fl/2

FL(2,IDREI)=(A(3)*B(1)-A(1)*B(3fl/2

FL(3 ,IDREI)=(A(1)*B(2)-A(2)*B(1))/2

C Coefficient matrix AA and inhomogeneous terms R for speed i

iii

direction -x

R(IP)R(IP)-FL(i, IDREI)

DO 40 JP=i,NP

IF(IDR.EQ. 3)AA(JP ,IP)=0

DO 40 IYSYM=-i,1,2 DO 40 IZSYM=O,1

C XQ source point; function SOLIDA gives solid angle alpha_i

XQ(i)=PZ(1 ,JP) XQ(2)=PZ(2,JP)*IYSYM XQ(3)=PZ(3,JP) IF(IZSYM.NE.0)XQ(3)=2*ZSP-Xq(3) AA(JP,IP)=AA(JP,IP)+SOLIDA(X(1,Ii),X(1,12),X(1,13),XQ) 40 CONTINUE 45 CONTINUE

C Solving linear equation system A Q = R for source strengths Q. C Other methods (e.g. Gauss elimination) will work, too.

CALL SINQIT(AA,R,NP,NPMAX,1.E-S,SQRT(1./NP),i.E-6,Q)

C Sum of source strengths

QSUM=0

DO 50 IP=1,NP

50 QSUMQSUM+Q(IP)

WRITE(6,*)'Sum of source strengths',QSUM

C Determination of the potential and

its gradient at all vertices

DO 75 IE=1,NE PHI(IE)=-X(1 ,IE) Uvw(1 ,IE)=-1 U1.rw(2,IE)=0 UVW(3,IE)=0 DO 70 JP=1,NP DO 70 IYSYM=-1,1,2 DO 70 IZSYM=0,1 XQ(i)=PZ(i ,JP) XQ(2)=PZ(2,JP)*IYSYM XQ(3)=PZ(3 3?) IF(IZSYM.NE. 0)XQ(3)2*ZSP-XQ(3) RR=SQRT((X(1,IE)-XQ(1))**2(X(2,IE)-XQ(2fl**2(X(3,IE)_xQ(3fl**2) PHI(IE)=PHI(IE)-Q(JP)/RR Uvw(1,IE)=Uvw(1,IE)+Q(Jp)/RRX*3*(x(1,IE)-xQ(1))

Uvw(2 ,IE)=UVW(2,IE)+Q(JP)/RR**3*(X(2, IE)-XQ(2))

70 UVW(3, IE)=UVW(3,IE)Q(JP)/RR**3*(X(3, IE)-XQ(3))

75 CONTINUE

C Force integration. FE (FV) = long, force ort afterbody (forebody)

F(1)=0

F(2)=0

F(3)=0

FH=0 FV=0

C For one or two triangles of all panels

DO 150 IP=1,NP DO 150 IDR=3,NRPE(0,IP) I1=NRPE(i,IP) 12=NRPE(IDR-1 1?) 13=NRPE(IDR, IP) DO 120 10=1,3 VA(ID)=UVW(ID Ii)

(10)

VB(ID)=UVW(ID 12) vc(ID)=Uvw(ID,13) XBA(ID)X(ID,12)-X(ID,I1) 120 XCA(ID)=X(ID,13)-X(ID,I1) C Average velocity VQ SBACA=XBA(1)*XCA(1)+XBA(2)*XCA(2)+XBA(3)*XCA(3)

SBABA=XBA( 1) **2-FXBA( 2) **2+XBA (3)

SCACA=XCA(1)**2+XCA(2)**2+XCA(3)**2 DO 130 10=1,3 VNAB(ID)=XCA(ID)-SBACA/SBABA*XBA(ID) 130 VNAC(ID)=XBA(ID)-SBACA/SCACA*XCA(ID) XBANAC=XBA(1)*VNAC(1)+XBA(2)*VNAC(2)+XBA(3)*VNAC(3) XCANAB=XCA(1)*VNAB(1)+XCA(2)*VNAB(2)XCA(3)*VNAB(3) DO 140 ID=1,3 140 VQ(ID)=(PHI(I2)-PHI(Ilfl*VNAC(ID)/XBANAC (PHI(13)-PHI(Ilfl*vNAB(ID)/xCANAB C Integration of force on triangle

