• Nie Znaleziono Wyników

BF556

N/A
N/A
Protected

Academic year: 2022

Share "BF556"

Copied!
11
0
0

Pełen tekst

(1)

DATA SHEET

Product specification

Supersedes data of April 1995

File under Discrete Semiconductors, SC07

1996 Jul 29

BF556A; BF556B; BF556C

N-channel silicon junction

field-effect transistors

(2)

FEATURES

• Low leakage level (typ. 500 fA)

• High gain

• Low cut-off voltage.

APPLICATIONS

• Impedance converters in e.g. electret microphones and infra-red detectors

• VHF amplifiers in oscillators and mixers.

DESCRIPTION

N-channel symmetrical silicon junction field-effect transistors in a SOT23 package.

PINNING - SOT23

PIN SYMBOL DESCRIPTION

1 s source

2 d drain

3 g gate‘

CAUTION

The device is supplied in an antistatic package. The gate-source input must be protected against static discharge during transport or handling.

Fig.1 Simplified outline and symbol.

Marking codes:

BF556A: M84.

BF556B: M85.

BF556C: M86.

handbook, halfpage

s g d

2 1

3

MAM036 Top view

QUICK REFERENCE DATA

SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

VDS drain-source voltage (DC) − ±30 V

VGSoff gate-source cut-off voltage ID= 200µA; VDS= 15 V −0.5 −7.5 V

IDSS drain current VGS= 0; VDS= 15 V

BF556A 3 7 mA

BF556B 6 13 mA

BF556C 11 18 mA

Ptot total power dissipation up to Tamb= 25°C − 250 mW

yfs forward transfer admittance VGS= 0; VDS= 15 V 4.5 − mS

(3)

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

Note

1. Device mounted on an FR4 printed-circuit board, maximum lead length 4 mm; mounting pad for the drain lead 10 mm2.

THERMAL CHARACTERISTICS

Note

1. Device mounted on an FR4 printed-circuit board, maximum lead length 4 mm; mounting pad for the drain lead 10 mm2.

STATIC CHARACTERISTICS

Tj= 25°C; unless otherwise specified.

SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

VDS drain-source voltage (DC) − ±30 V

VGSO gate-source voltage open drain − −30 V

VGDO gate-drain voltage (DC) open source − −30 V

IG forward gate current (DC) − 10 mA

Ptot total power dissipation up to Tamb= 25°C; note 1 − 250 mW

Tstg storage temperature −65 150 °C

Tj operating junction temperature − 150 °C

SYMBOL PARAMETER VALUE UNIT

Rth j-a thermal resistance from junction to ambient; note 1 500 K/W

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

V(BR)GSS gate-source breakdown voltage IG=−1µA; VDS= 0 −30 − − V

VGSoff gate-source cut-off voltage ID= 200µA; VDS= 15 V −0.5 −7.5 V

IDSS drain current VGS= 0; VDS= 15 V

BF556A 3 − 7 mA

BF556B 6 − 13 mA

BF556C 11 − 18 mA

IGSS gate leakage current VGS=−20 V; VDS= 0 − −0.5 −5000 pA

yfs forward transfer admittance VGS= 0; VDS= 15 V 4.5 − − mS

yos common source output admittance

VGS= 0; VDS= 15 V − 40 − µS

(4)

DYNAMIC CHARACTERISTICS

Tamb= 25°C; unless otherwise specified.

SYMBOL PARAMETER CONDITIONS TYP. UNIT

Cis input capacitance VDS= 15 V; VGS=−10 V; f = 1 MHz 1.7 pF

VDS= 15 V; VGS= 0; f = 1 MHz 3 pF Crs reverse transfer capacitance VDS= 15 V; VGS=−10 V; f = 1 MHz 0.8 pF VDS= 15 V; VGS= 0; f = 1 MHz 0.9 pF gis common source input conductance VDS= 10 V; ID= 1 mA; f = 100 MHz 15 µS VDS= 10 V; ID= 1 mA; f = 450 MHz 300 µS gfs common source transfer conductance VDS= 10 V; ID= 1 mA; f = 100 MHz 2 mS

VDS= 10 V; ID= 1 mA; f = 450 MHz 1.8 mS grs common source reverse conductance VDS= 10 V; ID= 1 mA; f = 100 MHz −6 µS

VDS= 10 V; ID= 1 mA; f = 450 MHz −40 µS gos common source output conductance VDS= 10 V; ID= 1 mA; f = 100 MHz 30 µS VDS= 10 V; ID= 1 mA; f = 450 MHz 60 µS Vn equivalent input noise voltage VDS= 10 V; ID= 1 mA; f = 100 Hz 40 nV/√Hz

Fig.2 Drain current as a function of gate-source cut-off voltage; typical values.

VDS= 15 V.

handbook, halfpage

0 4 8 12 16 20

0 1 2 3 4 5 6 7

MRC154 IDSS

(mA)

VGSoff (V)

Fig.3 Forward transfer admittance as a function of gate-source cut-off voltage; typical values.

VDS= 15 V; ID= 1µA.

handbook, halfpage

MRC156

0 2 4 6 8 10

0 1 2 3 4 5 6 7

VGSoff (V) Yfs

(mS)

(5)

Fig.4 Common-source output conductance as a function of gate-source cut-off voltage;

typical values.

