• Nie Znaleziono Wyników

Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods

N/A
N/A
Protected

Academic year: 2021

Share "Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods"

Copied!
13
0
0

Pełen tekst

(1)

Delft University of Technology

Deriving vegetation drag coefficients in combined wave-current flows by calibration and

direct measurement methods

Chen, Hui; Ni, Yan; Li, Yulong; Liu, Feng; Ou, Suying; Su, Min; Peng, Yisheng; Hu, Zhan; Uijttewaal, Wim;

Suzuki, Tomohiro

DOI

10.1016/j.advwatres.2018.10.008

Publication date

2018

Document Version

Final published version

Published in

Advances in Water Resources

Citation (APA)

Chen, H., Ni, Y., Li, Y., Liu, F., Ou, S., Su, M., Peng, Y., Hu, Z., Uijttewaal, W., & Suzuki, T. (2018). Deriving

vegetation drag coefficients in combined wave-current flows by calibration and direct measurement

methods. Advances in Water Resources, 122, 217-227. https://doi.org/10.1016/j.advwatres.2018.10.008

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

AdvancesinWaterResources122(2018)217–227

ContentslistsavailableatScienceDirect

Advances

in

Water

Resources

journalhomepage:www.elsevier.com/locate/advwatres

Deriving

vegetation

drag

coefficients

in

combined

wave-current

flows

by

calibration

and

direct

measurement

methods

Hui

Chen

a,b,c

,

Yan

Ni

d

,

Yulong

Li

a,b,c

,

Feng

Liu

a,b,c

,

Suying

Ou

a,b,c

,

Min

Su

a,b,c

,

Yisheng

Peng

e

,

Zhan

Hu

a,b,c,∗

,

Wim

Uijttewaal

f

,

Tomohiro

Suzuki

f,g

a Institute of Estuarine and Coastal Research, School of Marine Science, Sun Yat-sen University, Guangzhou 510275, China b State-Province Joint Engineering Laboratory of Estuarine Hydraulic Technology, Guangzhou 510275, China

c Guangdong Province Engineering Research Center of Coasts, Islands and Reefs, Guangzhou 510275, China d Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China

e School of Environmental Science and Engineering/Research Center of Wetland Science, Sun Yat-Sen University, Guangzhou 501275, China f Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, the Netherlands

g Flanders Hydraulics Research, Berchemlei 115, Antwerp 2140, Belgium

a

r

t

i

c

l

e

i

n

f

o

Keywords: Wave dissipation Vegetation Drag coefficient Wave-current interaction Keulegan-Carpenter number Flume experiment

a

b

s

t

r

a

c

t

Coastalvegetationisefficientindampingincidentwaveseveninstormevents,thusprovidingvaluableprotections tocoastalcommunities.However,largeuncertaintieslieindeterminingvegetationdragcoefficients(CD ),which aredirectlyrelatedtothewavedampingcapacityofacertainvegetatedarea.Onemajoruncertaintyisrelatedto thedifferentmethodsusedinderivingCD .Currently,twomethodsareavailable,i.e.theconventionalcalibration approachandthenewdirectmeasurementapproach.Comparativestudiesofthesetwomethodsarelackingto revealtheirrespectivestrengthsandreducetheuncertainty.Additionaluncertaintystemsfromthedependence ofCD onflowconditions(i.e.wave-onlyorwave-current)andindicativeparameters,i.e.Reynoldsnumber(Re) andKeulegan-Carpenternumber(KC).RecentstudieshaveobtainedCD -Rerelationsforcombinedwave-current flows,whereasCD -KCrelationsinsuchflowconditionremainunexplored.Thus,thisstudyconductsathorough comparisonbetweentwoexistingmethodsandexplorestheCD -KCrelationsincombinedwave-currentflows.Bya uniquerevisitingprocedure,weshowthatCD derivedbythedirectmeasurementapproachhaveabetteroverall performanceinreproducingbothactingforceandtheresultingwavedissipation.Therefore,agenericCD -KC

relationforbothwave-onlyandwave-currentflowsisproposedusingdirectmeasurementapproach.Finally,a detailedcomparisonofthesetwoapproachesaregiven.Thecomprehensivemethodcomparisonandtheobtained newCD -KCrelationmayleadtoimprovedunderstandingandmodellingofwave-vegetationinteraction.

1. Introduction

Uprightvegetationincoastalwetlandscansignificantlyattenuate in-cidentwaveenergy,thusprovidingprotectionstocoastalhabitatsand structures(Andersonetal.,2011;Vuiketal.,2016,2018).Thewave dampingeffect issignificant eveninstorm conditions(Mölleret al., 2014).Additionally,naturalvegetationecosystemscanadjusttheirbed elevationtosealevelriseviaecogeomorphologicalfeedbacks,which enableslong-termsustainablecoastaldefensesolutions(Arkemaetal., 2013;D’AlpaosandMarani,2016;D’Alpaosetal.,2016;Temmerman andKirwan,2015).Withincreasingstorminessinthefuture(Donnelly etal.,2004;Youngetal.,2011),theprotectionofferedbycoastal veg-etationcanbeofgreaterimportance.

Correspondingauthorat:InstituteofEstuarineandCoastalResearch,SchoolofMarineScience,SunYat-senUniversity,No.135,XingangXiRoad,Guangzhou 510275,China.

E-mailaddress:huzh9@mail.sysu.edu.cn(Z.Hu).

Waveenergydissipationbyvegetation(hereafterreferredasWDV)is affectedbyincidentwaveheight(H,MéndezandLosada,2004;Bradley andHouser,2009),waveperiod(T,Augustinetal.,2009;Suzukietal., 2012),theratioofwaterdepthtovegetationheightinthewater(h/hv, Ysebaert etal., 2011;Yangetal.,2012),dragcoefficient(CD,Henry etal.,2015;Losadaetal.,2016a,b),stiffness(Boumaetal.,2005;Luhar etal.,2017;Pauletal.,2016)andstemfrontalareaofplantsperunit height(i.e.Nb

v,Nisthenumberofstemsperunitareaandbvisthestem diameter,Augustinetal.,2009;FonsecaandCahalan,1992;Nepf,2012, 1999;Ozeren etal.,2014).Thisknowledgehasalsobeenadaptedin differentnumericalmodels(e.g.Augustinetal.,2009;Caoetal.,2015; Mazaetal.,2013;Suzukietal.,2012).Recentexperimentalstudieshave alsoidentifiedWDVisaffectedbyco-existingcurrents(LiandYan,2007; Pauletal.,2012;Huetal.,2014;Losadaetal.,2016a,b).

https://doi.org/10.1016/j.advwatres.2018.10.008

Received12February2018;Receivedinrevisedform4October2018;Accepted11October2018 Availableonline16October2018

(4)

Table1

AreviewofCD relationsinvegetation-waveinteractionandtheirderivingmethods.

Reference Mimic Type Flow condition CD relation Deriving method

Kobayashi et al. (1993) Flexible plastic strips Waves CD = 0.08 + (2200/ Re ) 2.4 Calibration method

2200 < Re < 18,000

Méndez et al. (1999) Flexible plastic strips Waves CD = 0.08 + (2200/ Re ) 2.2 Calibration method

2000 < Re < 15,500 (no swaying)

CD = 0.40 + (4600/ Re ) 2.9

2300 < Re < 20,000 (swaying)

Mendez and Losada (2004) Flexible real vegetation Waves CD = 0.47exp( − 0.052 KC ) Calibration method

R 2 = 0.76

3 ≤ KC ≤ 59

Bradley and Houser (2009) Flexible real vegetation Waves CD = 253.9 KC −3.0 Calibration method

R 2 = 0.95

0 < KC < 6 Field data

Calculated using the relative velocity of the seagrass blades

Ranjit S. Jadhav et al. (2013) Flexible real vegetation Waves CD = 70 KC −0.86 Calibration method

R 2 = 0.95

25 < KC < 135

Anderson and Smith (2014) Flexible plastic strips Waves CD = 1.10 + (27.4/ KC ) 3.08 Calibration method

