• Nie Znaleziono Wyników

Een proces voor continue harding: Continue harding van monomere vetzuren

N/A
N/A
Protected

Academic year: 2021

Share "Een proces voor continue harding: Continue harding van monomere vetzuren"

Copied!
385
0
0

Pełen tekst

(1)

Continue harding van monomere vetzuren

G-groep najaar 1993

(2)

continue harding van monomere vetzuren

bijlagen

In opdracht van Unichema Chemie B.V. Technische Universiteit Delft.

Vakgroep der Apparatenbouw voor de Procesindustrie

Michael Abspoel Henk Chin A Lien Daan van Doeland Mark Dorsteen Marga de Feber Jan Gooijer Manine Hoeksma Bob Okhuijsen Lizzette Raktoe Marc Ramondt Amold Reynders Wouter Schoneveld Twan Schouten Wouter Smit Pieter Verheul Niek de Vries G-groep najaar 1993

(3)

R1

VOEDING

V6

800

19 Rl REAKTOR V6 PRODUKT AFSCHEIDER H7 STEARINEZUUR CONDENSER VlO STEARINEZUUR AFSCHEIDER Ht3 WATER CONDENSOR H15 BUTAAN CONDENSOR H17 WATER CONDENSOR R18 ADSORBER H20 VERHlnER R2t REGENERATOR

H20

@)

STROOMNUMMER

o

TEUPERA ruUR [C]

o

DRUK [BAR]

C22

20

mG

.

VERSE H2

Water

PRODUkT

PROCESSCHEMA CONTINUE HARDING OLIEZUUR G-GROEP

1

NAJAAR 1993

PROCES ZONDER OLIE-KRINGt

oor

H14 WATER CONDENSOR

(4)

T1

T3

T1: voedingstank

T2: droger

T3: buffertank

verse

-

H2 ___

~_-,.II---,

T4

T4: katalysatortank

P2:

hoge druk vetpomp

T5: ontspanvat

katalysator

T6: jaagtank

TB:

produkttank

R1

o

stroomnummer

D

temperatuur [C]

o

druk [bar]

T7

, ,

,

, ,

,

F2

TB

PROCESSCHEMA CONTINUE HARDING OLIEZUUR

G-GROEP 1 NAJAAR 1993

(5)

r---~---~---_===~---~~~)---~

Rl

VOEDING

VB

G(]2J

10 ) Rl REAKTOR V6 PRODUKT AFSCHEIDER H7 STEARINEZUUR CONDENSER

H8

OLIE KOELER pg OLIE POMP

VlO STEARINEZUUR AFSCHEIDER

1113 1-114 H1S H17 RlS H20

rrtl

M12

~0

,.---~ 22 l - - = ' - - - ' WA lER CONDENSOR WA1ER CONDENSOR BUTAAN CONDENSOR WAlER CONDENSOR ADSORBER VERI·IITTER

I

R21 REGENERATOR ~ SlROOMNUMMER

o

lEMPERA ruUR

[C]

o

DRUK [BAR]

~

00

Water PRODUKT

C22

eDG

VERSE 1/2

PROCESSqiEMA CONTINUE HARDING OLIEZUUR G-GROEP 1 NAJAAR 1993 PROCES MET OLIE-KRINGLOOP

' .

(6)

R1

VOEDING

V6

800

19 Rl REAKTOR V6 PRODUKT AFSCHEIDER H7 STEARINEZUUR CONDENSER VlO STEARINEZUUR AFSCHEIDER Ht3 WATER CONDENSOR H15 BUTAAN CONDENSOR H17 WATER CONDENSOR R18 ADSORBER H20 VERHlnER R2t REGENERATOR

H20

@)

STROOMNUMMER

o

TEUPERA ruUR [C]

o

DRUK [BAR]

C22

20

mG

.

VERSE H2

Water

PRODUkT

PROCESSCHEMA CONTINUE HARDING OLIEZUUR G-GROEP

1

NAJAAR 1993

PROCES ZONDER OLIE-KRINGt

oor

H14 WATER CONDENSOR

(7)

Bijlage 11.5.1

(8)

Bijlage 11.5.1

Bepaling van de diameter van de aftappijp, bij nonnale voedingsstroom Aannamen:

in de kolom bevindt zich vloeistof (stearine zuur) en gas (waterstof) er stroomt alleen vloeistof door de aftappijp

Bepaling van de gemiddelde snelheid in de aftappijp

pL:= 750 di:= 48.10-3 1t 2 A :=-·di 4 2000 m := -3600 V:=~ pL V u: =-A

[kg/m3], dichtheid van de vloeistof [m], inwendige diameter van de aftappijp

[m2], oppervlakte van de doorsnede van de aftappijp

[kg/sj, voedingsstroom vloeistof

[m3/s], volumestroom vloeistof

[mis], gemiddelde snelheid vloeistof

u =0.409

l1V:= 0.560.10-3 [pas], dynamische viscositeit vloeistof

Re := pL·di·u Reynolds

l1v

Re =2.632'104 Turbulent!

Bepaling van de drukval in de aftappijp 1

f:= 0.316.Re 4 Frictiefactor volgens Blasius

f=O.025

. L:= 3 [m], lengte aftappijp (geschat)

Li:= 4O·di [m], inloopgebied

Li

=

1.92

( L ) 1 2

deltaP := f -+ 1.5 ·_·pL·u

di 2 [N/m2], drukval voor turbulente

stroming en aftappijp met scherpe instroomopening

(9)

Bepaling van instelhoogte van het scheidingsvlak in de kolom aG:= 0.11 aL:= 1- aG pL:= 750 pO:= 0.93 pgem := aL·pL + aG·pG pgem

=

667.602 h:= de1taP 9.81·pgem h =0.029 [-], gas hold-up [-], vloeistof hold-up [kg/m3], vloeistof dichtheid [kg/m3], gas dichtheid [kg/m3], gemiddelde dichtheid Cm], instelhoogte scheidingsvlak

(10)
(11)

Bijlage 11.5.2

(12)
(13)

CALCULATION OF A SHELL SUBJECT TO INTERNAL PRESSURE •

STOOMWEZEN RULES CHAPTER 00201 REVISED 92-12

Sheet Rev. Date Time 1 of 1 93-003 3\12\1993 9:08:49 SUBJECT MATERIAL TYPE

: scheidingsvat Harding3

ORDERNR.

:

: X6CrNiMoTi17122(1.4571)1% DESIGN TEMP. : : Cylinder 240.00

°c

Note(s) : 2.00 N/mm2 650.00 mm 632.02 mm 0.50 mm 0.00 mm 0.00

wn

0.00 0.600 1.000 8.99 mm

df is a special design factor. Calculation (z = 0.600): f

=

0.67 * 188.00 =

~

=

500.00 Re(vm)

=

188.00 ;:(20)

=

=

250.00 0.00 f g

=

125.96 zcalc

=

0.600 125.96 N/mm2 8.49 mm Used wallthickness:

d = d nom - tol - caint - caext = 8.49 mm Calculated strength reduction coefficient: zcalc = Pd*(Di + d) / (2*d*f) = 0.600

*

d =d + ca'eR + ca t =

1 =2.0 *

S

T(d*(Ox - dl) =

MÄwp

=2 * z *

~

* f/CO - dl (for z=0.60) =

MATP =14*2*z*d *f(20)/fDe-d) (for z=0.60) = Dmax unreinf. :0;4 * SQ!T(d:(D, -

* _ = Dmax501unreinf-2 SQRT(d (De d) (De dl/De (1/(Zcalc) 1) =

2 N/mm2 N/mm2 N/mm 2 N/mm 2 N/mm 8.49 mm 147.59 mm 2.00 N/mm 2 37.23 bar 29.52 mm 97.11 mm

(14)

CALCULATION OF A KNUCKLED HEAO ACCORDING TC

STOOM-WEZEN RULES CHAPTER D0203, REVISED 92-12

Sheet Date Time Rev. 1 of 2 3/12/1993 9:09:34 93-004

SUBJECT : Scheidingsvat Harding3

MATERIAL: X6CrNiMoTi17122(1.4571)1% TYPE : Korbbogen N/mm 2 500.00 Pd = 2.00 ~ = De = 650.00 mm Re(vm): 188.00 tolplate= 0.50 mm ;:(20): 250.00 % tol fab = 0.00 0.00 ca int = 0.00 mm f g = 188.00 caext = 0.00 mm f2 = 125.96 ril = 100.10 mm ri2 = 520.00 mm z = 0.60 Calculation d/r· 1 = 8.62

/

100.10 = 0.0861 ri17ri2 = 100.10

/

520.00

=

0.1925 f

~7~lJ1lll

188.00 N/mm 2

=

= f2 = Re(vm) = 0.67

*

188.00 fe = c 3

*

f = 1.46

*

188.00 = Knuckle

part

d = Pd

*

De

*

c 1

*

c 2 / (2

*

Z

*

f e ) ORDERNR. : DESIGN TEMP. : 240.00 oe 2 0.60 N/mm2 Zknu = N/mm2 Z = 0.48 N/mm2 hsph = 169.08 mm e 8.62 N/mm2 dSPh = mm N/mm2 d = 8.62 mm N/mm dknu = 9.12 mm ~~ = 2.00 N/mm MATP = 37.23 bar Cl = 2.1243 c2 = 1. 0264 c3

=

1.4575 2 125.96 N/mm2 274.01 N/mm = 8.62 mm d ·n

=

(d+ca xte n+caintern)/(1-(tolfab/100))+tolnlate= 9.12 mm

N~èe: fabricä~1oft

toleranee only taken into

accoun~

ior

knuckle part!

spherical part

d

=

=

6.93 mm

d min = d + ca extern +caintern + tolplate = 7.33 mm

(15)

CALCULATION OF A KNUCKLED HEAO ACCORDING TO STOOM-WEZEN RULES CHAPTER D0203, REVISED 92-12

Used wallthickness

d sph d nom -tol plate -ca extern -ca intern

Sheet Date Time Rev. = d knu = (dnom-tolplate}*(I-(tolfab/l00}}-caextern-caintern = Zknu = Pd * De * c 1 * c 2 / (2 * d k nu * fel = 0.600 zsph = Pd * (2 * r. 12

+

d sph )

/

(4 * d sph * f 2 ) = 0.483 Dmax unreinforced= 0.4 * SQRT(d * (2 * r12 .

