• Nie Znaleziono Wyników

Joint genomic and proteomic analysis identifies meta-trait characteristics of virulent and non-virulent Staphylococcus aureus strains

N/A
N/A
Protected

Academic year: 2022

Share "Joint genomic and proteomic analysis identifies meta-trait characteristics of virulent and non-virulent Staphylococcus aureus strains"

Copied!
33
0
0

Pełen tekst

(1)

FrontiersinCellularandInfectionMicrobiology|www.frontiersin.org 1 September2018|Volume8|Article313 ORIGINALRESEARCH published:06September2018doi :10.3389/fcimb.2018.00313

Editedby:F rancoisVandenesch,Unive rsitédeLyon,France Reviewedby:N ickWheelhouse,EdinburghN apierUniversity, UnitedKingdom StefanoGiulieri, UniversitédeLausanne,Switzerland

*Correspondence:B enedyktWladykabenedykt.wl adyka@uj.edu.pl

Theseauthorshavecontributed equallytothiswork

Specialtysection:Th isarticlewassubmittedtoMolecular BacterialPathogenesis, asectionofthejournalFr ontiersinCellularandInfection Microbiology Received:10May2018 Accepted:16August2018 Published:06September2018 Citation:

BonarEA,BukowskiM,HydzikM,Jank owskaU,Kedracka- KrokS,GroborzM,DubinG,Akkerboo mV,MiedzobrodzkiJ,SabatAJ,Friedri chAWandWladykaB(2018) JointGenomicandProteomicAnalysisId entifiesMeta-TraitCharacteristicsof VirulentandNon- virulentStaphylococcusaureusStrai ns.Front.Cell.Infect.Microbiol.8:313 .doi:10.3389/fcimb.2018.00313

JointGenomicandProteomicA nalysisIdentifiesMeta-

TraitCharacteristicsofVirulent

and Non-virulentStaphylococcusaureus Strains

EmiliaA.Bonar1†,

MichalBukowski1†,

MarcinHydzik1,

UrszulaJankowska2, SylwiaKedracka-

Krok3,

MagdalenaGroborz1,

GrzegorzDubin2,4,

ViktoriaAkkerboom5,

JacekMiedzobrodzki4, Artu rJ.Sabat5,

AlexanderW.Friedrich5a

ndBenedyktWladyka1*

1D

epartmentofAnalyticalBiochemistry,FacultyofBiochemistry,BiophysicsandBiotechnology,JagiellonianUniversity,Krakow,Po land,2M

alopolskaCentreofBiotechnology,JagiellonianUniversity,Krakow,Poland,3D

epartmentofPhysicalBiochemistry,Facultyo fBiochemistry,BiophysicsandBiotechnology,JagiellonianUniversity,Krakow,Poland,4D

epartmentofMicrobiology,FacultyofBioc hemistry,BiophysicsandBiotechnology,JagiellonianUniversity,Krakow,Poland,

5D

epartmentofMedicalMicrobiology,UniversityMedicalCenterGroningen,UniversityofGroningen,Groningen,Netherlands

Staphylococcusa ureusi sa nopportunisticpathogenofhumansa ndwarm- bloodedanimalsandpresentsagrowingthreatintermsofmulti-

drugresistance.Despitenumerousstudies,t hebasisofstaphylococcalv irulencea ndswitchin gbetweencommensalandpathogenicphenotypesisnotfullyunderstood.Usinggenomics,we showheret hatS.a ureusstrainse xhibitingv irulent( VIR)a ndnon-

virulent( NVIR)phenotypesinachickenembryoinfectionmodelgeneticallyfallintotwoseparate groups,witht heVIRgroupbeingmuchm orec ohesivethant heNVIRgroup.Significantly,t heg enese ncodingknownstaphylococcalvirulencefactors,suchasc lumpingfactors,areeitherfo undindifferentallelicvariantsinthegenomesofNVIRstrains(comparedtoVIRstrains)ora rei n activepseudogenes.M oreover,t hepyruvatec arboxylasea ndgamma-

