• Nie Znaleziono Wyników

CMS04

N/A
N/A
Protected

Academic year: 2022

Share "CMS04"

Copied!
5
0
0

Pełen tekst

(1)

TOSHIBA Schottky Barrier Rectifier Schottky Barrier Type

CMS04

Switching Mode Power Supply Applications Portable Equipment Battery Applications

· Forward voltage: VFM = 0.37 V (max)

· Average forward current: IF (AV) = 5.0 A

· Repetitive peak reverse voltage: VRRM = 30 V

· Suitable for compact assembly due to small surface-mount package “M−FLATTM” (Toshiba package name)

Maximum Ratings (Ta ==== 25°C)

Characteristics Symbol Rating Unit

Repetitive peak reverse voltage VRRM 30 V Average forward current IF (AV) 5.0 (Note) A Peak one cycle surge forward current

(non-repetitive) IFSM 70 (50 Hz) A

Junction temperature Tj -40~125 °C

Storage temperature Tstg -40~150 °C

Note: Tℓ = 36°C: Rectangular waveform (a = 180°), VR= 15 V

Electrical Characteristics (Ta ==== 25°C)

Characteristics Symbol Test Condition Min Typ. Max Unit

VFM (1) IFM= 1 A ¾ 0.27 ¾

VFM (2) IFM= 3 A ¾ 0.31 ¾

Peak forward voltage

VFM (3) IFM= 5 A ¾ 0.35 0.37

V

IRRM (1) VRRM= 5 V ¾ 0.31 ¾

Repetitive peak reverse current

IRRM (2) VRRM= 30 V ¾ 3.3 8.0 mA

Junction capacitance Cj VR= 10 V, f = 1.0 MHz ¾ 330 ¾ pF Device mounted on a ceramic board

(soldering land: 2 mm ´ 2 mm) ¾ ¾ 60 Rth (j-a) Device mounted on a glass-epoxy

board

(soldering land: 6 mm ´ 6 mm) ¾ ¾ 135 Thermal resistance

Rth (j-ℓ) ¾ ¾ ¾ 16

°C/W Unit: mm

JEDEC ―

JEITA ―

TOSHIBA 3-4E1A Weight: 0.023 g (typ.)

(2)

of Manufacture

Standard Soldering Pad

Handling Precaution

Schottky barrier diodes are having large-reverse-current-leakage characteristic compare to the other rectifier products. This current leakage and improper operating temperature or voltage may cause thermal runaway.

Please take forward and reverse loss into consideration when you design.

Cathode mark Type code

Lot No.

S4 Month of manufac- ture

January to December are denoted by letter A to L respectively.

Year of manufac- ture

Last decimal digit of the year of manufacture

0 1 2 3 4

5 6 7 8 9

3.0 1.4

2.1

Unit: mm

1.4

(3)

Maximum allowable lead temperature Tℓ max (°C)

Instantaneous forward voltage vF (V) iF – vF

Instantaneous forward current iF (A)

Average forward current IF (AV) (A) PF (AV) – IF (AV)

Average forward power dissipation PF (AV) (W)

Average forward current IF (AV) (A) Maximum allowable ambinent temperature Ta max (°C)

Average forward current IF (AV) (A) Tℓ max – IF (AV) Ta max – IF (AV)

Device mounted on a ceramic board (board size: 50 mm ´ 50 mm)

mum allowable lead temperature Tℓ max (°C)

Tℓ max – IF (AV)

0.10.0 1.40.2

1 10 100

0.4 0.6 0.8 1.0 1.2 125°C

75°C

Tj = 25°C

1

0.0 2 3 5 6

60

0 20 40 80 100

4 7 8

120 140

a = 60°

180°

270°

DC

120°

Conduction angle: a VR = 5 V

360°

a Rectangular

waveform

IF (AV)

0.0 1.2

0.0 0.4 0.8 1.8

1.6 2.4

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 a = 60°

120°

180°

DC

Conduction angle: a 360°

a Rectangular

waveform

1

0.0 2 3 5 6

60

0 20 40 80 100

4 7 8

120 140

a = 60°

270°

DC

180°

120°

Conduction angle: a

VR = 5 V 360°

a Rectangular

waveform

IF (AV)

60

40 80 100 120 140

180°

270°

DC

Rectangular waveform

(4)

0.50.001 0.01 0.1 1 10 100 1000 1

10 100 500

Device mounted on a glass-epoxy board Soldering land: 2.1 mm ´ 1.4 mm

Device mounted on a glass-epoxy board Soldering land: 6.0 mm ´ 6.0 mm

Device mounted on a ceramic board Soldering land: 2.0 mm ´ 2.0 mm 0.10 20 40 60 80 100 120 160

1 100 1000

140 10

Pulse test

20 V VR = 30 V 15 V

10 V

5 V VR = 3 V

1001 10 100

300 500 1000

f = 1 MHz Ta = 25°C

3 5 30 50

Reverse current IR (mA) Peak surge forward current IFSM (A)

Reverse voltage VR (V) Cj –VR (typ.)

Junction capacitance Cj (pF)

Number of cycles

Surge forward current (non-repetitive)

Junction temperature Tj (°C) IR – Tj (typ.)

Reverse voltage VR (V) PR (AV) – VR (typ.)

Average reverse power dissipation PR (AV) (W)

Transient thermal impedance rth (j-a) (°C/W) rth (j-a) – t Time (s)

01 10 100

60 80 100

3 5 30 50

f = 50 MHz Ta = 25°C

40

20

4 8 12 16

00 10 20 30

24 28

20

DC

300°

240°

180°

120°

60°

360°

Conduction angle: a Tj = 125°C VR

Rectangular waveform

a

(5)

· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..

· The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk.

· The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other

000707EAA

RESTRICTIONS ON PRODUCT USE

Cytaty

Powiązane dokumenty

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which

These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which