• Nie Znaleziono Wyników

CA3100

N/A
N/A
Protected

Academic year: 2022

Share "CA3100"

Copied!
7
0
0

Pełen tekst

(1)

January 1999

CA3100

38MHz, Operational Amplifier

Features

• High Open Loop Gain at Video

Frequencies . . . 42dB (Typ) at 1MHz

• Unity Gain

Crossover Frequency (f T ) . . . 38MHz (Typ)

• Full Power Bandwidth

V O = 18V P-P . . . 1.2MHz (Typ)

• Slew Rate

- 20dB Amplifier . . . 70V/ µ s (Typ) - Unity Gain Amplifier. . . 25V/ µ s (Typ)

• Settling Time . . . 0.6 µ s (Typ)

• Output Current . . . . ± 15mA (Min)

• Single Capacitor Compensation

• Offset Null Terminals

Applications

• Video Amplifiers

• Fast Peak Detectors

• Meter Driver Amplifiers

• High Frequency Feedback Amplifiers

• Video Pre-Drivers

• Oscillators

• Multivibrators

• Voltage Controlled Oscillator

• Fast Comparators

Description

The CA3100 is a large signal wideband, high speed operational amplifier which has a unity gain cross over frequency (f T ) of approximately 38MHz and an open loop, 3dB corner frequency of approximately 110kHz. It can operate at a total supply voltage of from 14V to 36V ( ± 7V to

± 18V when using split supplies) and can provide at least 18V P-P and 30mA P-P at the output when operating from

± 15V supplies. The CA3100 can be compensated with a single external capacitor and has DC offset adjust terminals for those applications requiring offset null. (See Figure 1).

The CA3100 circuit contains both bipolar and PMOS transis- tors on a single monolithic chip.

Pinouts

Part Number Information

PART NUMBER (BRAND)

TEMP.

RANGE (

o

C) PACKAGE

PKG.

NO.

CA3100E -40 to 85 8 Ld PDIP E8.3

CA3100M (3100)

-40 to 85 8 Ld SOIC M8.15

CA3100T -55 to 125 8 Pin Metal Can T8.C

CA3100 (PDIP, SOIC)

TOP VIEW

CA3100 (METAL CAN)

TOP VIEW

1 2 3 4

8 7 6 5 OFFSET

NULL INV.

INPUT NON-INV.

INPUT V-

V+

OUTPUT OFFSET NULL PHASE COMPENSATION

-

+

V+

2

4 6 1

3

7

5 8

-

+ PHASE

COMP TAB

OUTPUT

OFFSET NULL NON-INV.

INPUT INPUTINV.

V- PHASE

COMP AND OFFSET NULL

[ /Title (CA31 00) /Sub- ject (38MH z, Opera- tional Ampli- fier) /Autho r () /Key- words (Har- ris Semi- con- ductor, single, opera- tional ampli- fier, op amp, gen- eral pur- pose, indus- trial mili- tary

OBSOLETE PR

ODUCT

POSSIBLE SUBSTITUTE PR

ODUCT

HA-2525

(2)

Absolute Maximum Ratings Thermal Information

Supply Voltage (Between V+ and V- Terminals) . . . 36V Differential Input Voltage. . . 12V Input Voltage to Ground . . . V+ to V- Offset Terminal to V- Terminal Voltage . . . .

±

0.5V Output Current (Note 2) . . . 50mA

Operating Conditions

Temperature Range

CA3100E, CA3100M. . . -40

o

C to 85

o

C CA3100T. . . -55

o

C to 125

o

C

Thermal Resistance (Typical, Note 1)

θJA

(

o

C/W)

θJC

(

o

C/W) PDIP Package . . . . 100 N/A SOIC Package . . . . 165 N/A Metal Can Package . . . . 170 85 Maximum Junction Temperature (Metal Can) . . . 175

o

C Maximum Junction Temperature (Plastic Package) . . . 150

o

C Maximum Storage Temperature Range . . . -65

o

C to 150

o

C Maximum Lead Temperature (Soldering 10s) . . . 300

o

C

(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1.

θJA

is measured with the component mounted on an evaluation PC board in free air.