+

d» = 38.03 13 = 2 * SQRT(d * (2 * r.

+

d» = 190.15 12 2 of 2 3/12/1993 9:09:35 93-004 8.62 mm 8.62 mm mm mm

(16)

REIHFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES

CHAPTER

D0501, REVISED 92-12

SUBJECT : : Sheet Date Time Rev. 1 of 2 3/12/1993 9:10:04 93-006 Scheidingsvat NOZZLE : Inlaatpijp GEOMETRY

.

.

Cylinder Harding3 ORDERNR. DESIGN TEMP. : P d

.

.

240.00

°c

2.00 N/mm2 nozzle

=

set in 90.00 0 gamma

=

y

=

0.00 mm z

=

0.60 Material

Shell data X6CrNiMoTi17122(1.4571)1% Nozzle data X6CrNiMoTi17122(1.4571)1%

Shell data Nozzle data

De

=

650.00 mm De2

=

d

=

10.00 mm

~~~om

=

tB~m

=

0.50 mm

=

ca

=

0.00 mm ca

=

f

=

125.96 N/mm2 f 1

=

d

=

9.50 mm

~2n201:

h~xt

=

1nt Note: l\n500.00 500.00 70.00 mm 10.00 mm 0.50 mm 0.00 mm R

e!D~oo

188.00 125.96 N/mm2 1.05 mm 65.00 mm 65.00 mm

~2n201

=

minimal nominal thickness according 00201

=

d2201 + tol + ca 2n201

~g

0.00 0.00

(17)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date Time Rev. 3\12\1993 9:10:04 93-006 SUBJECT NOZZLE GEOMETRY : Scheidingsvat Harding3 : Inlaatpijp ORDERNR. DESIGN TEMP. : 240.00 °c 2.00

N/mm

2 : cylinder c = b = d = AO =

~extmax

: hext

=

hintmax

=

dint d2ext d2int f2,~1 Al = = = = = 1 1.00 78.00 9.50 741. 05 29.97 65.00 23.97 65.00 9.50 9.50 0.55 1.00 602.69

mm

mm

mm

2

mm

mm mm mm mm mm

mm

P d : Auxilary value

Contributing width of curved wall

Contributing thickn. of curved wall Contributing area of curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of external nozzle wall Formula thickness of internal nozzle wall Min. thickness acc. 00201 (with z

=

1) Ratio of design stress

contributing area in nozzle wall

---=

=

=

= 1343.74 mm2 36041. 94 mm2 0.60 1.23

Contributing area of material Total area on wich pressure acts Reduction coefficient

c * (D.+d)/d) * (A/(2*A +A)

(18)

Bijlage

11

6.1

(19)
(20)

Bijlage 11.6.1

De natte waterstofstroom, afkomstig van de top van de kolom, wordt afgekoeld van 2AO naar 80°C met de droge waterstofstroom. Water wordt op de buitenkant van vertikale buizen gecondenseerdiar 217°C. De OIltwerpberekening volgen nu. ti ;= 70 Urn;= 10 TZ:= 80

'2

;= 217 Tl +T

z

T gems := - 2 -+ 273.15 shell H2-nat buis H2-droog T gems =433.15 cp mols ;= 27.143 + 9.273,10-3. T gems - 1.380·10-5. T gems 2 -t-7.645,10-9. T gems 3

cP mols =29.19174608

cp st:= 2.77'284.49 cp st =788.0373 cp dmp;= 32.243 -t- 1.923·1O-3·T gems - 1.055·1O-5.T gems Z -t--3.596·1O-9·T gems3

cp dmp = 30.8043312 mol h2 := 6.47 mol h2vers := 1 mol dmp := ?083 0-3 mol st := 6.47·1 478 Ph2s:=--T gems 0-5 ~ h2s := 1.842·1 Q h2s := mol h2'CP mols·(Tl - T2) 4 Q vent := mol st' 7 .966·1 0 Q st := mol st'CP st'(Tl - T

z)

Q dmp := mol dmp'CP dmp·(Tl - T2) Q ;= Q h2s + Q vent -t-Q st -t-Q dmp tI +

tz

T gemb := - 2 -+ 273.15 P h2s = 1.10354381 Q h2s = 3.02192955.104 Qvent =515.4002 Q st = 815.77621296 Q dmp =409.08151828 Q = 3.19595535.104 T gemb =416.65 CPmolb;= 27.143 + 9.273·1O-3·T gemb - 1.380·1O-5·T gemb2 + 7.645·1O-9·T gemb3

cp molb = 29.16391115 [K] [J/molK] [J/molK] [J/molK] [moVs] [moVs] [moVs] [moVs] [Pa·s] [J] [J] [J] [J] [J] [K] [J/mol·K]

Q h2droog := (mol h2 + mol h2vers)'CP molb'(

tz -

tI) Q h2droog = 3.20245992·10 4 [1]

(21)

U oud:= 220 Geschat A := Q A = 14.52706976 [m2] U oud·tlm 1 := 15.0 lengte pijp [m] d o:= 0.010 buitendiameter pijp [m] d i:= 0.008 birmendiameter pijp [m]

opplpijp := 1·1t·d 0 oppervlakte van een pijp [m]

A

N·· := N pijpen = 30.82739948

pIjpen opp 1 pijp nl := 2207

KI := 0.215

1

-(N~~f

D b:= do' KI bundel diameter D b = 0.09486752 [m]

D 5 := D b + 0.010 shell diameter D 5 =0.10486752 [m] fig 12.10

pt:= 1.25·d 0 pitch en baftle afstand [m]

lb:= 0.8·D 5 [m] (pt- d ).D ·lb A := 0 5 doorstroom-opp. As =0.00175955 [m2] s pt mo1h2

r

:= 5 A .500

r

5 =7.35414682 [kg/5·m2] 5 1t 2 doorsnee:= -·d i 4 [m2] A b := N pijpen 'doorsnee [m2]

r

b:= mol h2 + mol h2vers

500·A b

r

b =9.64148327 [kg/5·m2] 478 Ph2s:= -T gems P h2s = 1.10354381 [kg/m .... 3]

rs

u : = -s Ph2s

snelheid in shell u 5 =6.66411861 [mis]

1.27 ( 2 2) de := _ . pt - 0.785·d 0 do equivalente diameter de = 0.00987425 [m] P 5t := 785 [kg/m3] -3 ~ 5t := 1.7·10 [Pa·s] 1

-(

')'

5 Pst k 1 := 3.56·10- 'cp st" -18.02 k 1 = 77 .48864245 [W1m·K] 284 -3

(22)

Db Nr:= -pt mcond

r

cond:=---I·N pijpen ~ r cond = 3.98055049-10 [kg/s·m2] 1

l

p st"(p st - P h2s).9.81]3 (

Nr)-i

he := 0.95·k

r

.

2 -~st·r cond 3 he =5.40850681-106 [wlm2.0C]

r

·d . s e Re s: = -~h2s 3 Re s = 3.94227385-10

De stroming in de shell is dus turbulent

kw:= 16 hod:= 3000 h id:= 5000 ph2b:= 525.8 Roestvrij staal Pr s = 2.76174608 h h2 = 84756747956 h oe = 861.88565685 ph2b = 1.26197048 T gemb

r

b·di Reb:= -~h2s Re b =4.18739773-10 3

De stroming in de shell is dus turbulent

r

b ub:=--ph2b Prb:= Pr s k h2 0.8 0.33 hi :=-·0.021·Reb ·Prb de snelheid in buizen U:= ___________ ~I~---1 1

ln(:~)

do 1 do - + - + d . _ + + -h oe h od 0 2·kw d· h' d d ··h 1 1 1 1 .

Drukval in de buizen van de wanntewisselaar

jfb := 6.10-3 (fig. 12.24) u b = 7.64002283 h i =457.32730768

u

= 219.94532041 3 ÀP b = 3.42524358-10 ÀPb

-s-

= 0.03425244 10 [W1m·K] [m/s] [Pa] [bar]

(23)

REINFORCEMENTS FOR AH OPENING IN A CURVEO WALL STOOMWEZEN RULES CHAPTER 00501, REVISED 92-12 SUBJECT _ NOZZLE GEOMETRY nozzle

=

nozzle

=

gamma

=

y

=

zsph

=

zknu

=

: Scheidingsvat Harding3 : H2 uitlaatpijp : Korbbogen set in radial 90.00 0 0.00 mm 0.60 0.60

·

·

ORDERNR. DESIGN TEMP. : P d

·

·

Sheet Date Time Rev. 1 of 2 3/12/1993 9:11:40 93-006 240.00

°c

2.00 N/mm2 Material

Shell data X6CrNiMoTi17122(1.4571)1% Nozzle data X6CrNiMoTi17122(1.4571)1%

~500.00

500.00

R

elH~oo

0.00

0.00

Shell data Nozzle data

D

=

de

=

tBïm

=

ca

=

f

=

d

=

ril

=

r i2

=

Hate:

~2n201

: 2n201 650.00 mm De2

=

10.00 mm