R 2 = 0.88

26 < KC < 112

CD = 0.76 + (744.2/ Re )1 .27

R 2 = 0.94

533 < Re < 2296

Ozeren et al. (2014) b Rigid wooden cylinders Waves C

D = 1.5 + (6.785/ KC ) 2.22 Calibration method

R 2 = 0.21

Nv = 156m −2 , h v = 0.63m

CD = 2.1 + (793/ Re ) 2.39

Flexible plastic strips CD = 0.683 + (12.07/ KC ) 2.25

Nv = 350m −2 , h v = 0.48m

Infantes et al. (2011) Flexible real vegetation Waves lg C D = − 0.6653 ∗ lg Re + 1.1886 Direct measurement

R 2 = 0.77 method

Hu et al. (2014) Rigid wooden cylinders Wave + Current CD = 1.04 + (730/ Re ) 1.37 Direct measurement

R2 = 0.66 method

300 < Re < 4700

Losada et al. (2016a,b ) Flexible real vegetation Wave ± Current CD = 0.08 + (50,000/ Re ) 2.2 Calibration method

R 2 = 0.60 (regular waves) CD = 0.25 + (75,000/ Re ) 9

(regular waves + currents) C D = 0.50 + (50,000/ Re ) 9

(regular waves-currents)

WDVismainlyinducedbythedragforceprovidedbythevegetation actingonthewatermotion,whichcanbequantifiedbyMorison equa-tion(Dalrympleetal.,1984;Morisonetal.,1950).Thedragforce(Fd) isproportionaltothesquareofthevelocity,vegetationfrontalareaand vegetationdragcoefficient(CD).Thus,choosingsuitableCDvaluesisof vitalimportancetoaccurateWDVprediction.Theparameterizationof CDiscurrentlyoneofthemajordifficultiesinmodelingtheinteractions betweenvegetationandwatermotion(Suzukietal.,2012;Luharand Nepf,2013;Mazaetal.,2015a;Caoetal.,2015).Thus,determiningCD hasbeenamainsubjectinnumerousexistingstudies(seeTable1).

CDistypicallydeterminedbyexperiments,eitherbycalibrationor directmeasurementapproach(Table1).Thecalibrationapproachisa conventionalmethod,whichdeterminesCDbycalibratingitsvaluein WDVmodelstofitthemeasuredwaveheightreduction(e.g.Mendez etal.,1999;Augustinetal.,2009).Previously,thismethodcouldnot beappliedinthecasesofvegetationincombinedwave-currentflows, aspreviousmodelsdidnottakeintoaccounttheinfluenceofco-existing currentonWDV(Dalrympleetal.,1984).Thislimitationhasrecently been relaxedby a new modelproposed by Losadaet al. (2016a,b), whichcanexplicitlyaccountforWDVincombinedwave-currentflows. Thus,thecalibrationmethodcannowbeappliedtoderiveCDinboth wave-onlyandcombinedwave-currentconditions.Comparedtothe cal-ibrationmethod,thedirectmeasurementmethod isanew approach (Huetal.,2014).ThisapproachisbasedontheoriginalMorison equa-tioninsteadof WDVmodels,anditrequiressynchronizedimpact ve-locityandforcedatatoderiveCDbyquantifyingtheworkdonebythe dragforceoveronewaveperiod.AstheMorisonequationholdsinboth

wave-onlyandwave-currentflows,thisapproachcanbeappliedto de-riveCDinbothflowconditions.Thus,avegetationdragcoefficientCDin wave-onlyandwave-currentflowscanbeobtainedbybothcalibration anddirectmeasurementmethods.However,themeritsanddrawbacks ofthesetwomethodshavenotbeenexploredinparallel.Adetailed com-parisonofthesetwomethodscanbevaluableforfutureexperimental andnumericalstudies.

Manypreviousstudieshaveidentifiedthatvegetation drag coeffi-cientCDinoscillatoryflows(i.e.wave-onlyorcombinedwave-current) varieswithReynoldsnumber(Re)(seeTable1andFig.1a).The ob-tainedCD-RerelationsallshowthatCDdecreaseswithincreasingRe. Itissimilartothosederivedfromunidirectionalflowsconditions,but CD valueshave greaterrangeof variation(0.1to100)inoscillatory flows(Nepf,2012).MostofthepreviousCD-Rerelationsareobtained ineitherwave-onlyorcurrent-onlycondition.Itisonlyuntilrecently thatnewCD-Rerelationsareextendedtocombinedwave-currentflow conditions(Huetal.,2014;Losadaetal.,2016a,b).Suchanextension is ofimportanceasthecombinedwave-currentflowsarecommonin e.g.naturalwetlands.BesidesCD-Rerelations,CDinoscillatoryflows hasbeenfoundtobeafunctionofKeuglan-Carpenter(KC)number(see Table1andFig.1b).MendezandLosada,(2004)foundthatCD-KC rela-tionsaremoresuitableforoscillatoryflowscomparedtoCD-Rerelations. However,CD-KCrelationshaveonlybeenexploredinwave-only condi-tionssofar(seeTable1andFig.1b).Thus,suchrelationsincombined current-waveflowsareyettobeexplored.

Inthisstudy,weaimtoprovide1)athoroughcomparisonbetween thecalibrationanddirectmeasurementmethods,and2)agenericCD

(5)

-H. Chen et al. Advances in Water Resources 122 (2018) 217–227

Fig.1. SelectedCD -Re(panela)andCD -KC(panelb)relationsfrompreviousstudiesthatlistedintheTable1.

KCrelationforvariousoscillatoryflows,i.e.wave-onlyandcombined wave-currentflows. Toourknowledge,thecurrent studyis thefirst studytoprovideadetailedcomparisonbetweentwodifferentmethods inderivingCDforpurewaveandcombinedcurrent-waveflows.The obtainedinsightscanbevaluabletotheunderstandingandmodelling ofthewave-current-vegetationinteractions.Toachievethesegoals,we re-analyzethedatafromrecentlabexperimentsthatmeasuredWDVin bothwave-onlyorcombinedwave-currentconditions(Huetal.,2014; Jadhavetal.,2013;Losadaetal.,2016a,b;Ozerenetal.,2014).Both calibrationanddirectmeasurementmethodsareappliedfor compari-son.TocomparethedifferentCDderivingmethods,wecreateaunique re-visitingprocedure,whichevaluateshowwellthederivedCDcan re-producedthemeasuredwavereductionandactingforce.Finally,a syn-thesisofthesetwomethodsandagenericCD-KCrelationforboth wave-onlyandcombinedwave-currentflowsisprovided.

2. Methods 2.1. Datacollection

ToderiveCDviadifferentmethodsandaCD-KCrelationincombined wave-currentflow,wecollectedthepublisheddataofarecent experi-ments(Huetal.,2014).ThedataofHuetal.(2014)areanalyzedin detailbecausevelocityandactingforcedataweremeasured simultane-ouslyat1000Hz,enablingthedirectmeasurementmethod.

TheexperimentinHuetal.,(2014)wasconductedinawaveflume witha6mlongmimickedvegetationpatchwasplacedinthemiddleof thewaveflume(Fig.2).Thevegetationmimicswerewoodencylinders withadiameterof10mm.Thebuiltvegetationcanopywas0.36mtall andthetestedwaterdepthswere0.25mand0.50m,respectively.The submergenceratio(h/hv=1–1.39)isrelativelysmall(Nepf,2004). Reg-ularwavesareusedinthistest.Thedataofwaveheight,velocityand actingforceinthispreviousstudyiscollectedinthecurrentstudyto deriveanewCD-KCrelation.Theimpactvelocitydataatlocations1–4 weremeasuredbyEMFs(electromagneticflowmeters).Atlocations1 and3,theactingforceonvegetationmimicswasmeasuredbyforce sen-sorsdevelopedatDeltares(formerDelftHydraulics,TheNetherlands). Atlocations2and4,theforcewasmeasuredbyloadcells(model300) developedbyUIILCELL.However,thecells atlocation2and4were notfunctioningproperlyduringtheexperiment.Thus,onlytheforce datameasuredatlocations1and3areincludedinthecurrentstudy. Huetal.(2014)testedtheconditionswhensteadycurrentsflowedin thesamedirectionaswavepropagation,i.e.followingcurrent condi-tion,whileLosadaetal.(2016a,b)testedconditionswithbothfollowing andopposingcurrents.Currentstudyisconstrainedtoconditionswith followingcurrentsonlyforparallelcomparison.