vQvq=v(1)**2+vQ(2)**2v(3)**2 VAVQ(VA(1)-VQ(1))**2+(VA(2)-VQ(2))**2+(VA(3)-VQ(3))**2 VBV=(VB(1)-VQ(1))**2+(VB(2)-VQ(2D**2+(VB(3)-VQ(3))**2 vcv=(vC(1)-vQ(1fl**2(vc(2)-vQ(2))**2+(vC(3)-VQ(3))**2 VAVB=(VA(1)-VQ(1))*(VB(1)-VQ(1fl+(VA(2)-VQ(2fl*(VB(2)-VQ(2)) & +(VA(3)-VQ(3))*(vB(3)-vQ(3)) vBvc=(VB(1)-vQ(1))*(vc(1)-v(1fl+(vB(2)-vQ(2fl*(vc(2)-vQ(2)) & (VB(3)-vq(3))*(VC(3)--VQ(3)) VCVA=(VC(1)-VQ(1))*(VA(1)-VQ(1))+(VC(2)-VQ(2fl*(VA(2)-VQ(2)) & (vc(3)-VQ(3))*(VA(3)--vq(3)) RINT=VQV(VAVQVBVQ+VCVQ)/30.-(VAVB+VBVC+VCVA)/9O. p=o.s*(1-RINT) F(1)=F(1)+P*(-XCA(2)*XBA(3)+XCA(3)*XBA(2)) F(2)=F(2)+P*(-XCA(3)*XBA(1)+XCA(1)*XBA(3)) F(3)F(3)+P*(-XCA(1)*XBA(2)+XCA(2)*XBA(1)) IF(PZ(1 1?). GT.XM)THEN FV=FV+P*(-XCA(2)*XBA(3)+XCA(3)*XBA(2)) ELSE

FH=FE+P* (-XCA (2) *XBA (3) +XCA( 3) (2)

ENDIF

160 CONTINUE

WRITE(6,*)Total force (3 components) for U=1',F

RITE(6,*)'Long. force on afterbody and forebody,FH,FV END

FUNCTION SOLIDA(AO,B0,CO,Z)

C Solid angle between vectors A0-Z, BO-Z, C0-Z. >0 if, seen from Z, ABC C turn clockwize. Not applicable for Z on plane ABC inside triangle ABC.

PARAMETER (NEMAX= 1000, NPMAX= 1000)

DIMENSION A(3),B(3),C(3),ABZN(3),BCZN(3),CAZN(3),Z(3), & A0(3),BO(3),CO(3),ABC(3)

COMMON RLIM,IDREI ,FL(3,2*NPMAX)

DO 10 10=1,3 A(ID)=A0(ID)-Z(ID) B(ID)=B0(ID)-Z(ID) 10 C(ID)=CO(ID)-Z(ID) IF(A(1)**2+A(2)**2+A(3)**2.GT.RLIM)THEN ABC( 1) =A( 1)+B( 1) +C( 1) ABC ( 2) =A (2) +B (2) +C (2) ABC (3) A (3) +3 (3) +C (3) SOLIDA-9*(ABC(1)*FL(1,IDREI)+ABC(2)*FL(2,IDREI)

& +ABC(3)*FL(3,IDREI)) /SQRT((ABC(1)**2+ABC(2)**2+ABC(3)**2)**3)

(11)

ELS E ABZN(1)=A(2)*B(3)-A(3)*B(2) ABZN(2)=A(3)*B(1)-A(1)*B(3) ABZN(3)=A(1)*B(2)-A(2)*E(1) BCZN(1)=B(2)*C(3)-B(3)*C(2) BCZN(2)=B(3)*C(1)-B(1)*C(3) BCZN(3)=B(1)*C(2)-B(2)*C(1) CAZN(1)=C(2)*A(3)-C(3)*A(2) CAZN(2)=C(3)*A(1)-C(1)*A(3) cAZN(3)=c(1)*A(2)-C(2)*A(1) CALL SVPR(ABZN,BCZNE,CO1,SI1) CALL SVPR(BCzM,CAzN,C,CO2,s12) CALL SVPR(CAZN,ABZN,A,CO3,S13) SOLIDA=O. FAKSI1*SI2*SI3 IF(FAK.EQ .0)RETTJRN SIJLIDA=ATAN2(SI1,CO1)+ATAN2(S12,CO2)+ATAN2(S13,CO3)-3. 1415926 IF(FAK . LT. O)SOLIDA=SOLIDA+2*3. 1415926 ENDIF END SUBROUTINE SVPR(A,B,E,CO,SI) DIMENSION A(3),B(3),E(3) CO=-A(1)*B(1)-A(2)*B(2)-A(3)*B(3)

SI( (A(2)*B(3)-A(3)*B(2) )*E(1)+(A(3)*B(1)-A(1)*B(3))*E(2) (A(1)*B(2)-A(2)*B(1))*E(3)) /SQRT(E(1)**2+E(2)**2+E(3)**2)

END

(12)

From the editors' software collection

Minimization of a Linear Function Subject to Linear Constraints

(rest, continued from issues i and 2 Vol. 40)

