• Nie Znaleziono Wyników

H Atom resume

N/A
N/A
Protected

Academic year: 2021

Share "H Atom resume"

Copied!
14
0
0

Pełen tekst

(1)

H Atom resume

𝐷 = 𝐴 ⃗

2𝑚|𝐸

!

| = 1

2𝑚|𝐸

!

|

1

2 ⃗𝑝×𝐿 − 𝐿× ⃗𝑝 − mk ̂𝑟

[𝐻

",

𝐷] = [𝐻

",

𝐿] = 0; [𝐿

$,

𝐷

%

] = 𝑖𝜀

$%&

𝐷

&

; [𝐿

$,

𝐷

%

] = 𝑖𝜀

$%&

𝐷

&

; [𝐿

$,

𝐿

%

] = 𝑖𝜀

$%&

𝐿

&

𝐽

'

=

'(

(𝐿 − 𝐷 ), 𝐽

(

=

'(

(𝐿 + 𝐷 ); 𝐽

'$

, 𝐽

(%

= 0 𝐽

'(

𝐽, 𝑚1, 𝑚2 = 𝐽 𝐽 + 1 𝐽, 𝑚

'

, 𝑚

(

𝐽

$)

𝐽, 𝑚1, 𝑚2 = 𝑚

$

𝐽, 𝑚

'

, 𝑚

(

𝐿

)

𝐽, 𝑚1, 𝑚2 = (𝑚

'

+𝑚

(

) 𝐽, 𝑚

'

, 𝑚

(

𝐷

)

𝐽, 𝑚1, 𝑚2 = (𝑚

'

−𝑚

(

) 𝐽, 𝑚

'

, 𝑚

(

. 𝐽

'

+ 𝐽

(

= 𝐿

(2)

Possible basis choices

• Directions: instead of projections on 2 arbitrary directions 𝑛

',(

• But also (𝐿

(

,𝐿

)

) corresp. to choice: (1,2,3) – real space, rot. in (1,2)- 𝐿

)

• Other possible simple rotations in real space (1,3) - 𝐿

*

, (2,3) - 𝐿

+

• But also we can take (1,2,4) with (1,2)- 𝐿

)

, (1,4)- 𝐷

+

, (2,4)- 𝐷

*

the “square”= 𝐿

()

+ 𝐷

+(

+ 𝐷

*(

and one of 3 choices

Similarly (1,3,4) with the “square”= 𝐿

(*

+ 𝐷

+(

+ 𝐷

)(

and one of 3 possible choices

Similarly (1,2,4) 𝐷

+(

+ 𝐷

*(

+ 𝐿

()

-- the so called Lambda basis

𝐽!", 𝐽#"

(3)

• H atom in an external electric field

In dipole approximation an external electric field perturbes by:

V = e ⃗ 𝐹. ⃗𝑟

The perturbation analysed using the Pauli Replacement.

Degenerate n-manifold – for weak field we restrict to it For an operator 𝑇 = ⃗𝑟 ⃗𝑟 ⋅ ⃗𝑝 − ⃗𝑝 ⃗𝑟 ⋅ ⃗𝑟 + 𝑖ℏ⃗𝑟, we have

2𝐻!⃗𝑟m = "# 𝐴 +⃗ %ℏ$ [𝐻!, 𝑇]

The expectation value.

2𝐸'𝑚 ⃗𝑟 = "

#⟨ ⃗𝐴⟩

Thus, in atomic units we have

⃗𝑟 = − 3

2 𝑛#⟨ ⃗𝐴⟩

The expectation value of The commutator with n manifold is zero.