Besides the above-mentioned two previous studies on combined current-waveflows,CD-KCrelationsderivedpreviouslyinJadhavetal. (2013)andOzerenetal.(2014)forwave-onlyconditionsarealso col-lectedtobecompared withthenewrelationsderivedinthecurrent study.Ozeren etal.(2014)use rigidcircularcylinders,witha diam-eter of0.0094m,astemdensityN=156stems/m2andastemheight hv=0.63m,whichiscomparabletotheexperimentalconditionofthis study.Jadhavetal.(2013)collectedfielddataofWDVduringatropical storm,andthetestedvegetationwasflexiblesaltmarshplants,Spartina alterniflora.TheaveragestemdensitywasN=422stems/m2andthestem heightwashv=0.22m,whiletotalplantheightis0.63mandthe aver-ageddiameterofcircularcylinderisdeterminedas0.008m.

2.2. Dataanalysis

2.2.1. DefinitionofKCandRe

TheKeuleganCarpenternumberKCisdefinedas:

𝐾𝐶=𝑈𝑚𝑇𝑏𝑣 (1)

where Um is the measured maximum horizontal velocity in the wave propagation direction at the half water depth in both wave-only and wave-current flows. This velocity is chosen following Huetal.(2014)becausevelocityatthehalfofthewaterdepthroughly equalstothedepth-averagevelocityinthevegetationcanopywhenthe submergenceratioissmall(e.g.h/hv=1–1.39inHuetal.2014).Thus, itisagoodrepresentativeoftheactingvelocityonvegetationstemsfor conditionswithsmallsubmergenceratios,andasuitablecharacteristic velocityforKCandRedefinition.Tiswaveperiodandbvisdiameter ofthecircularcylinder,whichisthecommoncharacteristiclengthfor KC andReinvegetatedflow(Nepf, 2012).Forrealvegetationcases, themeasuredmeandiameterof vegetationstemscanbe usedasthe characteristiclength(Jadhavetal.,2013).Reisdefinedas:

𝑅𝑒=𝑈𝑚𝑏𝑣𝜈 (2)

𝜈 beingthekinematicviscosityofthefluid. 2.2.2. Velocitydataanalysis

ConsideringDopplerEffect,thehorizontalflowvelocityincombined wavesandcurrentflowisgivenas:

𝑈𝑤𝑐=𝑈0+ 𝑔𝑘 2𝜎𝑤𝑐𝐻

cosh𝑘(𝑧+)

cosh𝑘ℎ cos(𝑘𝑥𝜎𝑡) (3)

whereU0isunidirectionalcurrentvelocity,gisthegravitational accel-eration,𝜎wcistheangularfrequencyassociatedwithcombinedwaves andcurrents(𝜎wc=𝜎 −U0k),𝜎 isangularfrequency,kisthewave num-ber,Hiswaveheightandhiswaterdepth.Thesubscriptwcindicatesthe caseofcombinedwavesandcurrents.Uwcisthemeasuredcombined ve-locityatthehalfwaterdepth,asitroughlyequalstothedepth-average velocityinthevegetationcanopy,i.e.theactingvelocityonvegetation.

(6)

Fig.2. Experimentset-upofHuetal.(2014)tomeasuresynchronizedflowvelocity(Uwc )andactingforce(F)onwoodencylinders(mimicvegetation)atlocations 1–4.(a)isthetopviewoftheinstrumentsandthemimicvegetationdeployment.(b)isaphotooftheconstructedthemimicvegetation.(c)isaphotoofsynchronized forceandvelocitymeasurementtoobtainin-phasedata.Thewhitedashlinesindicatetwoinstrumentsareplacedatthesamecross-section.

2.2.3. Deriving𝐶𝐷_𝑐𝑎𝑙incombinedwave-currentflowsbycalibration method

Thissectiondescribesthederivationof𝐶𝐷_𝑐𝑎𝑙incombined current-waveflowbycalibrationmethodfollowingLosadaetal.(2016a,b).Itis onlyuntilrecentlythecalibrationapproachhasbeenextendedto com-binedwave-currentflows,asmostpreviousmodelsdonotaccountfor theeffectofcurrentsonWDV.Losadaetal.(2016a,b)modifiedthe an-alyticalformulationofDalrympleetal.(1984)toincludetheeffectof currentsonWDV𝐶𝐷_𝑐𝑎𝑙incombinedwave-currentflowscanbederived as: 𝐶𝐷_𝑐𝑎𝑙= [ 𝑔(1+ 2𝑘ℎ sinh2𝑘ℎ )( 𝑔 𝑘tanh𝑘ℎ )1∕2 +𝑔𝑈0 ( 3+ 4𝑘ℎ sinh2𝑘ℎ ) +3𝑘𝑈02 ( 𝑔 𝑘coth𝑘ℎ )1∕2] 𝛽∕ [ 16 3𝜋𝑁ℎ𝑣𝑏𝑣 ( 𝑔𝑘 2𝜎𝑤𝑐 )3 sinh3𝑘ℎ𝑣+3sinh𝑘ℎ𝑣 3𝑘cosh3𝑘ℎ 𝐻0 ] (4)

where𝛽 isadampingcoefficientstemmedfromrelativewaveheight (Kv)attenuationinDalrympleetal.(1984):

𝐾𝑣=𝐻𝐻 0

= 1

1+𝛽𝑥 (5)

whereHisthewaveheightalongthevegetationmimicareaandH0is theinitialwaveheight.Whenspatialwaveheightdataareavailable,𝛽 canbeobtainedbyfittingtheEq.(5).Subsequently,theobtained𝛽 can besubstitutedinEq.(4)toderiveCD_cal.

2.2.4. Deriving𝐶𝐷_𝑑𝑖𝑟incombinedwave-currentflowsbydirect measurementmethod

Inbothpurewaveandcombinedwave-currentflows,forceona sin-glestemcanbeexpressedbyMorisonequation(Morisonetal.,1950): 𝐹=𝐹𝐷+𝐹𝑀=1 2𝜌𝐶𝐷_𝑑𝑖𝑟ℎ𝑣𝑏𝑣𝑈|𝑈| + 𝜋 4𝜌𝐶𝑀ℎ𝑣𝑏𝑣 2𝜕𝑈 𝜕𝑡 (6)

whereFisthetotalinlineforceonavegetationstem,FDisdragforce,FM isinertiaforce,𝜌 isthedensityofthefluid,𝐶𝐷_𝑑𝑖𝑟andCMarethedrag

derivedbydirectmeasurementmethodandinertiacoefficients respec-tively,hvistheheightofvegetationinwater,bvisthediameterof cir-cularcylinderandUishorizontalflowvelocity.

Thedirectmeasurementmethodderives𝐶𝐷_𝑑𝑖𝑟fromtheperspective of theacting force on thevegetation cylinders.The period-averaged 𝐶𝐷_𝑑𝑖𝑟isderivedbycomputingtheworkdonebythetotalforceover oneperiod.ItisassumedthattheworkdonebyFMiszeroorcloseto zerooverafullwaveperiod,anditholdsforbothwave-onlyand com-binedwave-currentflows(Huetal.,2014).Therefore,theworkdone byFDisequaltotheworkdonebythetotalforce(Fwc).Thus,a period-averageddragcoefficientcanbederivedfromthefollowingequation (Huetal.,2014): 𝐶𝐷_𝑑𝑖𝑟= 2∫0𝑇𝐹𝐷𝑈𝑤𝑐𝑑𝑡 ∫0𝑇𝜌ℎ𝑣𝑏𝑣𝑈𝑤𝑐2 ||𝑈𝑤𝑐||𝑑𝑡 = 2∫ 𝑇 0 𝐹𝑈𝑤𝑐𝑑𝑡 ∫0𝑇𝜌ℎ𝑣𝑏𝑣𝑈𝑤𝑐2 ||𝑈𝑤𝑐||𝑑𝑡 (7) wherethetotalforceFandUwc canbedirectlyobtainedfromactual measurementstoderive𝐶𝐷_𝑑𝑖𝑟.ByapplyingEq.(7),itisnotnecessaryto separateFDandFMwhenderivingperiod-averageddragcoefficient. Ac-curatelyseparatingthesetwoforcescanbedifficultbecausebothforces arerelatedtoanunknown coefficient,i.e.CD andCM, andhave dif-ferentphaserelationswiththevelocity.Additionally,thisequationis applicableinbothwave-onlyandcombinedwave-currentconditions.