~~~om

=

0.50 mm

=

70.00 mm 10.00 mm 0.50 mm 0.00 mm ca

=

0.00 mm 125.96 N/mm2 f 1

=

9.50 mm

~2n201:

100.10 mm 520.00 mm h ext _ int -125.96 N/mm2 1.05 mm 65.00 mm 65.00 mm minimal nominal thickness according D0201 d2201

+

tol

+

ca

(24)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES

CHAPTER

D0501, REVISED 92-12

Date

Time

Rev.

3\12\1993

9:11:40

93-006

SUBJECT

NOZZLE

GEOME'l'RY

A

A

zp

1

zr

zca1c

: Scheidingsvat Harding3

: H2 uitlaatpijp

: ORDERNR.

DESIGN

TEMP. :

240.00 oe

2.00 N/mm

2

: Korbbogen

= = =

=

=

=

=

=

= = = =

=

=

=

=

0.50

99.85 mm

9.50 mm

937.09 mm

2

29.97 mm

65.00 mm

23.97 mm

65.00 mm

9.50 mm

9.50 mm

0.55 mm

1.00

602.89 mm

2

1539.98

mm

2

34800.70

mm

2

1.20

1.20

1.20

P d

Auxi1ary value

eontributing width

eontributing thickn.

eontributing area of

.

.

of curved wall

of curved wall

curved wall

Maximal externa1 nozzle height

Actual external nozz1e height

Maximal internal nozzle height

Actual

internal nozzle height

Formula thickness of external nozzle wall

Formula thickness of internal nozzle wall

Min. thickness acc. 00201 (with z

=

1)

Ratio of design stress

Contributing area in nozzle wall

eontributing area of material

Total area on wich pressure acts

Reduction coefficient (across left )

Reduction coefficient (across right)

c * (Di+d)/d) * (A/(2*Ap+A)

(25)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES CHAPTER D050!, REVISED 92-12

SUBJECT NOZZLE GEOMETRY nozz1e

=

nozzle

=

gamma

=

y

=

~~~~

=

=

: Scheidingsvat Harding3 : Vloeistof uitlaatpijp : Korbbogen set in radial 90.00 0 0.00 mm 0.60 0.60 ORDERNR. : DESIGN TEMP. : P d : Sheet Date Time Rev. 1 of 2 3/12/1993 9:12:37 93-006 240.00 oe 2.00 N/mm2 Material

Shell data X6CrNiMoTi17122(1.4571)1% Nozzle data X6CrNiMoTi17122(1.4571)1%

I\n500.00 500.00

R

elH~oo

0.00

0.00

Shell data Nozzle data

De

=

dn~m

=

to

=

ca

=

f

=

d

=

ril

=

r i2

=

Note:

~2n201 ~

2n201 650.00 mm De2

=

10.00 mm

~g~om

=

0.50 mm

=

60.00 mm 5.00 mm 0.50 mm 0.00 mm ca

=

0.00 mm 125.96 N/mm2 f 1

=

9.50 mm

~2n201~

100.10 mm 520.00 mIn h7xt

=

l.nt 125.96 N/mm2 0.97 mm 220.00 mm 0.00 mm minimal nominal thickness according 00201 d2201

+

tol

+

ca

(26)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date Time Rev. 3\12\1993 9:12:37 93-006 SUBJECT NOZZLE GEOMETRY

~extmax

ext

~intmax

dint 2

~2j~1

Al 1 A A zp 1 zr zcalc : : Scheidingsvat Harding3 : Vloeistof uitlaatpijp : Korbbogen ORDERNR. DESIGN TEMP. : P d

.

.

240.00 °c 2.00 N/mm2 = = = =

=

=

=

=

=

=

=

=

=

=

0.50 99.85 mm 9.50 mm 937.51 mm2 19.75 mm 220.00

mm

15.80

mm

0.00

mm

4.50

mm

0.47

mm

1.00 131.17 mm2 1068.69

mm

2 33889.27

mm

2 0.86 0.86 0.86 Auxilary value contributing width Contributing thickn. Contributing area of of curved wall of curved wall curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of nozzle wall

Min. thickness acc. D0201 (with z

=

Ratio of design stress

contributing area in nozzle wall contributing area of material Total area on wich pressure acts Reduction coefficient (across left ) Reduction coefficient (across right) c * (D.+d)/d) * (A/(2*A +A)

~

P

(27)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

SUBJECT NOZZLE GEOMETRY nozzle

=

gamma

=

y

=

z = : Scheidingsvat Harding3 : Drukmetingspijpen : cylinder set in 90.00 0 0.00 mm 0.60

.

.

ORDERNR. DESIGN TEMP. : Pd : Sheet Date Time Rev. 1 of 2 3/12/1993 9:15:00 93-006 240.00 °c 2.00 N/mm2 Material

Shell data X6CrNiMoTi17122(1.4571)1% Nozzle data X6CrNiMoTi17122(1.4571)1%

~500.00

500.00 R

e!H~oo

0.00 0.00 188.00

Shell data Nozzle data

De

=

650.00 mm De2

=

100.00 mm d

=

10.00 mm

~~~om

=

10.00 mm tB~m

=

0.50 mm

=

0.50 mm ca

=

0.00 mm ca

=

0.00 mm t

=

125.96 N/mm2 t I

=

125.96 N/mm2 d

=

9.50 mm

~2n201:

1.29 mm 70.00 mm h~xt

=

0.00 mm 1. nt Note:

~2n201

=

minimal nominal thickness according D0201

=

d2201

+

tol

+

ca 2n201

(28)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date Time Rev. 3\12\1993 9:15:00 93-006 SUBJECT NOZZLE GEOMETRY : Scheidingsvat Harding3 : Drukmetingspijpen

.

.

ORDERNR. DESIGN TEMP. : 240.00 °c 2.00 N/mm2 : Cylinder

=

=

=

=

=

= =

=

=

=

=

=

= = = 1.00 78.00 mIn 9.50 mIn 741.05 mIn2 36.65 mIn 70.00 mIn 29.32 mIn 0.00 mIn 9.50 mIn 0.79 mm 1.00 438.44 mm2 1179.49 mm2 42254.67 mIn2 0.60 0.93 P d Auxilary value Contributing width Contributing thickn. contributing area of : of curved wall of curved wall curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of nozzle wall

Min. thickness acc. D0201 (with z = 1) Ratio of design stress

Contributing area in nozzle wall Contributing area of rnaterial Total area on wich pressure acts Reduction coefficient

(29)

REIHFORCEMENTS FOR AH OPENIHG IH A CURVED WALL

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

·

·

Sheet Date Time Rev. 1 of 2 3/12/1993 9:16:02 93-006 SUBJECT NOZZLE GEOMETRY : Scheidingsvat Harding3 : Vlottersch. tubulure : Cylinder ORDERNR. DESIGH TEMP. : P d

·

·

240.00

°c

2.00 N/mm2 nozzle gamma y z

=

=

=

=

set in 90.00 0 0.00 mm 0.60 Material

Shell data X6CrNiMoTi17122(1.4571)1%

Nozzle data X6CrNiMoTi17122(1.4571)1%

Shell data Hazzle data

De

=

650.00 mm De2

=

dn~m

=

10.00 mm

~g~om

=

to

=

0.50 mm

=

ca

=

0.00 mm ca

=

f = 125.96 N/mm2 f 1

=

d

=

9.50 mm

~2n201:

h~xt

=

l.nt Hate:

~500.00

500.00 102.00 mm 12.50 mm 0.50 mm 0.00 mm R

efH~oo

188.00 125.96 N/mm2 1.30 mm 70.00 mm 10.00 mm

~2n201

= minimal nomina1 thickness according 00201

=

d2201 + tol + ca 2n201

0.00 0.00

(30)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES CHAPTER D050!, REVISED 92-12