(4)

• H in an external electric field (Linear Stark- Lo Surdo effect)

Field along z: On making the replacement we have 𝑉 = − "

#𝑛#𝐹𝐴( = − "

#𝑛 𝐹 𝐷( In terms of the state |𝑗 𝑚$𝑚#⟩ we have

𝐿( 𝑗 𝑚$𝑚# = 𝑚$ + 𝑚# 𝑗 𝑚$𝑚# =M 𝑗 𝑚$𝑚# 𝐷( 𝑗 𝑚$𝑚# = 𝑚# − 𝑚$ |𝑗 𝑚$𝑚#

Where, −𝑗 ≤ 𝑚$, 𝑚# ≤ 𝑗 = ')$

# .

The energy eigenvalues are then given by 𝐸 𝑛, 𝑘 = − #'$! + "# 𝑛𝑘𝐹. Where, 𝑘 = 𝑚$ − 𝑚# which take the values − 𝑛 − 1 ≤ 𝑘 ≤ (𝑛 − 1) For a given 𝑘 we have 𝑛 − |𝑘| degenerate values.

If we have the electric field in a general direction, we have 𝑉' = 𝜔* ⋅ 𝐷 𝜔* = "#𝑛𝐹 in a.m.u and 𝜔* = "#+,-./" 𝑛𝐹 in M.K.S units.

For given M Stark multiplet – 𝑛 − |𝑀| levels separated by 2𝜔* Circular states 𝑀 = 𝑛 − 1; 𝑘 = 0 not perturbed by F

(5)

H in F

𝐸 𝑛, 𝑘 = − 1

2𝑛# + 3

2 𝑛𝑘𝐹

𝑛 − |𝑘| degenerate values

− 𝑛 − 1 ≤ 𝑘 ≤ (𝑛 − 1)

(6)

• H atom in presence of external magnetic field.

In presence of an external magnetic field the Hamiltonian for a 2-particle system (with opposite charges 𝑒) is given as ℋ = 0#)/ ⃗2 3#

!

#.# + 0!4/ ⃗2 3!

!

#.!$

+,-"

/! 3# )3!

Define Π% ≡ 𝑝% ∓ 𝑒 ⃗𝐴 𝑟% = 𝑚𝑣% - the kinetic momentum.

For 𝐵 along the z-direction we have Π$5, Π$6 = 𝑖ℏ𝑒𝐵 Π#5, Π#6 = −𝑖ℏ𝑒𝐵 , Assume gauge 𝐴 =⃗ $

# 𝐵×⃗𝑟

A change of coordinates Π78 = Π$ + Π#, p = .!.9#).#9!

#4.! and ⃗𝑟 = ⃗𝑟$- ⃗𝑟# Leads to a Hamiltonian of the form ℋ = 9$%!

#8 + #.:!$

+,-"

/! 3

with, 𝑀 = 𝑚$ + 𝑚# & 𝑚 = ..#.!

#4.!

Defining an operator 𝐶 ≡ Π⃗ 78 − 𝑒 ⃗𝑟×𝐵 = 𝑃 − /# ⃗𝑟×𝐵 one finds [𝐻, ⃗𝐶] = 0 with the commutation relation 𝐶% , 𝐶; = 0

(7)

• Atom in presence of external magnetic field.

The operator ⃗𝐶 can be written as 𝐶 = 𝑃 −⃗ /# ⃗𝑟×𝐵 thus giving 𝑃 = ⃗𝐶 + /# ⃗𝑟×𝐵 Write the wavefunction in the form Ψ 𝑅, ⃗𝑟 = exp % 𝐶 +⃗ <# ⃗𝑟×𝐵 𝑅 𝜙 ⃗𝑟 . We get ℎ ⃗𝑟 𝜙 ⃗𝑟 = 𝐸𝜙 ⃗𝑟

ℎ ⃗𝑟 = ⃗𝑝#

2𝑚 − 1 4𝜋𝜀!

𝑒#

𝑟 + 𝑒 2

𝑚# − 𝑚$

𝑚$𝑚# 𝐵 ⋅ 𝐿 + 𝑒

𝑀 𝐶×𝐵 ⋅ ⃗𝑟⃗ + /!

=. ⃗𝑟×𝐵 # + 7!