2. CA3100 does not contain circuitry to protect against short circuits in the output.

Electrical Specifications T

A

= 25

o

C, V

SUPPLY= ±

15V, Unless Otherwise Specified

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS

DC

Input Offset Voltage V

IO

V

O

= 0

±0.1V

-

±1 ±5

mV

Input Bias Current I

IB

V

O

= 0

±1V

- 0.7 2

µA

Input Offset Current I

IO

V

O

= 0

±1V

-

±0.05 ±0.4 µA

Common Mode Input Voltage Range V

lCR

CMRR

76dB

±12

+14

-13

- V

Common Mode Rejection Ratio CMRR V

CM

=

±12V

76 90 - dB

Maximum Output Voltage V

OM

+ Differential Input Voltage = 0

±0.1V,

R

L

= 2kΩ +9 +11 - V

V

OM

- -9 -11 - V

Maximum Output Current I

OM

+ Differential Input Voltage = 0 + 0.1V,

R

L

= 250Ω +15 +30 - mA

I

OM

- -15 -30 - mA

Supply Current I+ V

O

= 0

±0.1V, RL≥ 10kΩ

- 8.5 10.5 mA

Power Supply Rejection Ratio PSRR

∆V+ =±1V,∆V- =±1V

60 70 - dB

DYNAMIC

Unity-Gain Crossover Frequency f

T

C

C

= 0, V

O

= 0.3V

P-P

- 38 - MHz

Open Loop Voltage Gain A

OL

f = 1kHz, V

O

=

±1V, (Note 3)

56 61 - dB

f = 1MHz, C

C

= 0, V

O

= 10V

P-P

36 42 - dB

Slew Rate SR A

V

= 10, C

C

= 0, V

I

= 1V (Pulse) 50 70 - V/µs

A

V

= 1, C

C

= 10pF, V

I

= 10V (Pulse) - 25 - V/µs

Full Power Bandwidth (Note 4) FPBW A

V

= 10, C

C

= 0, V

O

= 18V

P-P

0.8 1.2 - MHz

(3)

Wideband Noise Voltage (RTI) e

N

(Total) BW = 1MHz, R

S

= 1kΩ - 8 -

µVRMS

Settling Time (To Within

±50mV of 9V

Output Swing) tS R

L

= 2kΩ, C

L

= 20pF - 0.6 -

µs

NOTES:

3. Low frequency dynamic characteristic.

4. .

Electrical Specifications T

A

= 25

o

C, V

SUPPLY= ±

15V, Unless Otherwise Specified (Continued)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS

Full Power Bandwidth Slew Rate

π

V

O PP ---

=

Test Circuits

FIGURE 1. OPEN-LOOP VOLTAGE GAIN TEST CIRCUIT AND OFFSET ADJUST CIRCUIT

FIGURE 2. SLEW RATE IN 10X AMPLIFIER TEST CIRCUIT

FIGURE 3. FOLLOWER SLEW RATE TEST CIRCUIT FIGURE 4. WIDEBAND INPUT NOISE VOLTAGE TEST CIRCUIT

+

-

CA3100 7

4

8 5

VO V+

2

1 3

RX 6

V-

20pF 2kΩ

WITH VI = 0 ADJ POTENTIO- TO GIVE METER (RX) VO = 0± 0.1VDC

AT FREQUENCY > 1MHz VI AND VOMEASURED WITH HF8405A VECTOR NULL ADJUST

POTENTIOMETER SET VI TO GIVE

DESIRED VO LEVEL AT TEST FREQUENCY

CC

0.1µF HP606A

OR EQUIV

51Ω

AOL = VO VI θOL 0.1µF

VI

10kΩ

VOLTMETER

VO V+

2

4 6

20

2kΩ 0.1

+1V PULSE

tR≤ 10ns 51Ω

0.1µF VI

7

+

-

CA3100 3

µF pF tWIDTH

1µs

SLOPE = SR

220Ω

V- 2kΩ

VO V+

2 +10V 5

PULSE tR≤ 10ns

51Ω

0.1µF VI

+

-

CA3100 3

SLOPE = SR

V- 4 7 1

3 10pF

0.1µF 500pF

2kΩ 6

tWIDTH1µs

+15V

2

4 6

0.1µF 0.1µF 7

+

-

CA3100 3

AV = 100

47Ω

-15V 420Ω

POST AMPL. AND 2 POLE 1MHz

FILTER

HP400EL VTVM

eNO INPUT REFERRED

NOISE VOLTAGE eNI =eNO

100

RS

(4)

Schematic Diagram

FIGURE 5. OUTPUT VOLTAGE SWING (V

OM

), OUTPUT CURRENT SWING (I

OM

) TEST CIRCUIT

FIGURE 6. SETTLING TIME TEST CIRCUIT

Test Circuits (Continued)