SUBJECT NOZZLE GEOMETRY nozz1e

=

nozzle

=

gamma

=

y

=

~~~~

=

=

: Scheidingsvat Harding3 : Vloeistof uitlaatpijp : Korbbogen set in radial 90.00 0 0.00 mm 0.60 0.60 ORDERNR. : DESIGN TEMP. : P d : Sheet Date Time Rev. 1 of 2 3/12/1993 9:12:37 93-006 240.00 oe 2.00 N/mm2 Material

Shell data X6CrNiMoTi17122(1.4571)1% Nozzle data X6CrNiMoTi17122(1.4571)1%

I\n500.00 500.00

R

elH~oo

0.00

0.00

Shell data Nozzle data

De

=

dn~m

=

to

=

ca

=

f

=

d

=

ril

=

r i2

=

Note:

~2n201 ~

2n201 650.00 mm De2

=

10.00 mm

~g~om

=

0.50 mm

=

60.00 mm 5.00 mm 0.50 mm 0.00 mm ca

=

0.00 mm 125.96 N/mm2 f 1

=

9.50 mm

~2n201~

100.10 mm 520.00 mIn h7xt

=

l.nt 125.96 N/mm2 0.97 mm 220.00 mm 0.00 mm minimal nominal thickness according 00201 d2201

+

tol

+

ca

(31)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date Time Rev. 3\12\1993 9:12:37 93-006 SUBJECT NOZZLE GEOMETRY

~extmax

ext

~intmax

dint 2

~2j~1

Al 1 A A zp 1 zr zcalc : : Scheidingsvat Harding3 : Vloeistof uitlaatpijp : Korbbogen ORDERNR. DESIGN TEMP. : P d

.

.

240.00 °c 2.00 N/mm2 = = = =

=

=

=

=

=

=

=

=

=

=

0.50 99.85 mm 9.50 mm 937.51 mm2 19.75 mm 220.00

mm

15.80

mm

0.00

mm

4.50

mm

0.47

mm

1.00 131.17 mm2 1068.69

mm

2 33889.27

mm

2 0.86 0.86 0.86 Auxilary value contributing width Contributing thickn. Contributing area of of curved wall of curved wall curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of nozzle wall

Min. thickness acc. D0201 (with z

=

Ratio of design stress

contributing area in nozzle wall contributing area of material Total area on wich pressure acts Reduction coefficient (across left ) Reduction coefficient (across right) c * (D.+d)/d) * (A/(2*A +A)

~

P

(32)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

SUBJECT NOZZLE GEOMETRY nozzle

=

gamma

=

y

=

z = : Scheidingsvat Harding3 : Drukmetingspijpen : cylinder set in 90.00 0 0.00 mm 0.60

.

.

ORDERNR. DESIGN TEMP. : Pd : Sheet Date Time Rev. 1 of 2 3/12/1993 9:15:00 93-006 240.00 °c 2.00 N/mm2 Material

Shell data X6CrNiMoTi17122(1.4571)1% Nozzle data X6CrNiMoTi17122(1.4571)1%

~500.00

500.00 R

e!H~oo

0.00 0.00 188.00

Shell data Nozzle data

De

=

650.00 mm De2

=

100.00 mm d

=

10.00 mm

~~~om

=

10.00 mm tB~m

=

0.50 mm

=

0.50 mm ca

=

0.00 mm ca

=

0.00 mm t

=

125.96 N/mm2 t I

=

125.96 N/mm2 d

=

9.50 mm

~2n201:

1.29 mm 70.00 mm h~xt

=

0.00 mm 1. nt Note:

~2n201

=

minimal nominal thickness according D0201

=

d2201

+

tol

+

ca 2n201

(33)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date Time Rev. 3\12\1993 9:15:00 93-006 SUBJECT NOZZLE GEOMETRY : Scheidingsvat Harding3 : Drukmetingspijpen

.

.

ORDERNR. DESIGN TEMP. : 240.00 °c 2.00 N/mm2 : Cylinder

=

=

=

=

=

= =

=

=

=

=

=

= = = 1.00 78.00 mIn 9.50 mIn 741.05 mIn2 36.65 mIn 70.00 mIn 29.32 mIn 0.00 mIn 9.50 mIn 0.79 mm 1.00 438.44 mm2 1179.49 mm2 42254.67 mIn2 0.60 0.93 P d Auxilary value Contributing width Contributing thickn. contributing area of : of curved wall of curved wall curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of nozzle wall

Min. thickness acc. D0201 (with z = 1) Ratio of design stress

Contributing area in nozzle wall Contributing area of rnaterial Total area on wich pressure acts Reduction coefficient

(34)

REIHFORCEMENTS FOR AH OPENIHG IH A CURVED WALL

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

·

·

Sheet Date Time Rev. 1 of 2 3/12/1993 9:16:02 93-006 SUBJECT NOZZLE GEOMETRY : Scheidingsvat Harding3 : Vlottersch. tubulure : Cylinder ORDERNR. DESIGH TEMP. : P d

·

·

240.00

°c

2.00 N/mm2 nozzle gamma y z

=

=

=

=

set in 90.00 0 0.00 mm 0.60 Material

Shell data X6CrNiMoTi17122(1.4571)1%

Nozzle data X6CrNiMoTi17122(1.4571)1%

Shell data Hazzle data

De

=

650.00 mm De2

=

dn~m

=

10.00 mm

~g~om

=

to

=

0.50 mm

=

ca

=

0.00 mm ca

=

f = 125.96 N/mm2 f 1

=

d

=

9.50 mm

~2n201:

h~xt

=

l.nt Hate:

~500.00

500.00 102.00 mm 12.50 mm 0.50 mm 0.00 mm R

efH~oo

188.00 125.96 N/mm2 1.30 mm 70.00 mm 10.00 mm

~2n201

= minimal nomina1 thickness according 00201

=

d2201 + tol + ca 2n201

0.00 0.00

(35)

Bijlage

11

6.2

(36)

Bijlage 11.6.2

De natte waterstof stroom wordt van 80 naar ca. 40 graden Celcius afgekoeld met de droge waterstofstroom van 23 graden Celcius.

Water wordt op de buitenkant van vertikale buizen gecondenseerd. De kleine hoeveelheid stearine is verwaarloosd.

Hieronder volgen de ontwerpberekeningen van de warmtewisselaar die bovenstaande funktie heeft.

TZ :=40 shell H2-nat

~:= 70 buis H2-droog

Urn:= 10

TI +T

z

T gems := - 2 - + 273.15 T gems =333.15

cp mols := 27.143 + 9.273·1O-3·T gems - 1.380·1O-S·T gems Z + 7.645·1O-9·T gems3 cp mols = 28.98333403

cp dmp:= 32.243 + 1.923·1O-3·T gems - 1.055·IO-S·T gems

z

+-3596·1O-9·T gems3 cp dmp = 3157974877 cp W := 4.2·18.02 mol h2 := 6.47 mol h2vers := 1 mol dmp := 0.083'0.287 478 Ph2s:=--T gems -6 ~h2s:= 95·10

Q h2s := mol h2'CP mols' (TI -T

z)

Q verd := mol w ·40683 Q w := mol w'cp w'(TI - T

z)

CPw =75.684 mol w := 0.713'0.083 P h2s

=

1.43478913 3 Q h2s = 750088685·10 3 Q verd

=

2.40757926·10 Q dmp = 30.09044782 Q w = 179.15613744 Q = 1.01177127.104 Q:= Qh2s+ Qverd +Qdmp+Qw ti + ~ T gemb := - 2 - + 273.15 T gemb = 319.65

cp molb:= 27.143 + 9.273·1O-3·T gemb - 1.380·IO-S.T gembZ + 7.645·1O-9·T gemb3

cp molb = 28.94677423

Q h2droog := (mol h2 + mol h2vers)·CP molb'(~ - ti) Q

=

(ongeveer) Qh2droog U oud:= 162 4 Q h2droog = 1.0162923·10 Geschat [K] [1/mol·K) [1/mol·K) [1/mol·K) [moVs) [moVs] [moVs] [Pa·s] [l) [I) [I] [J] [l) [K) [J/mol·K] [I)

(37)

A :=--Q~­ U oud·tlm I := 5.0 d o := 0.016 di := 0.0128 opplpijp:= I,x'd 0 N .. := _ _ A_ pijpen opp 1 pijp nl := 22.07 KI := 02.15 ( N ..

)0

1 Db:=dO '

i~

D s := D b + 0.010 pt:= 1.25·d 0 Ib:= 0.8·D s (pt - d ).D ·Ib A := 0 s s pt molh2

r

:= -S A s.500 X 2 doorsnee := -'d . 4 1 A b := N pijpen . doorsnee

mol h2 + mol h2vers

r

.