TocheckifitisvalidtoneglecttheworkdonebyFMinEq.(7),we quantifyandcomparetheworkdonebyFDandFM.Thetime-varying workdoneisevaluatedasfollowing:

𝜀𝐷=𝐹𝐷𝑈𝑤𝑐 (8)

𝜀𝑀=𝐹𝑀𝑈𝑤𝑐 (9)

wherethetime-varyingFDandFMareobtainedbyseparatingthetotal measuredforce.Weassumetheinertiacoefficient(CM)is2for cylin-ders(e.g.DeanandDalrymple,1991)andcalculatedtheFMfollowing Eq.(6).FDisthenderivedbysubtractingFMfromthetotalforce. Period-averagedworkdonebydragforce(𝜀𝐷)andinertiaforce(𝜀𝑀)canbe obtainedbyaveragingtheEq.(8)and(9)overafullwaveperiod.

(7)

H. Chen et al. Advances in Water Resources 122 (2018) 217–227

Fig.3. Theworkflowofrevisiting(checking)thederiveddragcoefficientsby differentmethods.ThecalibrationmethodderivesCD_cal fromtheperspective

ofwaveenergydissipation,whereasthedirectmeasurementmethodderives

CD_dir fromtheperspectiveofactingforceonvegetation.Weexaminethe de-riveddragcoefficientsbyrevisitingnotonlytheirdirectlylinkedquantities(i.e. energydissipationoractingforce,thesolidredarrows),butalsotheircounter parameters(thedashredarrows).(Forinterpretationofthereferencestocolour inthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

2.2.5. RevisitingthederivedCD

ThecalibrationapproachderivesCD_calfromtheperspectiveofwave energydissipation,whereasthedirectmeasurementapproachderives CD_dirfromtheperspectiveofactingforce.Inordertoprovidean ob-jectiveandquantitativeevaluationofthetwodifferent methods, we revisitthederiveddragcoefficientsfollowingtheprocedureshownin Fig.3.Thederiveddragcoefficientsbybothmethodsareusedto com-puteboththewaveenergydissipationandtheactingforce.Thus,the deriveddragcoefficientswerenotonlyexaminedbytheirownlinked quantity(energydissipationoractingforce)butalsotheircounter quan-tity,providingacross-checkofthetwodifferentmethods.

TocheckthevalidityofthederivedCD_calandCD_dirinreproducing WDV,theywereusedtocompute𝛽 byreversingEq.(4).Theobtained 𝛽 isthenusedinEq.(5)tocomputeKv, andsubsequentlycompared withthemeasuredKvforevaluation.ThereproducedKvisdenotedas Kv_calwhenCD_cal isused,andKv_dirwhenCD_dir isused.Similarly,to checkthevalidityofCD_calandCD_dirinreproducingactingforce,they areutilizedinEq.(6)toreproducebothtime-varyingandthemaximum totalforce,whicharesubsequentlycomparedwiththemeasurements. ThereproducedmaximumtotalforceisdenotedasFcal_maxandFdir_max, respectively.ItisexpectedthattheWDVcanbebetterreproducedby usingCD_calandactingforcecanbebetterreproducedbyusingCD_dir. Theserevisitingproceduresareconductedtosetacontextforthe cross-check:reproducingforcewithCD_calandreproducingWDVwithCD_dir. Bycombiningbothchecks,wecanevaluatewhichmethodcanderive dragcoefficientsthathaveabetteroverallperformanceinreproducing bothforceandWDV.

3. Results

3.1. WDVandCDderivedviacalibrationmethod

ThecalibrationmethodderivesCD_calbasedonspatialwaveheight reductionpattern,whichcanbeinfluencedbyco-existingcurrents.The waveheightdata ina recentstudies(Huetal., 2014)areshown in Fig.4todemonstratetheinfluenceofco-existingcurrentsonWDVand toillustratehowtocalibrateCD_calvaluesfromthewaveheightdata.

TheexperimentofHuetal.(2014)showsthatWDVcanbeeither promotedorsuppressedbyafollowingcurrent,dependingonthe (rel-ative)magnitudeofthecurrentvelocity(Fig.4b).TheWDVvariations leadtodifferent𝛽 values,andeventuallyarereflectedindifferentCD_cal values.Thetestedvegetationdensitywas139stems/m2,andthetested mimicswere0.36mtall(with0.5mwaterdepth).Theincidentwave wasregularwavewith0.08mwaveheightandthewaveperiodwas

Fig. 4. Thereductionof relativewave height(Kv )along tested vegetation

patches.ThedatawereobtainedinHuetal.(2014).TestC05Wmeansthe

wavewith0.05m/scurrentvelocity.

1.5s.Inwave-onlyconditions,𝛽 isfittedtobe0.059.Withasmall fol-lowingcurrent(0.05m/s),𝛽 (andWDV)isreducedtobe0.041,butwith largerfollowingcurrents(0.15–0.30m/s),𝛽 (andWDV)increasesfrom 0.067to0.132,whichishigherthanthatofthewave-onlycondition. Thereasonforthevariationin WDVwithdifferentfollowingcurrent velocitymagnitudeisillustratedinHuetal.(2014).

3.2. 𝐶𝐷_𝑑𝑖𝑟derivedviadirectmeasurementmethod

Thedirectmeasurementmethodderives𝐶𝐷_𝑑𝑖𝑟bycalculatingthe workdonebythetotalforceactingonvegetationincludingbothdrag force(FD)andinertialforce(FM)part(seeEq.7).Itisassumedthatthe workdonebyFMisclosetozerooverafullwaveperiodormuchsmaller comparingtothatofFD.Thus,itisnotnecessarytoseparatethemwhile estimatingtheperiod-averaged𝐶𝐷_𝑑𝑖𝑟.Therelativemagnitudeofwork donebyFDandFMisthereforeofimportancetosuchassumption.

TheworkdonebyFDandFMovertwowaveperiodareshownin Fig.5.Thewaterlevelrigidplantmimicdensityandwaveconditions arethesame,andthecurrentvelocityincreasesfromFig.5atod.The temporallyvarying𝜀Dand𝜀Mhaveclearcyclicbehaviors.𝜀Disalways positive,but𝜀Malternatesbetweenpositiveandnegativevalues.With theincreasedfollowingcurrentvelocity,𝜀Dandtheperiod-averaged𝜀𝐷 becomeslarger,whereasthenetvalueofperiod-averaged𝜀𝑀remains closetozero.Inall4cases,𝜀𝐷issufficientlyhigherthan𝜀𝑀.Thus,the workdonebythetotalforce inEq.(7)isdominatedbyFD,andthe influenceof𝜀𝑀islimitedoverafullwaveperiod.

Fig.6summarizesallthecasestestedinHuetal.(2014),andshows 𝜀𝐷isingeneralmuchlargercomparedto𝜀𝑀.Itisclearthatwiththe increaseofKC,𝜀𝐷increases,whereasEIremainsclosetozero.Theratio betweentheabsolute𝜀𝐷and𝜀𝑀issmallerwithsmallKCvalues(around 10).Thesmallestratiobetweenthemisabout3,implyingthatthe𝜀𝐷 isalwaysthebulkpartoftheworkdonebythetotalforce.Thus,itis consideredacceptabletoderive𝐶𝐷_𝑑𝑖𝑟viaEq.(7)withoutseparatingthe respectivecontributionofFDandFM.

3.3. CD-KCrelationsinwave-onlycondition

Wefirstderivedragcoefficientsinwave-onlyflowsthataretested inHuetal.(2014),asitistheconditioninvestigatedbymostprevious studies.ItisclearthatCD-KCrelationderivedbythedirect measure-mentmethodsharesthesamegeneralpatternasthosederivedbythe calibration method,i.e.CD decreaseswiththeincreasedKC(Fig.7). Comparingtothecalibrationmethod,theCD-KCrelationfromthe di-rectmeasurementmethodleadstolessscatteringamongdifferentmimic

(8)

Fig.5. Workdonebyactingdragforce(𝜀D )andinertiaforce(𝜀M )indifferenthydrodynamicconditions;PWrepresentswave-onlyconditionandC05W,C15Wand C20Wrepresentthewavewithunderlyingcurrent0.05m/s,0.15m/sand0.20m/srespectively.