C Search for line

AM1 .E30 DC 60 1=4,11+3 TOT(I ,Ni) IF(T0.GT. 1.E-20)THEN AM1T(I ,NN+1)/T0 ELSEIF(TQ.GT.-1.E-20.OR.IFIX(ABS(T(I,NN+3fl).GT.NN)TREN AM11 .520 ELSE AM1=(T(I ,NN+1)-1j/T0 ENDIF IF(AM1 LT. AM)THEN 11=1 AM AMi T2=T0 ENDIF 60 CONTINUE

C Change to the other boundary of a variable if necessary J=ABS(T(II5,N1))

IF(J.LE.NN.AND.AM.GE.1.)THEN

C Change to the other boundary in column nl

DO 61 1=3,11+5 T(I ,N1)=-T(I ,N1) T(I,NN1)=T(I,NN+l)+T(I Ml) 61 CONTINUE GOTO 45 ENDIF IF(T2.LT.0.)TEEN

C Change to the other boundary for basis variable corr. to line il

DO 62 N=1,NN+3

IF(N.NE. NN+2)T(I1 ,N)=-T(I1 ,N) 62 CONTINUE T(I1 ,NN±1)T(I1 ,NN+1)+1 T2=-T2 ENDIF C Change of basis SAVE=T(I1 ,NN+3) T(I1 ,NN+3)=T(II+5,N1) T(II+5,N1)SAVE T(I1 ,N1)=-1 DO 70 I=K+2,II+4 70 T(I,N1)=-T(I,N1)/T2 DO 80 Nl,NN+1 IF(N.EQ.N1.OR.T(II+5,N).EQ.0.)GOTO 80 T0=T(I1 ,N) DC 75 1K+2,II+4 75 T(I,N)=T(I,N)+T0*T(I,N1) T(I1,N)=T(I1 ,N)-T0 80 CONTINUE IF(K.E.2)GOTO 45

C Prepare equations and inequalities

J=ABS(SAVE)-NN+3

IF(J.LT.4.OR.T(J,NN+2).LT.0.)GOTO 90

IF(T(J,NN+2) .EQ.0. )THEN

(13)

T(II+S ,N1)=O. ELSE DO 85 1=3,11+4 85 T(I,N1)=-T(I,N1) T(J ,NN+2)=-T(J ,NN+2) T(II+4,N1)T(II+4,N1)+1. END IF GOTO 90 C Determination of optimum x 150 DO 160 N=1,NN N1=T(II+5 ,N) N2=IAES(N1)

IF(N2. GT.NN. OR.N2.E .0)GOTO 160

T(3,N2)=T(1,N2)+WENN(N1.LT.O,T(2,N2),0.) 160 CONTINUE DO 170 1=4,11+3 N1=T(I ,NN+3) N2=IASS(N1) IF(N2.GT.NN)GOTO 170 T(3,N2)=T(1,N2)+(WENN(N1.LT.0,1.,0.)+SIGN( & T(I,NN+1),FLOAT(N1)))*T(2,N2) 170 CONTINUE T(3 ,NN+1)-T(II+4,NN+1) RETURN END FUNCTION WENN(L,A,B) WENN=B IF (L) WENN=A END

(14)

Jahrbücher

beliebt

-

begehrt- bewährt

Internationales Jahrbuch der

Luft- und Raumfahrt

Redaktion: 1-jans M. Namislo 184 Seiten. Format DEN AS. 150 s/w- und 16

Farb-Abbildun-gen. Broschur. mit Preisrätsel,

DM 19,80 Best.-Nr. 3904.

Der neue Fliegerkalender bietet

wieder eine Reihe von

interessan-ten Beiträgen. hier die Auswahl:

. ATTAS, der fliegende Simulator

. Clement Ader: Die Fledermaus

war sein Modell

Galileo unterwegs zum Jupiter . Ariane starlet mit Gewinn . Luftfahrt auf Postkarten

Hubschrauber im modernen

Rettungswesen

Das deutsche Jahrbuch der

Seefahrt seit 1)I

224 Seiten. Format DEN AS. 120 slw- und 30 Farb-Abbil-dungen. Broschur.

DM 19,80, mit Preisrätsel

Best.-Nr. 5-141.

Im Jahre 1901 ist erstmals der

Flottenkalen-der erschienen. Vom Gründungsjahr bis

heute durchiebte dieses Jahrbuch zahlrei-che Höhen und Tiefen, die auf zahlreizahlrei-chen

Seiten als deutsche Seefahrtgeschichte dokumentiert sind. Hier ist eine ausge-zeichnete Möglichkeit, längst

'verschol-Iene Bücher wieder zu erhalten - und damit

die eigene Bibliothek zu bereichern. Alle folgenden Bände können im Abonnement

bezogen werden.

Lieferbar sind jetzt die Ausgaben von 1901 und 1902

Jedes Jahr - beginnend ab 901 - erscheint eine weitere Reprint-Ausgabe der bei allen

Freunden der Seefahrt so beliebten Buchreihe.