aminobutyratepermeasegenes,whichwerepreviouslyl i nkedwithv irulence,arepseudogeni zedi nNVIRstrainc h22.Further,weusec omprehensiveproteomicstoolstocharacterizestrain sthatshowopposingphenotypesinachickenembryovirulencem odel.VIRstrainCH21hada ne levatedl evelofdiapolycopeneoxygenaseinvolvedinstaphyloxanthinproduction(protectiona gainstfreeradicals)andexpressedahigherlevelofimmunoglobulin-

bindingproteinSbionitssurfacecomparedtoNVIRstrainch22.Furthermore,jointgenomican dproteomicapproacheslinkedtheelevatedproductionofsuperoxidedismutaseandDNA-

(2)

FrontiersinCellularandInfectionMicrobiology|www.frontiersin.org 2 September2018|Volume8|Article313

bindingproteinbyNVIRstra inch22withgeneduplicatio ns.

Keywords:genome,genomics,patho gen,proteome,proteomics,Staphylo coccusaureus,v irulence

(3)

GenomicsandProteomicsinStudiesofS.aureusVirulence Bonaretal.

INTRODUCTION

Thegeneticdeterminantsandproteineffectorsthatareresponsiblefo rt hev irulenceofStaphylococcusaureusescapeourfullunderstandin gdespiteanumberofcomprehensivestudies.Inhomeostasis,S.aur euscoexistswithitshostwithoutdistinguishedadverseeffects.Howe ver,inanimbalancedstate,thenatureofwhichispoorlyunderstood,t hisopportunisticpathogenmaycauseinfectionandposeasignificant healththreat.Thus,theJanus-

facebacteriaconstantlybalancescommensalandvirulentphenotype s,copingwithdifferentlevelsofhostdefenses(RasigadeandVanden esch,2014).Indeed,itwasrecentlydemonstratedt hatwithint hesa mec lonalc omplex,p h enotypicdifferencesmaybel inkedwitht hes everityofi nfections.Moreover,factorscorrelatedwithhighpathogeni cityinthegroupofgeneticallyrelatedS.aureushadlittleeffectonthem ortalityratesassociatedwithi nfectionsc ausedbyb acteriafromother clonalcomplexes(Reckeretal.,2017).Thisfindingindicatesboththeg enetica ndp h enotypicb asisofs taphylococcalv irulence.Asidefro mmaintainingh ost/pathogenb alancei na s inglehosts pecies,s tap hylococcihavebeendemonstratedt os witchbetweenanimalandhu manhosts.Suchswitchingisassociatedwiththeexchangeofhost- specificvirulencefactorsthatareresponsibleforc olonizationa nds pr ead(Lowdere ta l.,2 0 0 9).Thisp l asticitys ignificantlyc omplicates s tudiesonv irulencedeterminants,especiallyintermsoflikelyhuman specificfactorsthatcanbeexperimentallytestedexclusivelyinanima lmodels.Geneticmethodshavebeensuccessfullyusedtopredictanti bioticresistancewithhighcredibilityandtherecentadventofmassive parallelsequencingpromisesclinicalutility(Aanensenetal.,2016).H owever,onlyafewgeneticmarkers,whosemechanismofactionhasb eendeterminedatthemolecularlevel,havebeenconvincinglyl inked withs uccessfulc olonizationa ndv irulence[e.g.,argininec atabolis mm obilee lement,ACME(Diepe ta l.,2008;Thurlowe ta l.,2 0 1 3),e xfoliativet oxins(Bukowskie ta l.,2010)].O thergeneticmarkers,b as edons tatisticala nalysisofwholegenomes equencinga ndD NAmic roarrayassaysd ata,werep ointedt op ositivelyc orrelatewiths everit yofi nfections,includingbacteremiaandinfectiveendocarditis(Gillet al.,2011;Calderwoodetal.,2014;Bouchiatetal.,2015).Neverthele ss,apaletteofgeneticp redictorsofs taphylococcalv irulencei ss tillli mited.Anumberofstudieshaveusedproteomicsapproachestotrytoi dentifytheproteineffectorsofvirulentphenotypes(Bonaretal.,2015).