0

10

20

30

40

50

60

70

80

90

100 110 120

KC

0.00

0.05

0.10

W

ork done by drag f

o

rce or inertia f

orce (J)

Fig.6. TherelationbetweenKCnumberandtheworkdonebydragforce(𝜀𝐷 )orinertiaforce(𝜀𝑀 )overawaveperiod.‘pw’standsforwave-onlyconditionsand ‘cw’standsforcurrentwaveconditions.

densitiesandsubmergenceconditions(Fig.7candd).Followingthe di-rectmeasurementapproach,theCD-KCrelationforpurewavecasesis:

𝐶𝐷=6.94∗𝐾𝐶(−0.72)+0.87(𝑅2=0.79) (10) ItisnotedthattheaboverelationhasmuchhigherR2value com-paringtothatderivedbythecalibrationmethod(R2=0.21). Further-more,theaboverelationissimilartotheCD-KCrelationproposedin Ozerenetal.(2014)(Fig.7a),butdifferentfromthatinJadhavetal. (2013)(Fig.7b).ItisnotedthattherelationinOzerenetal.(2014)is ap-plicablewhenKCisintherangebetween5and35,whereastherelation inJadhavetal.(2013)isapplicablewhenKCisintherangebetween 25and135.

3.4. CD-KCrelationincombinedwave-currentflows

ByusingthenewmodelofLosadaetal.(2016a,b),dragcoefficients incombinedcurrent-waveflowscanalsobederivedbythecalibration method.Previously,theycouldonlybederivedbythedirect measure-mentmethod.InFig.8,wecomparetheCD-KC relationsderivedby bothmethods.Bothrelationsforcombinedwave-currentflowhavethe generalreductiontrendsimilartothatinwave-onlyconditions.Because ofthesuperimposedcurrentU0,thecombinedwave-currentconditions wereinherentlyassociatedwithhigherKC.AsKCvariesintherange between7and120,the𝐶𝐷_𝑐𝑎𝑙fromthecalibratedmethodreducesfrom 10.59to0.25.Itisclearthat𝐶𝐷_𝑐𝑎𝑙hasasubstantialdegreeof scatter-ingamongdifferentmimicstemdensitiesandwaterdepths.Thedegree of scatteringismuch reducedin therelationbetween𝐶𝐷_𝑑𝑖𝑟andKC

(9)

H. Chen et al. Advances in Water Resources 122 (2018) 217–227

Fig.7.RelationbetweenKCandCD basedonvariousdatasource.(a)isbasedoncalibratedCD inOzerenetal.(2014);(b)isbasedoncalibratedCD inJadhavetal. (2013);(c)isbasedoncalibratedCD inHuetal.(2014);(d)isbasedonCD datathatarederivedbythedirectmeasurementmethodinHuetal.(2014).

Fig.8. RelationbetweenKCandCD :panelaisderivedbycalibrationmethodincombinedwave-currentflow;panelbisderivedbydirectmeasurementapproach

incombinedwave-currentflow.

(Fig.8).Theobtained𝐶𝐷_𝑑𝑖𝑟iswithintherangeof1to2.No appar-entdifferencebetweendifferentdensitiesandsubmergenceratiocanbe observed.

To obtain a generic relation for both wave-only conditions and combinedwave-currentconditions,wesummarizeallthe𝐶𝐷_𝑑𝑖𝑟from Huetal.(2014)in Fig.9.TheCD-KCrelationforbothflowscan be

expressedas:

𝐶𝐷=12.89∗𝐾𝐶(−1.25)+1.17(𝑅2=0.66) (11) The above relationshows that in bothwave-onlyconditions and combinedwave-currentconditions,CD-KCrelationhasasimilartrend, i.e.,withtheincreasingKC,CDgraduallydecreasesandapproachesto aconstantvalue(i.e.1.2).Furthermore,thisempiricalCD-KCrelation

(10)

0 10 20 30 40 50 60 70 80 90 100 110 120 0 1 2 3 4

KC

C

D VD1,emergent-pw VD2,emergent-pw VD3,emergent-pw VD1,submerged-pw VD2,submerged-pw VD3,submerged-pw VD1,emergent-cw VD2,emergent-cw VD3,emergent-cw VD1,submerged-cw VD2,submerged-cw VD3,submerged-cw fit line in this study fit line by Jadhav et al.,2013 fit line by Ozeren et al.,2014

Fig.9.CD -KCrelationinbothwave-onlyandcombinedwavecurrentconditionsbasedondirectmeasurementmethod.Theredmarkersand“pw” standforthe resultsofwave-onlyconditions,whiletheblackmarkersand“cw” standsfortheresultsofcombinedwavecurrentconditions.thefitequationfromJadhavetal. (2013)andOzerenetal.(2014),seeTable1.

1.0π 2.0π 3.0π 4.0π

wt

-0.1 0.0 0.1 0.2 0.3 0.4

Force (N)

PW Fmea F dir Fcal 1.0π 2.0π 3.0π 4.0π

wt

-0.1 0.0 0.1 0.2 0.3 0.4

Force (N)

C05W 1.0π 2.0π 3.0π 4.0π

wt

-0.1 0.0 0.1 0.2 0.3 0.4

Force (N)

C15W 1.0π 2.0π 3.0π 4.0π

wt

-0.1 0.0 0.1 0.2 0.3 0.4

Force (N)

C20W

Fig.10. Measuredandreproducedtotalforceactingonfirstforcesensor(seeFig.1)overtwowaveperiods.

issimilartothatinOzerenetal.(2014),butdifferenttothatinJadhav etal.(2013).

3.5. RevisitingthevalidityofthederivedCD_dirandCD_cal

Tofurthertesttheapplicabilityofthetwodifferentmethods,the deriveddragcoefficientswererevisitedbyusingthemtocomputeFas welltheWDV.Thecomputedforceandwavedecayaresubsequently comparedwiththemeasurements.Thecomputed(usingEq.(4))and measuredinstantaneoustotalactingforceisplottedinFig.10.Withno orsmallfollowingcurrents(PWandCW05cases),thetotalforce oscil-latesinbetweenpositiveandnegativedirections.Whenthefollowing currentsbecomeslarger(CW15andCW20),thetotalforcestaysinthe positivedirectionsforafullperiod.Itisclearthatthetemporal vari-ationofthetotalforce calculatedusing CD_dir (Fdir)agreeswellwith

themeasuredtotalforce,whileasthetotalforcecalculatedusingCD_cal (Fcal)overestimatesthetotalforcewhenthefollowingcurrentsisstrong. Theshowndataisfromthetestcasewith6cmwaveheightand1.2s waveperiodinHuetal.(2014).TheCD_dirforthePW,CW05,CW10 andCW20conditionare2.51,1.76,1.33and1.37,respectively. How-ever,theCD_calforthesameconditionsare3.94,3.82,3.53and4.46, which areconsiderablylarger thanCD_dir.Themaximumreproduced forceoverawaveperiod(Fmax_calandFmax_dir)showninFig.10are fur-theranalyzedinthefollowingsection.