= - - - -__

b' 500'A b 478 Ph2s:=--T gems

rs

u : = -S Ph2s 12.7 (

2

2)

de := _ . pt - 0.785·d 0 do cp water := 4.200 btmdel diameter shelI diameter tig 12.10

pitch en baffle afstand

doorstrOOOl-opp. snelheid in shell equivalente diameter 1

-s

PI

(

4)3

k l := 3.56·10 'cp water' -18.02 -4 ~ water := 6·10 -3 m cood := mol w·18.02·10 A

=

6.24550166 lengte pijp buitendiameter pijp binnendiameter pijp oppervlakte van een pijp N pijpen = 24.85006153 Db =0.13766475 D s =0.14766475 A s = 0.00348878

r

s = 3.70903238 r b =4.67211268 P h2s = 1.43478913 Us = 2.58507142 de =0.0157988 k l =0.5687941 mcood =0.00106641 lm) lm) [m) [m) [rol) [rol] [rol) fm/sj [m) [Pa·s) [kg/sj [m2] [m] [m] [m] [rol)

(38)

Db Nr:=-pt mcond

r

cond:=---I·N pijpen 1 - 1 [ P r(p I - P h2s).9.81]3 ( Nr)-6 he := 0.95·k

r

.

2·-~ water·r cond 3

r

s'd

e

Re := -s ~h2s

r

cond = 8.58271983-10-6 he =5.18686326-104 3 Re s =6.16823797-10

De stroming in de shell is dus turbulent

k h2 := 0.1947 ~ h2s'CP mols' 1000 Pr

: =

-s k h2 h h2 := 0.18·Re s 0.6.Pr s 0.5 k h2 de [ 1 Qh2s

fl

h ce:= he + (Q h2s + Q verd)·h h2 kw:= 16 h od := 3000 h id := 5000 ph2b:= 525.8 T gemb

r

b·di Reb: = -~h2s Pr s = 1.41418425 h h2 =495.86565128 h ce = 646.85609927 ph2b = 1.64492414 3 Re b = 6.29505708-10

De stroming in de buizen is dus turbulent

r

b ub:= -ph2b Prb:= Pr s h i := k h2 .0.021. Re b 0.8. Prb 0.33 de snelheid in buizen u: =---~~---1 1

m(:;)

do 1 do + + d . _ + + -b ce bod 0 2·kw d· h'd d··h· 1 1 1 1 u b = 2.84032107 bi =317.5615125

u

= 161.88854608 [W/Jn2.oC] [W/m2.0C] [W/m2.0C] [kg/m3] [mis]

(39)

Drukval in de shell van de wamuewisselaar jfb:= 55.10-3 (fig. 12.24) ( 1 ) u b 2 ÁP b:= 8·jfb- + 3 ·phlb·-di 2 jfs := 45.10-2 (fig. 12.30) 2 D s 1 Us Ml := 8·jfs-·_·p h l s -s de lb 2 ÁP b = 133.94709147 [Pa] Mlb

-s-

=

0.00133947 [bar] 10 ÁP s =682.74981561 ÁP s

- s

=

0.0068275 10 [Pa] [bar]

(40)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date

Time

Rev.

3\12\1993

9:16:02

93-006

SUBJECT NOZZLE GEOMETRY

A

Ap

zll

zcalc

: Scheidingsvat Harding3

: Vlottersch. tubulure

.

.

ORDERNR. DESIGN TEMP. :

240.00 °c

2.00 N/mm

2

: Cylinder

=

= =

=

=

= =

=

=

=

=

=

=

= = = =

1.00

78.00 mm

9.50 mm

741.05 mm

2

41.08 mm

70.00 mm

32.86 mm

10.00 mm

12.00 mm

12.00 mm

0.80 mm

1.00

726.95 mm

2

1468.00 mm

2

42553.61 mm

2

0.60

1.14

P d

Auxilary value

Contributing width

Contributing thickn.

Contributing area of

:

of curved wall

of curved wall

curved wall

Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual

internal nozzle height

Formula thickness of external nozzle wall

Formula thickness of internal nozzle wall

Min. thickness acc. D0201 (with z

=

1)

Ratio of design stress

Contributing area in nozzle wall

contributing area of material

Total area on wich pressure acts

Reduction coefficient

c * (D.+d)/d) * (A/(2*A +A)

(41)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date Time Rev. 3\12\1993 9:12:37 93-006 SUBJECT NOZZLE GEOMETRY

~extmax

ext

~intmax

dint 2

~2j~1

Al 1 A A zp 1 zr zcalc : : Scheidingsvat Harding3 : Vloeistof uitlaatpijp : Korbbogen ORDERNR. DESIGN TEMP. : P d

.

.

240.00 °c 2.00 N/mm2 = = = =

=

=

=

=

=

=

=

=

=

=

0.50 99.85 mm 9.50 mm 937.51 mm2 19.75 mm 220.00

mm

15.80

mm

0.00

mm

4.50

mm

0.47

mm

1.00 131.17 mm2 1068.69

mm

2 33889.27

mm

2 0.86 0.86 0.86 Auxilary value contributing width Contributing thickn. Contributing area of of curved wall of curved wall curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of nozzle wall

Min. thickness acc. D0201 (with z

=

Ratio of design stress

contributing area in nozzle wall contributing area of material Total area on wich pressure acts Reduction coefficient (across left ) Reduction coefficient (across right) c * (D.+d)/d) * (A/(2*A +A)

~

P

(42)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

SUBJECT NOZZLE GEOMETRY nozzle

=

gamma

=

y

=

z = : Scheidingsvat Harding3 : Drukmetingspijpen : cylinder set in 90.00 0 0.00 mm 0.60

.

.

ORDERNR. DESIGN TEMP. : Pd : Sheet Date Time Rev. 1 of 2 3/12/1993 9:15:00 93-006 240.00 °c 2.00 N/mm2 Material

Shell data X6CrNiMoTi17122(1.4571)1% Nozzle data X6CrNiMoTi17122(1.4571)1%

~500.00

500.00 R

e!H~oo

0.00 0.00 188.00

Shell data Nozzle data

De

=

650.00 mm De2

=

100.00 mm d

=

10.00 mm

~~~om

=

10.00 mm tB~m

=

0.50 mm

=

0.50 mm ca

=

0.00 mm ca

=

0.00 mm t

=

125.96 N/mm2 t I

=

125.96 N/mm2 d

=

9.50 mm

~2n201:

1.29 mm 70.00 mm h~xt

=

0.00 mm 1. nt Note:

~2n201

=

minimal nominal thickness according D0201

=

d2201

+

tol

+

ca 2n201

(43)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date Time Rev. 3\12\1993 9:15:00 93-006 SUBJECT NOZZLE GEOMETRY : Scheidingsvat Harding3 : Drukmetingspijpen

.

.

ORDERNR. DESIGN TEMP. : 240.00 °c 2.00 N/mm2 : Cylinder

=

=

=

=

=

= =

=

=

=

=

=

= = = 1.00 78.00 mIn 9.50 mIn 741.05 mIn2 36.65 mIn 70.00 mIn 29.32 mIn 0.00 mIn 9.50 mIn 0.79 mm 1.00 438.44 mm2 1179.49 mm2 42254.67 mIn2 0.60 0.93 P d Auxilary value Contributing width Contributing thickn. contributing area of : of curved wall of curved wall curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of nozzle wall

Min. thickness acc. D0201 (with z = 1) Ratio of design stress

Contributing area in nozzle wall Contributing area of rnaterial Total area on wich pressure acts Reduction coefficient

(44)

REIHFORCEMENTS FOR AH OPENIHG IH A CURVED WALL

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

·

·

Sheet Date Time Rev. 1 of 2 3/12/1993 9:16:02 93-006 SUBJECT NOZZLE GEOMETRY : Scheidingsvat Harding3 : Vlottersch. tubulure : Cylinder ORDERNR. DESIGH TEMP. : P d

·

·

240.00

°c

2.00 N/mm2 nozzle gamma y z

=

=

=

=

set in 90.00 0 0.00 mm 0.60 Material

Shell data X6CrNiMoTi17122(1.4571)1%

Nozzle data X6CrNiMoTi17122(1.4571)1%

Shell data Hazzle data

De

=

650.00 mm De2

=

dn~m

=

10.00 mm

~g~om

=

to

=

0.50 mm

=

ca

=

0.00 mm ca

=

f = 125.96 N/mm2 f 1

=

d

=

9.50 mm

~2n201:

h~xt

=

l.nt Hate:

~500.00

500.00 102.00 mm 12.50 mm 0.50 mm 0.00 mm R

efH~oo

188.00 125.96 N/mm2 1.30 mm 70.00 mm 10.00 mm

~2n201

= minimal nomina1 thickness according 00201

=

d2201 + tol + ca 2n201

0.00 0.00

(45)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES CHAPTER D050!, REVISED 92-12

SUBJECT NOZZLE GEOMETRY nozz1e

=

nozzle

=

gamma

=

y

=

~~~~

=

=

: Scheidingsvat Harding3 : Vloeistof uitlaatpijp : Korbbogen set in radial 90.00 0 0.00 mm 0.60 0.60 ORDERNR. : DESIGN TEMP. : P d : Sheet Date Time Rev. 1 of 2 3/12/1993 9:12:37 93-006 240.00 oe 2.00 N/mm2 Material

Shell data X6CrNiMoTi17122(1.4571)1% Nozzle data X6CrNiMoTi17122(1.4571)1%

I\n500.00 500.00

R

elH~oo

0.00

0.00

Shell data Nozzle data

De

=

dn~m

=

to

=

ca

=

f

=

d

=

ril

=

r i2

=

Note:

~2n201 ~

2n201 650.00 mm De2

=

10.00 mm

~g~om

=

0.50 mm

=

60.00 mm 5.00 mm 0.50 mm 0.00 mm ca

=

0.00 mm 125.96 N/mm2 f 1

=

9.50 mm

~2n201~

100.10 mm 520.00 mIn h7xt

=

l.nt 125.96 N/mm2 0.97 mm 220.00 mm 0.00 mm minimal nominal thickness according 00201 d2201

+

tol

+

ca

(46)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date Time Rev. 3\12\1993 9:12:37 93-006 SUBJECT NOZZLE GEOMETRY

~extmax

ext

~intmax

dint 2

~2j~1

Al 1 A A zp 1 zr zcalc : : Scheidingsvat Harding3 : Vloeistof uitlaatpijp : Korbbogen ORDERNR. DESIGN TEMP. : P d

.