2

4

6

1kΩ

7

+

-

CA3100 3

1kΩ

-15V

VOM 9.1kΩ

RL 2kΩ

±1V

+15V RL = 250Ω FOR IOM TEST IOM = VO

250Ω

+

-

CA3100 7

4

1 8

-15V +15V

3

6 1pF

2kΩ

0.1µF

VO =±9V

0.1 20pF 1kΩ µF

12pF

2kΩ 2kΩ

2kΩ

51Ω

SETTLING POINT TO SCOPE VI =±9V

2

3

2

4

Q3 V+

Q4 R1

2.5kΩ

C1 10pF D2

D3

Q13

OUTPUT

PHASE COMP Q8

Q6 Q5

Q1

Q7

Q9

R9 200Ω Q18 R8

200Ω

R17 600Ω

R19 600Ω

R18

150Ω OFFSET

NULL AND PHASE COMP

OFFSET D5 NULL

Q17 Q16

6 8

5 1 7 R5

750Ω R4

R6 750Ω 12kΩ

NON- INVERT INPUT +

Q12 Q15 Q14

Q11

R10 20Ω

R11 20Ω

Q23

Q21 Q22

Q20

R12 50Ω

R14 R13 20Ω

Q19

R15 1.1kΩ

R16 150Ω R7

10kΩ

-

INVERT INPUT

D4 Q10

Q2

1.1kΩ V-

(5)

Typical Applications

FIGURE 7. 20dB VIDEO AMPLIFIER FIGURE 8. 20dB VIDEO LINE DRIVER

FIGURE 9. FAST POSITIVE PEAK DETECTOR FIGURE 10. 1MHz METER-DRIVER AMPLIFIER

Typical Performance Curves

FIGURE 11. OPEN LOOP GAIN, OPEN LOOP PHASE SHIFT vs FREQUENCY

FIGURE 12. OPEN LOOP GAIN vs FREQUENCY

2

+

-

CA3100

3kΩ

-15V

6

4 3

+15V

7

INPUT 0.33µF 0.1µF

OUTPUT

220Ω 2kΩ

3pF

0.1µF

-3dB BANDWIDTH20MHz TOTAL INPUT NOISE VOLTAGE REFERRED TO INPUT35µVRMS

2 +

-

CA3100

-15V

0.1µF

OUTPUT TO 3

6

4 7 +15V

3pF 3kΩ 220Ω

0.33µF INPUT

4.7

2N5320

2N5322 TERMINATED

50Ω TRANS- MISSION LINE kΩ

220Ω

2kΩ 0.1µF

1N5393 10Ω

10Ω DELIVERS FOLLOWING

PEAK VOLTAGES TO 50Ω LINE:

FREQ 1MHz 2MHz4MHz 6MHz

VO 8V 5V2V

1V GAIN = 20dB 3dB BANDWIDTH = 15MHz ACL = 20dB

2 +

-

CA3100

0.1µF 7

4

6 3

VI(AC)

3kΩ

1.2kΩ

-15V +15V

1000pF 1N914

2N2102

VO(DC) = +VI PEAK 0.1µF

2 +

-

CA3100 8

4

6 3

+15V

1mA 1N914 0.1µF

1 7

FULL SCALE -15V 250Ω POT. 330Ω

FULL SCALE CALIBRATION ADJUST TEST

LEADS INPUT IMPEDANCE

50kΩ

51kΩ ZERO ADJ 20kΩ

200Ω

10pF

1VRMS 51kΩ

+

-

0.1µF

FULL SCALE

DC METER

12pF

24pF

12pF CC = 24pF

12pF

TA = 25oC VS =±15V RL = 2kΩ CL = 20pF

0pF 70

60 50 40 30 20 10 0

OPEN LOOP VOLTAGE GAIN (dB)

0.001 0.01 0.1 1 10 100

FREQUENCY (MHz)

-270 -225 -180 -135 -90 -45 0

OPEN LOOP PHASE SHIFT (DEGREES)

80

|AOL|

0pF

θ 0pF

CC = 24pF

VS =±15V RL = 2kΩ CC = 0

25oC 125oC

TA = -55oC

0.001 0.01 0.1 1 10 100

FREQUENCY (MHz) 70

60

50

40

30

20

10

0

OPEN LOOP VOLTAGE GAIN (dB)

(6)

FIGURE 13. OPEN LOOP GAIN vs FREQUENCY FIGURE 14. REQUIRED COMPENSATION CAPACITANCE vs CLOSED LOOP GAIN

FIGURE 15. SLEW RATE vs COMPENSATION CAPACITANCE FIGURE 16. TYPICAL OPEN LOOP OUTPUT IMPEDANCE vs FREQUENCY

Typical Performance Curves (Continued)

OPEN LOOP VOLTAGE GAIN (dB)