Fig.11showstheresultsofthecross-checkprocessasdemonstrated inFig.3.Itisnotsurprisingthatgoodagreementcanbeobtainedwhen check thederivedCD_dir andCD_cal withtheirownlinkedquantities. TheR2valueis0.98betweenF

dir_max(i.e.themaximumtotalforceover onewaveperiodcomputedusingCD_dir)andthemeasuredmaximum totalforce(Fmea_max)(datanotshow).Similarly,theR2valueis0.99

(11)

be-H. Chen et al. Advances in Water Resources 122 (2018) 217–227 0 0.1 0.2 0.3 0.4 0.5 0.6

F

mea_max

(N)

0 0.1 0.2 0.3 0.4 0.5 0.6

F

ca l_ m ax

(N)

Fmea-Fcal y=x 0 0.2 0.4 0.6 0.8 1

K

v_mea 0 0.2 0.4 0.6 0.8 1

K

v_d ir KV_mea-KV_dir y=x R2=0.2619 R2=0.5768

a

b

Fig.11. (a)comparingreproducedmaximumtotalforcebasedonCD _cal(i.e.Fcal_ max)withmeasuredmaximumtotalforce(Fmea_ max),(b)comparingthereproduced relativewaveheightbasedonCD _dir(i.e.Kv_dir )withthemeasuredrelativewaveheight(Kv_mea ).They=xlinesareplottedforreference.

tweenKv_calandKv_mea(datanotshow).Thecross-checkprocess, how-ever,providesuswithfutureinsights.ItisclearthatFcal_max(i.e.the maximumtotalforceoveronewaveperiodcomputedusingCD_cal)does notmatchwithFmea_max.ThecorrespondingR2valueisonly0.26. Simi-larly,theagreementbetweentheKv_dir(i.e.WDVcomputedusingCD_dir) andKv_meaisalsonotideal.TheresultingR2valueis0.58.Insummary, itisclearthatthetotalforceandWDVderivedusingCD_calhavebetter overallagreementwithmeasurements.

4. Discussion

4.1. CD-KCrelationsinwave-onlyandcombinedwave-currentconditions Innaturalcoastalwetlands,combinedwave-currentflowsare com-monflowconditions.Toourknowledge,existingCD-KCrelationsareall forvegetationinwave-onlyconditions,suchrelationswhereasin com-binedwave-currentconditionshavenotyetbeenderived.By reanalyz-ingthedataofHuetal.(2014),wederivedanewoverallCD-KCrelation forbothwave-onlyandcombinedwave-currentflowconditionsinthe presentstudy.Thisnewrelationretainsthesamegeneralformas previ-ousstudieslistedinTable1.WithincreasingKCnumber,theCDvalues decreaseregardlessoftheflowconditionsandgraduallyapproach1.The derivedrelationisofvaluetotheunderstandingandmodellingWDV.

CD hasgenerallybeenexpressedasfunctionsof Re,andprevious studieshavederivedCD-Rerelationsforpurecurrent,wave-onlyand combined wave-currentconditions (Huet al., 2014). Previous stud-ieshavesuggestedthatCD-KCrelationsaremoresuitable for oscilla-toryflows (Augustinetal., 2009;MendezandLosada,2004;Ozeren etal.,2014).ComparedtoRethatdependssolelyonmaximum veloc-ity,KCnumberscontainadditionalinformationofwaveperiod.Thus, theyareexpectedtoresultinmoresuitablefunctionsindescribingCD dynamics.However,thenewCD-KCrelationobtainedhereshow other-wise.TheR2valueofthederivednewC

D-KCrelation(includingboth pure-waveandcombinedcurrent-wave) is0.66,whichislower com-paredtotheR2 value(0.89)of thederivedoverallC

D-Rerelation in Huetal.(2014). Thismaybeattributedtothetestvegetation mim-icsinHuetal.(2014)wererigidsticks,whereaspreviousstudiesthat obtainedbetterCD-KCcorrelationsgenerallytestedflexiblevegetation mimics(e.g.Augustinetal.,2009;MendezandLosada,2004;Ozeren etal.,2014).Thisindicates thatthedependenceof CD onKC (wave

period)is strongerwithflexible vegetation.Nonetheless,thederived CD-KCrelationisofvaluetointerpretingtheWDVprocess.Ourresults confirmthatinbothwave-onlyandcombinedwave-currentconditions, thevariationofCDwithKCfollowsthesametrend,whichhasnotbeen reportedbefore.

4.2. ComparingtwodifferentmethodsinderivingCD

Thecurrentstudyderivesthedragcoefficientsbytwodifferent ap-proaches, aimingtocomparethemandprovide guidelinesforfuture experimentalstudies.Suchacomparisonwasnotpossibleuntilthe re-centmodeldevelopmentthatincludestheeffectofcurrentintoWDV modelling(Losadaetal.,2016a,b).Adetailedcomparisonofthesetwo methodsisincludedintheTable2.

Thesetwomethodsarecomparedintermsoftheirmainequations, required data, flow conditions, applicable environments,the perfor-mancesinreproducingforceandWDV,aswellastheR2valueofthe CD-KCrelations(Table.2).Thecalibrationapproachmakesuseofthe energydissipationequationandwaveheightdata,whereasthedirect measurementapproachreliesonMorrisonequationandsynchronized velocityandforcedata.Clearly,theCD-KCrelationderivedbythedirect measurementmethodhaveconsiderablyhigherR2valuethanthat de-rivedbythecalibrationmethod(Figs.7and8).However,thecalibration approachhasawiderrangeofapplication,asitcanbeappliedinboth labandfieldenvironments.Withthecurrentinstrumentation,thedirect measurementmethodisonlyapplicableinlabconditions,asitrequires synchronizedforceandvelocitydatawithhighaccuracy,whicharenot feasibletoobtaininfieldconditions.Additionally,thecalibration meth-odscanbereadilyusedinflexiblevegetationcases(Mazaetal.,2015b; Laraetal.,2016;I.J.Losadaetal.,2016a,b),whereasthedirect mea-surementmethodisnotyetabletodoso.Itisbecausesuchmethod re-quiresmeasurementofactingvelocityonvegetationstem,i.e.relative velocitybetweenwatermotionandvegetationstemmotion,whichis difficulttomeasurewiththecurrentsetup.However,itispossibleifthe videoanalysistechniqueisincludedforrelativevelocitymeasurements (LuharandNepf,2016).

ThecalibrationmethodderivesCDfromtheperspectiveofwave en-ergydissipation,whereasthedirectmeasurementmethodisfromthe perspectiveofvegetation-inducedforce.Inordertoevaluatethesetwo methodsobjectively,weusedthederivedCDfromthedifferentmethods

(12)

Table2

ComparisonoftwoapproachesindeterminingCD .

Calibration approach Direct measurement approach

References Dalrymple et al., 1984; Kobayashi et al., 1993; Losada et al.,

2016a,b; Mendez and Losada, 2004; Möller et al., 2014

Hu et al., 2014; Infantes et al., 2011

Main equation

Wave height reduction by vegetation a:

𝐶 𝐷 = [ 𝑔 ( 1 + 2𝑘ℎ sinh2𝑘ℎ ) ( 𝑔 𝑘 tanh 𝑘ℎ ) 1∕2+ 𝑔 𝑈 0 ( 3 + 4𝑘ℎ sinh2𝑘ℎ ) + 3 𝑘 𝑈 02( 𝑔𝑘 coth 𝑘ℎ ) 1∕2 ] 𝛽∕ [16 3𝜋𝑁 𝑏 𝑣 ( 2𝑔𝑘𝜎𝑤𝑐) 3sinh3𝑘 𝑣+3sinh𝑘ℎ𝑣 3𝑘cosh3𝑘ℎ 𝐻 0 ] Morrison equation: 𝐶 𝐷 = 2∫ 𝑇 0𝐹𝑈𝑤𝑐𝑑𝑡𝑇 0𝜌ℎ𝑣𝑏𝑣𝑈2 𝑤𝑐|𝑈𝑤𝑐|𝑑𝑡 Required data

Wave height spatial distribution Synchronized impact flow velocity ( U wc )

and acting force ( F ) on vegetation cylinders

Flow conditions

Wave-only and combined wave-current flow Wave-only, pure current and combined wave-current flow

Applicable environ-ment

Laboratory and field Laboratory

Applicable vegetation

Rigid and flexible vegetation Rigid vegetation

R2 value when revisiting acting Forceb 0.26 0.98 R2 value when revisiting Kvc 0.99 0.58 R2 value of CD - KC relationsd 0.19 ( C D = − 0.024 ∗ KC −1.05 + 3.26) 0.66 ( C D = 12.89 ∗ KC −1.25 + 1.17) aThelistedequationistherecentformulationsderivedinLosadaetal.(2016a,b)forcombinedcurrentandwaveflows.Itshouldbenoted thatavarietyofequationsexistincalibratingCD ,dependingontheappliedwavedecaymodel.

b,c,dThecomparisonisbasedonthedatainHuetal.(2014).

tocomputeboththeactingforceandtheWDV.Thus,providinga cross-examinationofthesetwomethods(Fig.3).WeshowthattheCDvalues derivedfromtheperspectiveofforcecanbetterreproducethemeasured force(R2=0.98)comparedtoC

D_cal(R2=0.26).However,theCD val-uesofthedirectmeasurementmethodperformpoorerinreproducing WDV(R2=0.58)comparedtothatofC

D_cal(R2=0.99).Therefore,the CD derivedfromeitherenergyorforceperspectivecanfitbetterwith theirownrespectivequantitybutnotthecounterquantityasshownin Fig.11.