#8 /

#

.!).#

.#.! 𝐵 ⋅ 𝐿 -- Linear Zeeman effect

/!

=. ⃗𝑟×𝐵 #- quadratic, “diamagnetic” Zeeman term

/

8 𝐶×𝐵 ⋅ ⃗𝑟⃗ - electric field in the moving frame

(8)

Simple:

We can also have a simple semiclassics for the interaction in magnetic fields ignoring the diamagnetic part. Assuming an 𝑒

-

moving in an orbit gives an electric current 𝐼 = −

.

/

we then have the magnetic moment ⃗𝜇 = 𝐼 ⋅ ∮ 𝑑 ⃗𝑎 .

∮ ⃗𝑎 =

'

(

"(0

𝑟

(

𝑑𝜙 =

1

(2

"(0 3435

𝑑𝜙 =

⃗7

(2

𝑇 Thus, we have ⃗𝜇 = −

.

(2

ℓ , 𝜇

(

∼ ℓ(ℓ + 1)

This is usually represented as ⃗𝜇 = −

8!

ℓ where, 𝜇

:

→ Bohr Magneton. And we define

8

=

8!

= 𝛾

<

(9)

• Atom in presence of external magnetic field.

Linear Zeeman effect: ℋ ⃗𝑟 =

!!

"#

$

%&'"

(!

)

+

(

"#

ℓ ⋅ 𝐵 For field along z 𝐸 𝑛, 𝑀 = −

"*$!

+ 𝛾

+

𝐵𝑀

similar to the E.F case defining 𝜔

,

= 𝛾

+

𝐵 .

For arbitrary direction, the energy 𝐻 = 𝐸

-

+ 𝑉 , 𝑉 → 𝜔

,

⋅ 𝐿 .

• Both Magnetic and Electric Field (𝐵, ⃗𝐹).

Leads to 𝑉

*

= 𝜔

,

⋅ 𝐿 + 𝜔

.

⋅ 𝐷 with 𝜔

,

= −

"#(

𝐵 & 𝜔

/

=

0*"

𝐹 ⃗ In 𝐽

$

=

$

"

(𝐿 − 𝐷) , 𝐽

"

=

$

"

(𝐿 + 𝐷) 𝑉

*

= 𝜔

$

⋅ 𝐽

$

+ 𝜔

"

⋅ 𝐽

"

Basis of 𝐽

$

, 𝐽

"

, 𝐽

$1

, 𝐽

"1

⇒ |𝐽, 𝑚

$

, 𝑚

"

⟩ is wrong but 𝑛

2

= 𝜔

2

/||𝜔

2

| In new basis defined by these directions |𝐽, 𝑚

$

, 𝑚

"

*#,*!

𝐸 = −

$

"*!

+ 𝑚

$

𝜔

$

+ 𝑚

"

𝜔

"

. where, −

*4$

"

≤ 𝑚

$

, 𝑚

"

*4$

"

(10)

• Atom in presence of external fields.

In case 𝐹 ⊥ 𝐵⃗ , we have 𝜔$ = 𝜔# = 𝜔># + 𝜔*# with energy given as 𝐸'? = − 1

2𝑛# + 𝑘 𝜔># + 𝜔*#

Where, − 𝑛 − 1 ≤ 𝑘 = 𝑚$ + 𝑚# ≤ 𝑛 − 1 with degeneracy 𝑛 − 𝑘 On defining an operator ⃗𝜆 = 𝐷5, 𝐷6, 𝐿(

𝜆5 = 𝐷5 ⟼ 𝑆𝑡𝑎𝑟𝑘 𝐸𝑓𝑓𝑒𝑐𝑡 ⟼ ⃗𝐹 along 𝑥 𝜆( = 𝐿( ⟼ 𝑍𝑒𝑒𝑚𝑎𝑛 𝐸𝑓𝑓𝑒𝑐𝑡 ⟼ 𝐵 along 𝑧

We then have 𝑉 = ⃗𝜆 ⋅ 𝜔# = ⃗𝜆 ⋅ 𝜔> + 𝜔* , giving the basis states |𝑛, 𝜆#, ⃗𝜆 ⋅ 𝜔#⟩ . For a given 𝑘, values of 𝜆 are such that 𝑘 ≤ 𝜆 ≤ 𝑛 − 1

Zeeman and linear Stark effects are both contained as limiting cases.