±12V±10V

±7V

VS =±18V 70

60

50

40

30

20

10

0

0.001 0.01 0.1 1 10 100

FREQUENCY (MHz)

TA = 25oC RL = 2kΩ CL = 20pF CC = 0

TA = 25oC RL = 2kΩ CL = 20pF

VS =±15V

±10V 25

20

5 10 15

0 6 (0) 10 (6) 20 (19.1)

NONINVERTING GAIN (dB), INVERTING GAIN (dB) CLOSED LOOP GAIN (dB)

COMP CAP PINS 1 TO 8 (pF)

0

TA = 25oC RL = 2kΩ CL = 20pF

±10V

VS =±15V

0 5 10 15 20 25

COMP CAP PINS 1 TO 8 (pF)

SLEW RATE (V/µs) 80

60

40

20

350 300

200

100

0 10 20 30 40

FREQUENCY (MHz)

OPEN LOOP OUTPUT IMPEDANCE () TA = 25oC

VS =±15V

+

-

CA3100 7

4

1 5

6 VO

HEWLETT PACKARD VECTOR IMPEDANCE METER4815A

-15V 10

+15V

K 3

2

30

20

10

0

102 103 104

TOTAL INPUT REFERRED NOISE VOLTAGEVRMS)

TA = 25oC BW AT 6dB = 1MHz

106

105

104

103

0.1 1 10 100

TA = 25oC VS =±15V

OPEN LOOP DIFFERENTIAL INPUT IMPEDANCE ()

(7)

FIGURE 19. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 20. COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

FIGURE 21. MAXIMUM OUTPUT VOLTAGE vs SUPPLY VOLTAGE FIGURE 22. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 23. INPUT BIAS CURRENT vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

25

20

15

10

5

0

0.01 0.1 1 10 100

FREQUENCY (MHz)

CIRCUIT FIG. 2 10X AMPL CIRCUIT FIG. 3

(FOLLOWER)

TA = 25oC VS =±15V

OUTPUT VOLTAGE (VP-P)

15.0

12.5

10.0

7.5

5.0

2.5

0 ±2.5 ±5 ±7.5 ±10 ±12.5 ±15 ±17.5 ±20 SUPPLY VOLTAGE (V)

COMMON MODE INPUT VOLTAGE RANGE (V)

+VICR -VICR

TA = 25oC

0

15

12.5

10

7.5

5

2.5

0 ±2.5 ±5 ±7.5 ±10 ±12.5 ±15 ±17.5 ±20 SUPPLY VOLTAGE (V)

VOM+ VOM-

TA = 25oC

MAXIMUM OUTPUT VOLTAGE (V)

0

15

12.5

10

7.5

5

2.5

0 ±2.5 ±5 ±7.5 ±10 ±12.5 ±15 ±17.5 ±20 SUPPLY VOLTAGE (V)

TA = 25oC

SUPPLY CURRENT (mA)

0

15.0

12.5

10.0

7.5

5.0

2.5

0 ±2.5 ±5 ±7.5 ±10 ±12.5 ±15 ±17.5 ±20 SUPPLY VOLTAGE (V)

TA = 25oC

INPUT BIAS CURRENT (µA)

0

Cytaty

Powiązane dokumenty

On the basis of the simulation results the electromagnetic torque waveforms and phase current time curves of the permanent magnet synchronous motor for both in–house

It was found that the neural network based adaptive state feedback controller can be successfully used to control load current during DC voltage value changes. The

The correctness of the data entered in the Register of Public Sec- tor Partners is the responsibility of both (i) the public sector partner and (ii) the registrar (the

Ik moet je bekennen dat ik de miljarden economische voorspoed die begin van deze eeuw zijn voorspeld nog niet heb kunnen vinden, maar het gebruik van data neemt wel significant toe

lepszym wypadku równie bogate lub równie biedne, jak było" 6. Engelsa świadczy o tym, że dostrzega on sprzeczność po­ między decentralizacją akumulacji a potrzebami

Figures 10, 11, 12 and 13 show the ice sheet mask for the selected regions at 11 km (red cells) and 1 km (orange cells) as well as peripheral glaciers and ice caps at 1 km (blue

De problemen met ventilatie en gezonde binnenlucht zijn hetzelfde als bij geluidsisolatie van de gevel, als hier niet voldoende aandacht aan wordt besteed... In de workshop staan

No Future Book (2008) Łukasza Gołębiewskiego – książka oddana przez autora do domeny publicznej, a zatem darmowa, nie zapewnia ram otwartości i zachęty do twórczego działania