VDS= 15 V.

handbook, halfpage

0 −2 −4 −8

100

0 80

MRC153

−6 60

40

20 Gos (µS)

VGSoff (V)

Fig.5 Drain-source on-state resistance as a function of gate-source cut-off voltage;

typical values.

VDS= 100 mV; VGS= 0.

handbook, halfpage

0 2 4 8

300

100

0 200

MRC155

6 RDSon

(Ω)

VGSoff (V)

Fig.6 Typical output characteristics; BF556A.

handbook, halfpage

0 4 8 16

5

0 4

MRC145

12 3

2

1

VDS (V) ID

(mA)

−0.5 V

−1 V VGS = 0 V

Fig.7 Typical output characteristics; BF556B.

handbook, halfpage

0 4 8 12 16

16

12

4

0 8

MRC146

VDS (V) ID

(mA) VGS = 0 V

−2.0 V

−0.5 V

−2.5 V

−1.0 V

−1.5 V

(6)

Fig.8 Typical output characteristics; BF556C.

handbook, halfpage

0 4 8 16

25

0 20

MRC147

12 15

10

5

VDS (V) ID

(mA)

−1 V

−2 V

−3 V

−4 V

−5 V VGS = 0 V

Fig.9 Typical input characteristics.

handbook, halfpage

−6 −4 −2 0

30

10

0 20

MRC148

VGS (V) ID

(mA)

BF556C

BF556B

BF556A

VDS= 15 V.

handbook, halfpage

−8 −6 −4 −2 0

103

102

1 10

10−1

10−2

103

MRC149 ID

(µA)

VGS (V) BF556C BF556B BF556A

handbook, halfpage−102

−102

−10−1

−1

−10

20 12

4 8

0

MRC151

16 VDG (V) IG

(pA) ID = 10 mA

IGSS

1 mA

0.1 mA

(7)

Fig.12 Gate current as a function of junction temperature; typical values.

handbook, halfpage103

10−1 1 10 102

150 50

−50 0

MRC150

100 IGSS

(pA)

Tj (°C)

VDS= 0; VGS=−20 V.

Fig.13 Power derating curve.

MRC166

0 100 200 300

0 50 100 150

Ptot (mW)

Tamb ( C)o

Fig.14 Reverse transfer capacitance; typical values.

VDS= 15 V.

handbook, halfpage

0 0.2 0.4 0.6 0.8 1

–10 –8 –6 –4 –2 0

Crs (pF)

VGS (V) MRC134

Fig.15 Input capacitance; typical values.

VDS= 15 V.

handbook, halfpage

MRC140

0 1 2 3

–10 –8 –6 –4 –2 0

C is (pF)

VGS (V)

(8)

Fig.16 Common-source input admittance; typical values.

VDS= 10 V; ID= 1 mA; Tamb= 25°C.

handbook, halfpage

MRC142 102

102

10 102 103

101 1 10

bis

gis gis, bis

(mS)

f (MHz)

Fig.17 Common-source transfer admittance;

typical values.

VDS= 10 V; ID= 1 mA; Tamb= 25°C.

handbook, halfpage

MRC141 10

1

10−1

10 102 103

bfs gfs gfs, bfs

(mS)

f (MHz)

handbook, halfpage

MRC144

−103

−102

10 102 103

−101

−1

−10

brs

grs brs, grs

(mS)

f (MHz)

handbook, halfpage

MRC143 10

1

10−1

10−2

10 102 103

bos

gos bos, gos

(mS)

f (MHz)

(9)

Fig.20 Equivalent noise voltage as a function of frequency.

VDS= 10 V; ID= 1 mA.

handbook, halfpage

10 102 103 104 f (Hz) 105 103

102

10

1 Vn (V)

MRC278

(10)

PACKAGE OUTLINE

Fig.21 SOT23.

handbook, full pagewidth

MBC846 10

max o

10 max

o

30 max

o 1.1 max 0.55 0.45

0.150 0.090

0.1 max

2 1

3

M 0.1 A B 0.48

0.38

TOP VIEW

1.4 1.2

2.5 max 3.0

2.8

M 0.2 A A

B

0.95 1.9

Dimensions in mm.

(11)

DEFINITIONS

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Data Sheet Status

Objective specification This data sheet contains target or goal specifications for product development.

Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.

Product specification This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

Cytaty

Powiązane dokumenty

Due to the large size of the vegetation (the length: 71 mm) connected to the lead and its coarse texture (Fig. 1), the patient was qualified for complete system removal during

Thermal Resistance Junction 150 °C/W Mounted on PC board FR4 with minimum pad size to Lead.. R

12: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper

a) Zgodność profilu podłużnego górnej powierzchni ław z dokumentacją projektową. Profil podłużny górnej powierzchni ławy powinien być zgodny z projektowaną niweletą.

OSTRZEŻENIE: Przed przystąpieniem do czynności konserwacyjnych należy sprawdzić, czy urządzenie zostało wyłączone i odłączone od źródła zasilania – ryzyko

Primary Steel Drain Peštan Confluo Frameless Line Uputstvo za ugradnju / Installation guide.. Zmierz

Edwards SAPIEN 3 Ultra Transcatheter Heart Valve Kit - With Edwards Certitude Delivery System.. Zestaw zastawki serca do implantacji przezcewnikowej Edwards SAPIEN 3 Ultra z

R R=S1-60 Długość profili poziomych / Length of horizontal profiles H1 H1=H-77 Wysokość skrzydła / Door height.. S1 S1=W/2+100 Szekość skrzydła /