.

240.00 °c 2.00 N/mm2 = = = =

=

=

=

=

=

=

=

=

=

=

0.50 99.85 mm 9.50 mm 937.51 mm2 19.75 mm 220.00

mm

15.80

mm

0.00

mm

4.50

mm

0.47

mm

1.00 131.17 mm2 1068.69

mm

2 33889.27

mm

2 0.86 0.86 0.86 Auxilary value contributing width Contributing thickn. Contributing area of of curved wall of curved wall curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of nozzle wall

Min. thickness acc. D0201 (with z

=

Ratio of design stress

contributing area in nozzle wall contributing area of material Total area on wich pressure acts Reduction coefficient (across left ) Reduction coefficient (across right) c * (D.+d)/d) * (A/(2*A +A)

~

P

(47)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

SUBJECT NOZZLE GEOMETRY nozzle

=

gamma

=

y

=

z = : Scheidingsvat Harding3 : Drukmetingspijpen : cylinder set in 90.00 0 0.00 mm 0.60

.

.

ORDERNR. DESIGN TEMP. : Pd : Sheet Date Time Rev. 1 of 2 3/12/1993 9:15:00 93-006 240.00 °c 2.00 N/mm2 Material

Shell data X6CrNiMoTi17122(1.4571)1% Nozzle data X6CrNiMoTi17122(1.4571)1%

~500.00

500.00 R

e!H~oo

0.00 0.00 188.00

Shell data Nozzle data

De

=

650.00 mm De2

=

100.00 mm d

=

10.00 mm

~~~om

=

10.00 mm tB~m

=

0.50 mm

=

0.50 mm ca

=

0.00 mm ca

=

0.00 mm t

=

125.96 N/mm2 t I

=

125.96 N/mm2 d

=

9.50 mm

~2n201:

1.29 mm 70.00 mm h~xt

=

0.00 mm 1. nt Note:

~2n201

=

minimal nominal thickness according D0201

=

d2201

+

tol

+

ca 2n201

(48)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

Date Time Rev. 3\12\1993 9:15:00 93-006 SUBJECT NOZZLE GEOMETRY : Scheidingsvat Harding3 : Drukmetingspijpen

.

.

ORDERNR. DESIGN TEMP. : 240.00 °c 2.00 N/mm2 : Cylinder

=

=

=

=

=

= =

=

=

=

=

=

= = = 1.00 78.00 mIn 9.50 mIn 741.05 mIn2 36.65 mIn 70.00 mIn 29.32 mIn 0.00 mIn 9.50 mIn 0.79 mm 1.00 438.44 mm2 1179.49 mm2 42254.67 mIn2 0.60 0.93 P d Auxilary value Contributing width Contributing thickn. contributing area of : of curved wall of curved wall curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of nozzle wall

Min. thickness acc. D0201 (with z = 1) Ratio of design stress

Contributing area in nozzle wall Contributing area of rnaterial Total area on wich pressure acts Reduction coefficient

(49)

REIHFORCEMENTS FOR AH OPENIHG IH A CURVED WALL

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12

·

·

Sheet Date Time Rev. 1 of 2 3/12/1993 9:16:02 93-006 SUBJECT NOZZLE GEOMETRY : Scheidingsvat Harding3 : Vlottersch. tubulure : Cylinder ORDERNR. DESIGH TEMP. : P d

·

·

240.00

°c

2.00 N/mm2 nozzle gamma y z

=

=

=

=

set in 90.00 0 0.00 mm 0.60 Material

Shell data X6CrNiMoTi17122(1.4571)1%

Nozzle data X6CrNiMoTi17122(1.4571)1%

Shell data Hazzle data

De

=

650.00 mm De2

=

dn~m

=

10.00 mm

~g~om

=

to

=

0.50 mm

=

ca

=

0.00 mm ca

=

f = 125.96 N/mm2 f 1

=

d

=

9.50 mm

~2n201:

h~xt

=

l.nt Hate:

~500.00

500.00 102.00 mm 12.50 mm 0.50 mm 0.00 mm R

efH~oo

188.00 125.96 N/mm2 1.30 mm 70.00 mm 10.00 mm

~2n201

= minimal nomina1 thickness according 00201

=

d2201 + tol + ca 2n201

0.00 0.00

(50)

Bijlage

11

6.3

Ontwerp monomeercondensor oliegekoeld

(51)

Bijlage IL6.3.

Berekening warmte-wisselaar met olie van 70 naar 80 H2 afkoelen van 240

naar

80 graden Celcius

Afkoelen met olie van 70 graden Celcius

Tl = 240 T2 = 80 tI = 70 t2 = 80 (Tl - t2) - (T2- tI) tlm - (Tl _ t2) ln T2_tI

De hoeveelheid olie berekenen Gebruik Nr.3 BP

Gegevens bij T=75 graden celcius polie = 992

kfolie= 0.1262 #'Olie = 5.918,10-3 cpolie := 1.755.103

Molie := 1.85

Qolie= cpolie· Molie· (t2 - tI)

Qolie = 3.246750104

3

Qtotaal= 32· 10

Begin en eind temperatuur H2

Begin en eind temperatuur olie

tlm = 54.10106403

(counter current)

kg/s

Qolie moet gelijk zijn

aan

Qtotaal

De hoeveelheid warmte om de H2 stroom af te koelen

iteratie-proces van de wannte-overdrachts coefficient

u

=

270

A= Qtotaal

u·tlm

Geschat

(52)

Afmetingen 1 = 3.2 do '= 0.012 di = 0.009 oppeenpijp= I· "Ir' do A Npijpen -oppeenpijp Shell

Neem square pitch

1 ( N "

)

2

.

207

Db = do. pijpen 0.215 Os= Db + 0.01 pt = 1.25'00 As .- (pt - do)- Os· Ih pt Npijpen = 18.15930865 Npijpen = 18 Db = 0.08921227 Os = 0.09921227 Os := 0.10 Ib= lOs As =0.002 lengte pijp buitendiameter pijp binnendiameter pijp oppervlakte van een pijp aantal pijpen bundel diameter sheU diameter pitch en baftle afstand cross-flow area

(53)

Berekening ho

Molie Gs -As Gs us -polie 1.27 (

2

2)

de := _ . pt - 0.785·do do us· de· polie Reshell-,rolie cpolie· ,rolie Prshell-kfolie jh := 1.2· 10-2

ho := kfolie.jh. Reshell· Prshello.3333 de ho = 1.02945595-103 us = 0.93245968 Reshell

=

1.85204757-103 Prshell = 82.29865293

fig

12.29

Chemical

Engineering Vo1.6

Berekening wannte-overdracht van het stearine

Gegevens van stearine bij 160 graden

-3 pstea= 2· 10 pistea := 792 pgstea= 161.7 ldstea := 0.4

snelheid

in

de shell

Hydralic diameter

(54)

mmono = 1.8388.10-3 kgls Hoeveelheid mmono gam "K". di· Npijpen Condensatie in de pijp I hpijp= 0.926.ldstea.[ plstea·(plstea - pgstea).9.81]3

iJStea·gam

hpijp = 3.25350598'103

4·gam

Re -

-iJStea Re = 7.22602739

Berekening warmte-overdracht coefficient H2

.. Tl + T2 tpIJP := - - -2 Gegevens H2 ph2 := 1.347 ph2 := 1.1275. 10-

s

cpmassa := 14595 ldh2 = 0.1947 mmassah2 := 0.01286 passes := 1 Npas = Npijpen passes tpijp = 160 monomeer

Overdrachts coefficient van het monomeer

aantal pijpen per pasmonomeer

(55)

doorsnee = !!.. di2 4

totaalopp = Npas· doorsnee

totaalopp

=

0.00114511 mmassah2 VolwnestJ"oom = -ph2 Volwnestroom snelheidpijp -totaalopp ph2. snelhcidpijp· di Reh2 -,m2 'h 0-3 J = 4·1 cpmassa· ,m2 Pr -kfh2 hh2 := kfh2 .J·h. Reh2. Pro.]]]]] di

doorsnee een pijp

ml\3/s snelheidpijp = 8.33731034 Rch2 = 8.96436481-103 x := -fig. 12.23 di x = 355.55555556 Pr = 0.84519068 hh2 = 733.42340516

Berekening wannte-overdracht coefficient van stearine en H2

3

Qgas = 30.681·10

hcecht - - - ; - - - ; - -

-hP~jP

+

(::J

~

(56)

Drukval in de shell van de wanntewisselaar jfs := 5.10-2 (fig. 12.30) M s = 1.86123908.104 Ms

-

=

0.18612391 lOS

De warmte wisselaar is een zes maal dubbelgevouwen enkel-pass type. Temperature-cross is dus toegestaan.