𝜆5 ⃗𝜆 ⋅ 𝜔# 𝜆(

Stark Zeeman

(11)

The eigenfunctions of 𝜆#, 𝜆@ continuously evolve from one limit to other.

From right to left and n around 60

(12)

Large electric field - separation still possible

E.g. the semi-parabolic coordinates 𝑢 = 𝑟 + 𝑧, 𝑣 = 𝑟 − 𝑧

@!4A!

# = 𝑟 , @!)A!

# = z.

We get the Schr. Eqn. # @0&!!404A'!!@!4A# ! + 𝐹 @!)A# ! 𝜓 = 𝐸𝜓 with,

𝑝@# = − B@B!! + @$ B@B + #@8!! , 𝑝A# = − BAB!! + $A BAB + #A8!! for the ansatz. Ψ = 𝜓 𝑢, 𝑣 𝑒%8C

For 𝐹 = 0, 0&!40'!

# − E u# + v# Ψ = 2Ψ

𝐸 is related to 𝜔 as D#! = −𝐸 ⇒ 𝜔 = −2𝐸, and thus we have, 2𝑛@ + 𝑀 + 1 −2𝐸 + 2𝑛A + 𝑀 + 1 −2𝐸 = 2 and Energy

𝐸 = − 1

2 𝑛@ + 𝑛A + 𝑀 + 1 #

(13)

n M (𝟐𝒏 + 𝑴 + 𝟏) 𝝎 Degeneracies

0 0 𝝎 1

0 ± 1 2𝝎 2

0 ± 2 3𝝎

1 0 3𝝎

0 ± 3 4𝝎

0 ± 1 4𝝎

3

4 2𝑛@ + 𝑀 + 1 −2𝐸 + 2𝑛A + 𝑀 + 1 −2𝐸 = 2 with

𝐸 = − 1

2 𝑛@ + 𝑛A + 𝑀 + 1 #

(14)

H in strong electric field

𝑝@# + 𝑝A#

2 − E u# + v# + 𝐹 𝑢+ − 𝑣+

2 Ψ = 2Ψ

Cytaty

Powiązane dokumenty

The obtained results were compared with those calculated with the specialized program for calculation of the electromagnetic field strength distribution under the power

This classical transition to chaos manifests itself in the properties of quantum spectra... Multi-electron atoms: non-Coulombian

Ta zmia- na, podkreślmy, nie była tylko zmianą języka teoretycznego; jeśli miała charakter paradygmatyczny, to dlatego, że semiotyczne rozumienie kultury oznaczało

Taki typ obrazowania można określić jako via negativa – proces zmiany tożsamości jest tak drastyczny dla operującej monolitycznymi kategoriami narracji narodowej, że wymyka

The equations of motion for a flat plate boundary layer flow of an incompressible, electrically conducting fluid in the presence of a transverse magnetic field

Sam Celiński uważał za początek Uniwersytetu Latającego prelekcje, połączone z dyskusją, jakie odbywały się latem 1976 roku podczas nieformal- nego obozu naukowego dla

Średnie korelacje między różnymi kategoriami uczuć kierowanymi do obiektu i do samego siebie w grupie mężczyzn z uwzględnieniem relacji osobowych i nie­ osobowych

Pragnie jednak, by człowiek z własnej woli sam najpierw do Niego się zwrócił, aby skierował do Niego modlitwę, która jest jakby kluczem do jego Miłosierdzia.. Bóg przybrał