ThereasonthatdifferentmethodsleadstodifferentCDvaluesis per-hapsthattheworkdonebythedragforceisnottheonlyprocess lead-ingtoWDV.Otherprocessesliketurbulenceaswellassurfacefriction ofvegetationmimicsandflumewallsalsocontributetoenergy dissipa-tion,buttheyarenotaccountedinthecurrentWDVmodels.Thus,the derivedCD_calisactuallyasynthesisforanumberofprocesses,whereas CD_dirisonlyresponsibleforactingforce.Becauseoftheinvolvementof theadditionalprocesses,theCD_calandCD_dirdonotprovidethesame performanceinthecross-checkasthecheckwiththeirownrespective measurements(seeFig.3).Overall,thecheckofCD_dir obtainsbetter agreementwithmeasuredactingforce(R2=0.98)andWDV(R2=0.58). Therevisitingprocedurealsoimplythatnumericalmodelsthatarebuilt uponmomentumconservationequationsshouldseektousetheCD_dir, whereasothermodelsthatrelyonenergyconservation(anddonot ex-plicitlyaccountforturbulenceandfrictioneffects)shoulduseCD_calfor bettersimulationsofWDVprocess.

5. Conclusions

Byre-analyzingthepreviousdataofHuetal.(2014),thisstudyaims toreduce theuncertaintiesin thedifferentCDderivingmethodsand thedependenceofCDonhydrodynamicparameters(i.e.ReandKC). ThetwoavailablemethodsinderivingCD,i.e.thedirectmeasurement methodandthecalibrationmethod,arecomparedintermsoftheirmain equations,requireddata,flowconditions,applicableenvironments,and

theresultingCD-KCrelations(Table2).Furthermore,wecreateaunique re-visitingprocedure,whichevaluateshowwellthederiveddrag coef-ficientscanbeusedtoreproducethemeasuredwavereductionand act-ingforce.Toourknowledge,currentstudyisthefirststudyproviding athoroughcomparisonbetweenthesetwomethods,whichmayassist experimentdesignforfurtherinvestigationofCD.

Additionally,weformulateanewempiricalrelationbetweenCDand KCasanextensiontotheCD-RerelationinHuetal.(2014).TheCD -KC relation is basedon thedirectmeasurementmethod,andit isa genericrelationforbothwave-onlyandcombinedwave-current con-ditions.ThederivedCD-KCrelationforbothwave-onlyandcombined wave-currentconditionshaveasimilardecreasingtrendasprevious re-lations forwave-onlycases,whichhasnot beenreportedpreviously. TheobtainedgenericCD-KCrelationisexpectedtobeusefultofuture numericalmodelingstudies.

Acknowledgements

The authors thank two anonymous reviewers and an Editorial Boardmemberfortheircommentsthathelpedtoimprovethispaper. TheauthorsgratefullyacknowledgefinancialsupportoftheNational NaturalScienceFoundation ofChina(No.51609269,51520105014), and the Joint Research Projects NSFC (No. 51761135022) – NWO (No. ALWSD.2016.026) – EPSRC (No. EP/R024537/1): Sustainable Deltas,andScienceandTechnologyProgramofGuangzhouCity,China (201806010143).

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.advwatres.2018.10.008.

References

Anderson, M.E., Smith, J.M., 2014. Wave attenuation by flexible, idealized salt marsh veg- etation. Coast. Eng. 83, 82–92. https://doi.org/10.1016/j.coastaleng.2013.10.004 .

(13)

H. Chen et al. Advances in Water Resources 122 (2018) 217–227

Anderson, M.E., Smith, J.M., McKay, S.K., 2011. Wave dissipation by vegetation. ERDC CHETN–82.

Arkema, K.K., Guannel, G., Verutes, G., Wood, S.A., Guerry, A., Ruckelshaus, M., Kareiva, P., Lacayo, M., Silver, J.M., 2013. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918.

https://doi.org/10.1038/nclimate1944 .

Augustin, L.N., Irish, J.L., Lynett, P., 2009. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast. Eng. 56, 332– 340. https://doi.org/10.1016/j.coastaleng.2008.09.004 .

Bouma, T.J. , De Vries, M.B. , Low, E. , Peralta, G. , Tánczos, I.C. , Van De Koppel, J. , Her- man, P.M.J. , 2005. Trade-offs related to ecosystem engineering: a case study on stiff- ness of emerging macrophytes. Ecology 86, 2187–2199 .

Bradley, K. , Houser, C. , 2009. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. J. Geophys. Res. F Earth Surf 114 .

Cao, H., Feng, W., Hu, Z., Suzuki, T., Stive, M.J.F., 2015. Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation. Ocean Eng 110, 258–269. https://doi.org/10.1016/j.oceaneng.2015.09.057 .

D’Alpaos, A., Marani, M., 2016. Reading the signatures of biologic–geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93 (Part B), 265–275. Ecogeomorpho- logical feedbacks of water fluxes, sediment transport and vegetation dynamics in rivers and estuaries https://doi.org/10.1016/j.advwatres.2015.09.004 .

D’Alpaos, A., Toffolon, M., Camporeale, C., 2016. Ecogeomorphological feedbacks of water fluxes, sediment transport and vegetation dynamics in rivers and estuar- ies. Adv. Water Resour. 93 (Part B), 151–155. Ecogeomorphological feedbacks of water fluxes, sediment transport and vegetation dynamics in rivers and estuaries

https://doi.org/10.1016/j.advwatres.2016.05.019 .

Dalrymple, R.A., Kirby, J.T., Hwang, P.A., 1984. Wave diffraction due to areas of energy dissipation. J. Waterw. Port Coast. Ocean Eng. ASCE 110, 67–79.

https://doi.org/10.1061/(ASCE)0733-950X(1984)110:1(67) .

Dean, R. , Dalrymple, R. , 1991. Water Wave Mechanics for Engineers and Scientists, Ad- vanced Series on Ocean Engineering. World Scientific, Tokyo .

Donnelly, J.P., Cleary, P., Newby, P., Ettinger, R., 2004. Coupling instrumental and geolog- ical records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophys. Res. Lett. 31. L05203

https://doi.org/10.1029/2003GL018933 .

Fonseca, M.S., Cahalan, J.A., 1992. A preliminary evaluation of wave attenu- ation by four species of seagrass. Estuar. Coast. Shelf Sci. 35, 565–576.

https://doi.org/10.1016/S0272-7714(05)80039-3 .

Henry, P.Y., Myrhaug, D., Aberle, J., 2015. Drag forces on aquatic plants in nonlinear random waves plus current. Estuar. Coast. Shelf Sci. 165, 10–24.

https://doi.org/10.1016/j.ecss.2015.08.021 .

Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W., Stive, M., 2014. Laboratory study on wave dissipation by vegetation in combined current-wave flow. Coast. Eng. 88, 131–142.

https://doi.org/10.1016/j.coastaleng.2014.02.009 .

Infantes, E., Orfila, A., Bouma, T.J., Simarro, G., Terrados, J., 2011. Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure. Limnol. Oceanogr 56, 2223–2232. https://doi.org/10.4319/lo.2011.56.6.2223 .

Jadhav, R.S., Chen, Q., Smith, J.M., 2013. Spectral distribution of wave energy dissipation by salt marsh vegetation. Coast. Eng. 77, 99–107.

https://doi.org/10.1016/j.coastaleng.2013.02.013 .

Kobayashi, N., Raichle Andrew, W., Toshiyuki, Asano, 1993. Wave atten- uation by vegetation. J. Waterw. Port Coast. Ocean Eng. 119, 30–48.

https://doi.org/10.1061/(ASCE)0733-950X(1993)119:1(30) .