[Pa]

(57)

Bijlage

11

6.4

Ontwerp monomeercondensor oliegekoeld

met een oliestroom van 3,7 kg/s

(58)

Bijlage IL6.4.

Berekening warmte-wisselaar met olie van 70 naar 75

H2 nat afkoelen 240 naar 80 graden Celcius Afkoelen met olie van 70 graden Celcius

Tl = 240 T2 = 80 H= 70 t2 = 75 (Tl - t2) - (T2 - tI) tlm- (Tl _

t2

)

ln T2_ tI

De hoeveelheid olie berekenen Gebruik Nr.3 Bp

Gegevens bij T=72.5 graden celcius polie := 992

kfolie= 0.1262

#'Olie := 5.918.10-3

cpolie= 1.755· 103

Molie := 3.7

Qolie = cpolie· Molie· (t2 - tl)

Qolie = 3.24675.104

3

Qtotaal := 32·10

kgls

Begin en eind temperatuur van H2 Begin en eind temperatuur van olie

tlm = 55.29078639 (counter current)

Qolie moet gelijk zijn aan Qtotaal

De hoeveelheid warmte om de H2 stroom af te koelen

iteratie-proces van de warmte-overdrachts coefficient

u

=

315

A= Qtotaal

D-tlm

Geschat

(59)

Afinetingen 1 = 3.2 do = 0.012 di '= 0.009 oppeenpijp = }. 'Ir' do A Npijpen= .. oppeenPIJP Shell

Neem square pitch I ( N"

)

2.207

Db = do. PIjpen 0.215 Ds= Db + 0.01 pt := 1.25· do As := --'( pt::...--_d_o_)-_Ds_·_lb pt Npijpen = 15.23019839 Npijpen = 15 Db = 0.08213859 Ds = 0.09213859 Ds := 0.10 lb := 1Ds As =0.002 lengte pijp buitendiameter pijp binnendiameter pijp oppervlakte van een pijp aantal pijpen bundel diameter shell diameter pitch en baflle afstand cross-flow area

(60)

Berekening ho Molie Gs .= -us Gs polie l.27 (

2

2

)

de := _ . pt - 0.785·do do us· de· polie Reshe11 -,.wlie cpolie· "olie Prshe11 -kfolie ·h -3 J .= 8·10 ho - kfolie .-- _.J ·h R h 11 Prsh 11°·3333 . es e · e de ho = l.37260794-103 us = 1.86491935 3 Reshe11 = 3.70409513-10 Prshe11 = 82.29865293 tig 12.29 Chemical Engineering Vol. 6

Berekening warmte-overdracht van het stearine Gegevens van stearine bij 160 graden

-3 JLSte8 = 2· 10 pIstea : = 792 pgstea := 16l.7 klstea= 0.4 snelheid Hydralic diameter

(61)

mmono = 1.8388· 10-3 mmono gam -7' di· Npijpen Condensatie

in

de pijp I h PIJp.. := O. 926 kl . stea· [Plstea'(Plstea -~_...2..:.-_ _ ..:...::c._-'--_ pgstea)·9.81

]

3

I-'Stea·gam

hpijp

=

3.06166634.103

4'gam Re '= -

-I-'Stea Re = 8.67123287

Berekening wannte-overdracht coefficient H2

Tl+T2 tpijp-2 Gegevens H2 ph2 := 1.347 ph2 := 1.1275·1O-S cpmassa= 14595 kfh2 := 0.1947 mmassah2= 0.01286 passes := 1 Npas= Npijpen passes tpijp = 160 Hoeveelheid monomeer

Overdrachts coefficient van het monomeer

(62)

Bijlage 11 6.5

(63)

Bijlage

11

6.4

Ontwerp monomeercondensor oliegekoeld

met een oliestroom van 3,7 kg/s

(64)
(65)

Bijlage IL6.4.

Berekening warmte-wisselaar met olie van 70 naar 75

H2 nat afkoelen 240 naar 80 graden Celcius Afkoelen met olie van 70 graden Celcius

Tl = 240 T2 = 80 H= 70 t2 = 75 (Tl - t2) - (T2 - tI) tlm- (Tl _

t2

)

ln T2_ tI

De hoeveelheid olie berekenen Gebruik Nr.3 Bp

Gegevens bij T=72.5 graden celcius polie := 992

kfolie= 0.1262

#'Olie := 5.918.10-3

cpolie= 1.755· 103

Molie := 3.7

Qolie = cpolie· Molie· (t2 - tl)

Qolie = 3.24675.104

3

Qtotaal := 32·10

kgls

Begin en eind temperatuur van H2 Begin en eind temperatuur van olie

tlm = 55.29078639 (counter current)

Qolie moet gelijk zijn aan Qtotaal

De hoeveelheid warmte om de H2 stroom af te koelen

iteratie-proces van de warmte-overdrachts coefficient

u

=

315

A= Qtotaal

D-tlm

Geschat

(66)

Afinetingen 1 = 3.2 do = 0.012 di '= 0.009 oppeenpijp = }. 'Ir' do A Npijpen= .. oppeenPIJP Shell

Neem square pitch I ( N"

)

2.207

Db = do. PIjpen 0.215 Ds= Db + 0.01 pt := 1.25· do As := --'( pt::...--_d_o_)-_Ds_·_lb pt Npijpen = 15.23019839 Npijpen = 15 Db = 0.08213859 Ds = 0.09213859 Ds := 0.10 lb := 1Ds As =0.002 lengte pijp buitendiameter pijp binnendiameter pijp oppervlakte van een pijp aantal pijpen bundel diameter shell diameter pitch en baflle afstand cross-flow area

(67)

Berekening ho Molie Gs .= -us Gs polie l.27 (

2

2

)

de := _ . pt - 0.785·do do us· de· polie Reshe11 -,.wlie cpolie· "olie Prshe11 -kfolie ·h -3 J .= 8·10 ho - kfolie .-- _.J ·h R h 11 Prsh 11°·3333 . es e · e de ho = l.37260794-103 us = 1.86491935 3 Reshe11 = 3.70409513-10 Prshe11 = 82.29865293 tig 12.29 Chemical Engineering Vol. 6

Berekening warmte-overdracht van het stearine Gegevens van stearine bij 160 graden

-3 JLSte8 = 2· 10 pIstea : = 792 pgstea := 16l.7 klstea= 0.4 snelheid Hydralic diameter

(68)

mmono = 1.8388· 10-3 mmono gam -7' di· Npijpen Condensatie

in

de pijp I h PIJp.. := O. 926 kl . stea· [Plstea'(Plstea -~_...2..:.-_ _ ..:...::c._-'--_ pgstea)·9.81

]

3

I-'Stea·gam

hpijp

=

3.06166634.103

4'gam Re '= -

-I-'Stea Re = 8.67123287

Berekening wannte-overdracht coefficient H2

Tl+T2 tpijp-2 Gegevens H2 ph2 := 1.347 ph2 := 1.1275·1O-S cpmassa= 14595 kfh2 := 0.1947 mmassah2= 0.01286 passes := 1 Npas= Npijpen passes tpijp = 160 Hoeveelheid monomeer

Overdrachts coefficient van het monomeer

(69)

REINFORCEMENTS FOR AH OPENING IN A CURVEO WALL STOOMWEZEN RULES CHAPTER 00501, REVISED 92-12

SUBJECT

·

·

Reactor Sheet Date Time Rev. 1 of 2 3/12/1993 10:15:03 93-006

NOZZLE : aftap gas GEOMETRY

·

·

Cylinder : 2 ORDERNR. DESIGN TEMP. : P d : 250.00 °c 2.50 N/mm2 nozzle

=

set in 90.00 0 gamma

=

y

=

0.00 mm z

=

0.60 Material

Shell data A240-Type 316 L

Nozzle data A213 / A312 - Gr.TP 31

~485.00

485.00

R

efn'~oo

170.00

Shell data Nozzle data

De

=

900.00 mm D

=

25.00 mm

d

=

15.00 mm de2

=

8.00 mm

tB~m

=

DIN 1513 tg~om

=

DIN 1513

ca

=

0.00 mm ca

=

0.00 mm f

=

75.04 N/mm2 f 1

=

113.90 N/mm2 d

=

14.40 mm

~2n201:

0.27 mm 0.00 mm h~xt

=

0.00 mm ~nt Note:

~2n201

=

minimal nominal thickness according D0201

=

d2201 + tol + ca 2n201

0.00 0.00

(70)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL Date 3\12\1993

STOOMWEZEN RULES CHAPTER D0501, REVISED 92-12 Time 10:15:03

SUBJECT

·

·

NOZZLE

·

·

GEOMETRY

·

·

=

=

=

=

~extmax =

=

hext

=

hintmax

=

dint

=

2

~2,~1

=

=

Al

=

1 A = Ap = zll = zcalc Reactor aftap gas Cylinder 1.00 112.93 mm 14.40 mm 1626.16 mm2 14.32

mm

0.00

mm

11.46

mm

0.00

mm

7.50

mm

0.27

mm