Earlier,wecomparedexoproteomesinasetofstrainsexhibitinghigha ndlowvirulenceinachickenembryoinfectionmodel.Despitethehigh heterogeneityoftheanalyzedproteomes,wewereneverthelessable toidentifyalpha-

hemolysinandbifunctionala utolysinasi ndicatorsofv irulence,wher easglutamylendopeptidaseproductionwascharacteristicofnon- virulents trains(Bonare ta l.,2 0 1 6).Thisp riors tudy,h owever,didn ottakeintoaccountsurface-

attachedproteins,whichmaycontaina dditionalv irulencef actors.Th ei ntracellularp roteomewasnott akeni ntoc onsideratione ither,buti tmayp otentiallycontainregulatoryp roteins.

However,anothersourceofinformationonstaphylococcalviru lencefactorstraditionallycomesfromtheinvestigationofknock- outandknock-instrainsdevoidoforsupplementedwith

testedf actorsa nds ubsequentlychallengedi na nimalmodels(Kim etal.,2014b).Unfortunately,alackofappropriatemodelshasdetrim entallyaffectedtheresults(Polakowskaetal.,2012).Moreover,thisa pproachdoesnotallowtodistinguish“true”virulencefactorsfromthos eaffectingtheoverallfitnessofbacteria.

Givent hel imitationsoft hesec urrenta pproaches,h ere,wedesig nedandappliedanew,combinedworkflowtosuccessfullyidentifyvir ulence-andcommensalism-relatedmeta-

traitswithinthegenomesa ndp roteomesofv irulent( VIR)a ndnon- virulent(NVIR)S.aureusstrains.Twobelongingtothesamesequenc etypewild-typestrainsthathavebeenwell-

characterizedintermsofvirulenceinaninvivomodelwerecompared andcontrastedusingacombinedgenomicandproteomicmethodolo gy.Weshowthatthenon-

virulentstrainch22ischaracterizedbyamorecomplexexoproteomet hani tsv irulentc ounterpartCH21.Thisfindingi sassociatedwitht he s mallergenomeofCH21t hanch22.Interestingly,CH21isnotcharac terizedbytheproductionofanyclassicalvirulencefactorscomparedt och22.Itisratherthecombineddifferentialexpressionofmultiplefact orsthatdeterminesthevirulenceofCH21;therationalebehindthiscon clusionisdiscussedinourcommunication.

MATERIALSANDMETHODS

BacterialStrainsandGrowthConditionsP

oultry- isolatedS.aureuss trainsexhibitinge itherh igh( CH3,CH5,CH9,CH 21,a ndCH23)orl ow( ch22,ch24,p a 3 ,a ndph2)v irulence( VIRa n dNVIR,respectively)i na chickenembryoexperimentali nfectionmo delwereusedi nt hes tudy(SupplementaryTable1).Strainorigina n dgeneralgeneticandp h enotypiccharacteristics,i ncludingb asicp h ylogeneticrelationshipsandv irulence,weredescribedpreviously(L owderetal.,2 0 0 9 ;P olakowskae ta l.,2 0 1 2 ;Bonare ta l.,2 0 1 6).Th e

bacteriawereculturedintrypticsoybroth(TSB)for16hat37C withvigorousshakingunlessindicatedotherwise.