Lara, J.L., Maza, M., Ondiviela, B., Trinogga, J., Losada, I.J., Bouma, T.J., Gorde- juela, N., 2016. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 1: guidelines for physical modeling. Coast. Eng 107, 70–83.

https://doi.org/10.1016/j.coastaleng.2015.09.012 .

Li, C.W., Yan, K., 2007. Numerical investigation of wave- current-vegetation interaction. J. Hydraul. Eng. 133, 794–803.

https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(794) .

Losada, InigoJ., Maza, M., Lara, J.L., 2016a. A new formulation for vegetation- induced damping under combined waves and currents. Coast. Eng. 107, 1–13.

https://doi.org/10.1016/j.coastaleng.2015.09.011 .

Losada, I.J., Maza, M., Lara, J.L., 2016b. A new formulation for vegetation- induced damping under combined waves and currents. Coast. Eng. 107, 1–13.

https://doi.org/10.1016/j.coastaleng.2015.09.011 .

Luhar, M., Infantes, E., Nepf, H., 2017. Seagrass blade motion under waves and its impact on wave decay. J. Geophys. Res.-Oceans 122, 3736–3752.

https://doi.org/10.1002/2017JC012731 .

Luhar, M., Nepf, H.M., 2013. From the blade scale to the reach scale: a char- acterization of aquatic vegetative drag. Adv. Water Resour. 51, 305–316.

https://doi.org/10.1016/j.advwatres.2012.02.002 .

Luhar, M., Nepf, H.M., 2016. Wave-induced dynamics of flexible blades. J. Fluids Struct. 61, 20–41. https://doi.org/10.1016/j.jfluidstructs.2015.11.007 .

Maza, M., Lara, J.L., Losada, I.J., 2015a. Tsunami wave interaction with mangrove forests: a 3-D numerical approach. Coast. Eng. 98, 33–54.

https://doi.org/10.1016/j.coastaleng.2015.01.002 .

Maza, M., Lara, J.L., Losada, I.J., 2013. A coupled model of submerged vegeta- tion under oscillatory flow using Navier-Stokes equations. Coast. Eng. 80, 16–34.

https://doi.org/10.1016/j.coastaleng.2013.04.009 .

Maza, M., Lara, J.L., Losada, I.J., Ondiviela, B., Trinogga, J., Bouma, T.J., 2015b. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2: experimental analysis. Coast. Eng. 106, 73–86.

https://doi.org/10.1016/j.coastaleng.2015.09.010 .

Méndez, F.J. , Losada, I.J. , 2004. An empirical model to estimate the propagation of ran- dom breaking and nonbreaking waves over vegetation fields. Coast. Eng. 51, 103–118 .

Mendez, F.J., Losada, I.J., 2004. An empirical model to estimate the propagation of ran- dom breaking and nonbreaking waves over vegetation fields. Coast. Eng. 51, 103–118.

https://doi.org/10.1016/j.coasaleng.2003.11.003 .

Mendez, F.J., Losada, I.J., Losada, M.A., 1999. Hydrodynamics induced by wind waves in a vegetation field. J. Geophys. Res.-Oceans 104, 18383–18396.

https://doi.org/10.1029/1999JC900119 .

Méndez, F.J. , Losada, I.J. , Losada, M.A. , 1999. Hydrodynamics induced by wind waves in a vegetation field. J. Geophys. Res. C Oceans 104, 18383–18396 .

Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B.K., Wolters, G., Jensen, K., Bouma, T.J., Miranda-Lange, M., Schimmels, S., 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 7, 727–731. https://doi.org/10.1038/NGEO2251 .

Morison, J.R., Johnson, J.W., Schaaf, S.A., 1950. The force exerted by surface waves on piles. J. Pet. Technol. 2, 149–154. https://doi.org/10.2118/950149-G .

Nepf, H., 2012. Flow Over and Through Biota. Treatise on Estuarine and Coastal Science, pp. 267–287. https://doi.org/10.1016/B978-0-12-374711-2.00213-8 .

Nepf, H.M. , 2004. Vegetated flow dynamics. In: Fagherazzi, S., Marani, M., Blum, L.K. (Eds.), Coastal and Estuarine Studies. American Geophysical Union, Washington, D. C., pp. 137–163 .

Nepf, H.M., 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35, 479–489. https://doi.org/10.1029/1998WR900069 . Ozeren, Y., Wren, D.G., Wu, W., 2014. Experimental investigation of wave attenuation

through model and live vegetation. J. Waterw. Port Coast. Ocean Eng. 140. 04014019

https://doi.org/10.1061/(ASCE)WW.1943-5460.0000251 .

Paul, M., Bouma, T.J., Amos, C.L., 2012. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Mar. Ecol. Prog. Ser. 444, 31–41. https://doi.org/10.3354/meps09489 .

Paul, M., Rupprecht, F., Möller, I., Bouma, T.J., Spencer, T., Kudella, M., Wolters, G., van, W., Jensen, K., Miranda-Lange, M., Schimmels, S., 2016. Plant stiffness and biomass as drivers for drag forces under extreme wave loading: a flume study on mimics. Coast. Eng. 117, 70–78. https://doi.org/10.1016/j.coastaleng.2016.07.004 . Suzuki, T., Zijlema, M., Burger, B., Meijer, M.C., Narayan, S., 2012. Wave dissipa- tion by vegetation with layer schematization in SWAN. Coast. Eng. 59, 64–71.

https://doi.org/10.1016/j.coastaleng.2011.07.006 .

Temmerman, S., Kirwan, M.L., 2015. Building land with a rising sea. Science 349, 588– 589. https://doi.org/10.1126/science.aac8312 .

Vuik, V., Jonkman, S.N., Borsje, B.W., Suzuki, T., 2016. Nature-based flood protection: the efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coast. Eng. 116, 42–56. https://doi.org/10.1016/j.coastaleng.2016.06.001 .

Vuik, V., van Vuren, S., Borsje, B.W., van Wesenbeeck, B.K., Jonkman, S.N., 2018. Assess- ing safety of nature-based flood defenses: dealing with extremes and uncertainties. Coast. Eng. 139, 47–64. https://doi.org/10.1016/j.coastaleng.2018.05.002 . Yang, S.L., Shi, B.W., Bouma, T.J., Ysebaert, T., Luo, X.X., 2012. Wave attenuation at a

salt marsh margin: a case study of an exposed coast on the Yangtze Estuary. Estuaries Coasts 35, 169–182. https://doi.org/10.1007/s12237-011-9424-4 .

Young, I.R., Zieger, S., Babanin, A.V., 2011. Global trends in wind speed and wave height. Science 332, 451–455. https://doi.org/10.1126/science.1197219 .

Ysebaert, T., Yang, S.-L., Zhang, L., He, Q., Bouma, T.J., Herman, P.M.J., 2011. Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone. Wetlands 31, 1043–1054.

https://doi.org/10.1007/s13157-011-0240-1 .

Cytaty

Powiązane dokumenty

A ponieważ te dzieła nie służą już więcej wielkim

The application of a virtual WWTP (instead of a real one) made it possible to verify the reliability of the method by comparing the real values of the model parameters (used for

Étant donné que les phénomènes appartenant à la culture des masses sont souvent passés sous silence par la critique universitaire, nous voudrions, dans la présente étude,

„Stąd też za tezę główną książki przyjąłem, iż nikt nie rodzi się (dobrym) obywatelem, lecz staje się nim dopie- ro pod wpływem zamierzonego wysiłku nad doskonaleniem

Kościół tw orzy się przez dar Ducha udzielanego w ierzącym , którzy przyjęli chrzest i należą do Ciała C hrystusa... Płasz­ czyzna więzi kościelnej jest

– Dział księgi metrykalne diecezji tarnowskiej (wersja papierowa) – sygn.. Księgi są również w wersji

Kościół katolicki na Węgrzech ma wiele do zrobienia w ukazanej tu sytuacji, ale musi się otworzyć na takie społeczeństwo, postulował prelegent, w jakim Kościół żyje,

Given such an overtopping volume, the water flows with a certain velocity over the crest and inner slope of the dike, with a certain flow depth and in a certain time.. The