1.00 108.00 mm2 1734.16 mm2 54708.26 mm2 0.60 0.96 Rev. 93-006 ORDERNR. : 2 DESIGN TEMP.

·

·

250.00

°c

P d

·

·

2.50 N/mm2 Auxilary value Contributing width Contributing thickn. Contributing area of of curved wall of curved wall curved wall Maximal external nozzle height

Actual external nozzle height

Maximal internal nozzle height

Actual internal nozzle height

Formula thickness of nozzle wall

Min. thickness acc. D0201 (with Z

Ratio of design stress

Contributing area in nozzle wall contributing area of material Total area on wich pressure acts Reduction coefficient

c * (Di+d)/d) * (A/(2*Ap+A)

(71)

BOLTED FLANGECONHECTION IN ACCORDANCE WITH STOOMWEZEN RULES CHAPTER D0701, REVISED 92-12 Subject: flens gas

ater'a Flange : FORGINGS AUSTENITIC ASTM ( M0602 ) A182-Gr.F 316 L Shell FORGINGS AUSTENITIC ASTM ( M0602 ) A182-Gr.F 316 L Bolting: BOLTING NI AND NI ALLOYS DIN 17240 NiCr 20 TiAl AH (2.4952) Order nr : 250.00

°c

250.00

°c

ribbed metal ring with covering

Sheet Date Time Rev. 1 of 3 03/12/1993 10:17:11 93-004 4 BLOCKTYPE (WELD.) FiIIet WeIds Gasket type

Gasket material austenitic heatresistant CrNi/graphite (ring KV) -PRESSURES:

2 GASKE'l' & BOLTING Pd = 2.50 N/mm Cg = 0.00 Pt = 34.50 bar Do = 87.00 mm b = 0.00 mm FLANGE DIMENSIONS: pg , = 1.00 N/mm2 2 Df = 92.00 mm pgmmln= 0.00 N/mm2 D, = 1 11.00 mm pgmmax= 14.99 N/mm2 60.00 pgwmax= 1.00 D f1= mm N/mm D f2= 9.00 mm gmopt df1= 3.00 mm Ddb = 10.00 mm df2= 0.00 mm d k = 8.00 mm h = 0.00 mm d , = 8.00 mm h = 100.00 mm nmln 4 b = dO - 19.02 mm F 3m = 2.26E+04 N f -ho!alC 5.18 mm F4m = 2.26E+04 N Pl c = 47.12 mm MECH. PROPERTIES : 2 ~f = 485.00 N/mm2 R ef = 170.00 N/mm2 Revf = 112.00 N/mm2 ~ f = 0.00 N/mm2 ~g = 485.00 N/mm R c = 170.00

N/mm~

R:~c

= 112.00 N/mm2 R = 0.00 N/mm R:gc = 1000.00

N/mm~

Reb = 600.00 N/mm2 Revb = 564.00 N/mm2 R = 0.00 N/mm

E~9b

= 195000.00 N/mm2 EXTERNAL LOADINGS: Few = 0.00 N

=

0.00 Nmm

(72)

Sheet 2 of 3

Subject

.

.

flens gas Order nr

.

.

4

Calculation: 2

Dg = Do - b 9 = 87.00 mm Abk = 50.27 mm2

Ab . ml.n = 50.27 mm

Forces in the flange connection (F3m taken as the greater of 3 values)

F 1W = 238 N F1t = 328 N F3m = pi*O *b *p 1.2

i

Fg-t~R~t=

= 0.0273 F2w = 1. 46E+04 N F 2t = 2.02E+04 N F3m = 1.78E+04 F3w = 0 N F 3t = 0 N F3m = 1. 1 *

F~

-total

=

2.26E+04

Method of bolting-up flange connection: Controlled tightening Moment and section modules:

Radial bendingmoment line B-B (see 00701 3.1.1) Tang. bendingmoment line C-C (see 00701 3.1.1) Csection 3) gas ket seating testcondition test condition oper. condition gasket seating testcondition test condition oper. condition M MCC m M«C t M cct CC w = -4.85E+04

=

1.89E+04

=

1.45E+04

=

1. 37E+04 Nmm Nmm Nmm Nmm

=

=

=

4.85E+05 Nmm 4.41E+05 Nmm 4.85E+05 Nmm

=

3.2E+05 Nmm bf

=

40.50 mm cfm = 1.000 (maximum value

=

bf1

=

3.00 mm h8 = 100.00 mm

o

f2 = 8.90

mm

d 1 (oper)

=

0.05 mm cft

=

1.000 cfw

=

1.000 d 1 (test)

=

0.04

Secte modulus line C-C: W

CC

=

3.22E+03 mm

3 section moduli

gas ket seating testcondition testcondition oper. condition line B-B

W BB

m =

W*BB t

=

W BB t = W BB W = (see 3. 1. 2) 3 1.73E+03 mm 3 1.73E+03 mm3 1. 76E+03 mm3 1.73E+03 mm mm 1. 000) N N N

(73)

Subject : flens gas Order nr :

Sheet 3 of 3

4

Assessment of flange strength according 00701 section 4.1

Correct ion factor cb = 1.128 (minimum value = 1.000)

line B-B 31.53 12.27 8.89 line C-C 170.01 154.55 111. 99 allowable 2 212.50

N/mm

2 195.50

N/mm

2 112.00

N/mm

gask.seating testcond. oper.cond.

Assessment of shape stability according 00701 section 4.2

*

line B-B testcond. 9.25 line C-C 170.01 0.010 11. 78 Calculated elastic rotation

sI (according to ch. 4.2.)=

allowable 2

o

229.50

N/mm

(May not exceed 10 ) mm

Assessment of the boltstrength: Csection 5)

( F1

+

F2

+

F3 ) / (nb

*

Abmin ) <= fb

Assessment of the gasket: Csection 6)

Not applicable. gasket seating

=

test condition

=

operating cond. = 112.20

N/mm

2 102.00

N/mm

2 73.92

N/mm

474.00

N/mm

2 432.00

N/mm

2 355.32

N/mm

s

(74)
(75)

REINFORCEMENTS FOR AH OPENING IN A CURVED WALL

STOOMWEZEN RULES CHAPTER DOSOl, REVISED 92-12

·

Sheet Date Time Rev. 1 of 2 3/12/1993 10:13:05 93-006 SUBJECT

·

NOZZLE

·

·

GEOMETRY

·

·

Reactor aftap vloeistof cylinder : 2 ORDERNR. DESIGN TEMP. : P d

.

.

250.00 °c 2.50 N/mm2 nozzle

=

set in 90.00 0 gamma

=

y

=

0.00 mm z = 0.60 Material

Shell data A240-Type 316 L

Nozzle data A213 / A312 - Gr.TP 31

~485.00

485.00

R

el~~oo

170.00

Shell data Nozzle data

De

=

900.00 mm De2

=

58.00

mm

d

=

15.00 mm

~8~om

=

5.00 mm tB~m DIN 1513

=

DIN 1513 ca

=

0.00 mm ca

=

0.00 mm f

=

75.04 N/mm2 f 1

=

113.90 N/mm2 d

=

14.40 mm

~2n201:

0.63 mm 0.00 mm h7xt

=

0.00 mm 1. nt Nate:

~2n201

=

minimal nominal thickness according 00201

=

d2201 + tol + ca 2n201

~g

0.00

Cytaty

Powiązane dokumenty

w stanie wojennym. stanu wojennego były internowania. Wykazy osób do nich przeznaczonych były w 1981 r. na bieżąco aktualizowane. We wrześniu zakładano objęcie operacją

Z reguły owe możliwości są ograniczane przez bardzo zindywidualizowa­ ne preferencje nabywcy, odmienność miejsc realizacji kolejnych przed­ sięwzięć, jak i stopień

The essence of the messenger is a kind of transposition of the channel of communication – a person with autism builds a message by selecting the appropriate graphic

A Study on the Seakeeping Qualities of High Speed Single Screw Container Ships in Head Waves.. By

32 [ A.. „skorsze tańce&#34;, zaś jako matce pozostaje jej jedynie przyglądać się tańczącym. Zresztą, jak zauważała „najwyborniej tańcząca osoba może tylko przytomnym

Trafnie uznała autorka, że składowe po- wierzchni ziemi, stanowią zarówno ukształtowanie terenu jak i gleba, a tak- że ziemia i wody gruntowe – ponieważ: „Powierzchnia ziemi

It seeks to take further a dialogue inaugurated by Heythrop College, Uni­ versity of London, in 2011, where the first conference was held, and continued at the

dat onder deze omstandigheden naar 's Hofs oordeel de burgerlijke rechter dit overheidsbeleid van Huizen tegenover dat eigenaarsbeleid van de Staat met betrekking