INENATOAL.m JAH6UC14

OLUFT UND UUUMFUHRT

Der Flottenkalender ist ein Spiegel der internationalen Seefahrt und berichtet

seit Jahrzehnten in bewährter Form über ein breites Spektrum maritimer

Themen.

Hier eine kleine Auswahl von interes-santen Beiträgen:

Seenafen Benin, Hocnseeschiffe für die Bin nenstadt

Auf Einsatztahrt mit Seenotkreuzer-Neubau NIS RANDERS

Pillau-Baltisi<

Vorn Dampfschlepper zum

Motorgüter-erscheinende

FlortenkaIend bietet für 19.80 Mark viel

LeSeStOft aus denunterschd

lichsten Bereichen von

Schiffahrt und Marine.Meeres forschu9.

Weefl

und HafenWirt5 Das seit

1901 erscheinende Jahrbuch

ist nunmehr

wer Glück hat, gewinntmit dem

Floffenka1ee

preisratse'

Reprints

-

für Sammler eine »Raritat«

Ca 240 Seiten, Format 14 5 X 21 cm. viele Abbil-dungen gebunden. ca. DM 39,80. Best.-Nr 5361.

Aus dem inhalt:

Kaiser Wilhelm lin Admiraisuniform Die bedeutenden Reedereien Deutschlands Ein Wal ais Schiffszerstörer

Humoristisches

Soeben

erschiet!f1

Das Jahrbuch «Fliegerkalender 1993» ist spannend zu lesen und bestens illustriert, bietet informa-tive Daten. Fakten, Berichte und lebendige Schilderungen über

Flugzeuge. die Fliegerei und die

R a um fahrt.

Ubereinstimmendes Urteil aus

dem Spektrum der Rezensionen:

Dieses empfehlenswerte

Jahr-buch hat deshalb einen so großen

Leserkreis gewonnen, weil es

wertfrei, informativ und unterhal-tend berichtet. Besonders

Samm-1er freuen sich über dieses

«Nach-schlagewerk'. in dem sie immer wieder interessante Ereignisse, Ergebnisse und Daten nachlesen

können.

Der alljährlich erscheinende

Flot-tenkalender, eine

«Pflichttektü-re», die bereits seit 1901 als das beliebte und bekannte Jahrbuch

der deutschen Seefahrt

er-scheint. ist unterhaltsam und in-formativ gestaltet.

Fotos und Abbildungen bieten

Jahr für Jahr zusammen mit der Flottenrevue einen interesssan-ten Uberblick über die Handels-schiffahrt und Marinen der Welt.

32052 Herford

REPRINT Köhlers Flottenkalender

Kalender des Deutschen Flotten-Vereins für 1901

216 Seilen, Frmai 4 5 X 21 cm. roil 4 Farn- und 130 historiscnen Schwarzweiß.Abbildungen bzw. Tabellen, Broschur. DM 39,80, Best.-Nr, 4901

REPRINT Köhlers Flottenkalender

Kalender des Deutschen

Cytaty

Powiązane dokumenty

ograniczył zakres dopuszczal­ ności tego środka do dwu kategorii wypadków: postanow ień (zarządzeń).- zam ykających drogę do wydania w yroku oraz innych w

Grupowanie to jest zakłócone przez brak umiesz­ czenia obok aktu ustawodawczego, przepisów wykonawczych wyda­ nych przed ogłoszeniem tekstu jednolitego tego aktu (np. Prawo

Celem symulacji przeprowadzonej w Za- kładzie Modelowania Procesów Instytutu Ob- róbki Plastycznej w Poznaniu było określenie stopnia wypełnienia kształtowanych

Że wśród secesjonistów znajdują się nazwiska niektórych członków Gromad Ludu Polskiego, a naw et nazwisko Jakuba Majewskiego, późniejszego emisariusza Gromady

Tabela 1. :\QLNLDQDOL]\ZDULDQFMLLWHVWXSRVWKRF*DPHVD+RZHOODGODF]\QQLNyZRVRERZRĞFL L LFK VNáDGQLNyZ Z RGQLHVLHQLX GR LGHDOQHM SDUWLL SROLW\F]QHM Z

Таким образом, он ищет счастье в том, что уже отошло в область воспоминаний, но при этом изображает минувшее как незаконченный процесс, несмотря на

A low cost diverless subsea manifold concept Masters thesis, Report 87.3.OS.2260, Transport Engineering and Logistics.. Within this study, the technical and economical feasibility of

«Zachować na zawsze» – taki przypis znajduje się na pierwszej karcie sprawy karnej wobec prof.. Akta te dają możliwość poznania niezmiernie bolesnych i dotychczas