GenomeSequencingandAssembly

WholeGenomeSequencing

GenomicDNAwasisolatedusingaDNeasyBloodandTissueKit(Qiag en)fromanovernightculturederivedfromasinglecolony.PurifiedD N AwasquantifiedwithaQubit2 .0Fluorometer(LifeTechnologies).Wh olegenomesequencingwasperformedusinga nI lluminaM i Seqs ystemwithD NAfragmentl ibrariespreparedusinga NexteraXTv 3k i t(Illumina)accordingt ot hemanufacturer’sprotocol.Thesampleswe resequencedtoobtainaminimumof100-

foldcoverage.Readsweredenovoassembledintoc ontigsusingCLC G enomicsWorkbench( version8 .5.1).Contigswereorderedona t e mplateoft heS.aureusED98completechromosomesequence(Gen BankCP001781.1)usingself-

developedPythonscripts,whichutilizednucleotideBLAST fromtheNCBIBLAST+toolkit[version2.3.0(Camacho eta l.,2 0 0 9)].Thec ompletegenomics equencesoft heCH21 andch22strainswereobtainedbyclosingtheremaininggapsusin gPCRamplificationandSangersequencing.Automatedgenom eannotationwasperformedusingtheNCBIProkaryoticGenomeA nnotationP ipeline( http://www.ncbi.nlm.nih.gov/

(4)

genome/annotation_prok/).ThesequencesweredepositedinGenB ankwitht heaccessionnumbers:CH3,M O YG00000000;CH5,MSG Q00000000;CH9,MOYH00000000;CH21,CP017804,CP017804, CP017806;ch22,CP017807,CP017808,CP017809;ch23,M O YI0 0000000;ch24,M O YJ00000000;p a3,

MOXP00000000;ph2,MOYK00000000.Detailedinformationmay befoundintheSupplementaryTable1.

IdentificationofMobileGeneticElements(MGEs)Thecontigsthat didnotmatchthechromosomesequencewereexaminedforp ossibl ep l asmidoriginbyevaluatingtheirsimilaritytoexistingplasmidsorfra gmentsthereof.Wholegenomics equenceswereexaminedfork now nstaphylococcalp hagesa ndp a thogenicityi slandsusinga nexhau stivesetofreferencesequencesobtainedfromGenBank(Suppleme ntaryTable2).Shortsequencefragmentsofatleast1kbshowingsimi larity(butnotidentical)toknownphagesandpathogenicityislandsw ereclassifiedasputativelynovel.

ConstructionofPhylogeneticTrees

Phylogenetictreesoftheidentifiedprophagesandpathogenicityislan dswerec onstructedusingCLCMainWorkbench( version7.7.2)andt hek -

merbasedt reec onstructionmethodwiththeNeighborJoinalgorithm (k-mersize1 5;distancemeasure:fractionalc ommonk -

merc ount).SNPa nalysiswasp e rformedusingtheCSIPhylogeny1.

4server(Kaasetal.,2014).Asthechromosomesequencesweresu bmittedtotheserverminimumdeptha tSNPp ositions,minimumrelat ivedeptha tSNPpositions,minimumdistancebetweenSNPsandmin imumSNPqualityasinputp arametersweredisabledduringanalysis.

Thereadmappingqualitywassettominimum25andthez-scoreto 1.96.ThemaximumlikelihoodtreeproducedbyCSIPhylogeny 1.4s erverwasv isualizedi nM EGA6s oftware(Tamurae ta l.,2013) .

InsilicoM LSTandST5GroupPhylogeneticAnalysisAp i pelinewa sdevelopedi nP ython3 fori nsilicoM L STa ndphylogeneticanalysis ofstrainsbelongingtoST5group.All8,688S.aureusgenomes,compl etegenomicsequencesaswellasshotgunsequencingresults,weref etchfromNCBIGenBankdatabase( ftp://ftp.ncbi.nlm.nih.gov/geno mes/genbank/bacteria/,accessedon20 18 -07-

06).28 9 genomeswhichdidnotp rovideac ross-

referencet oNCBIBiosampled atabasewereomitted.Locip rofilesfr omBISGsd atabasewereusedt oc lassifyt hegenomesaccordingto theirsequencetype(https://pubmlst.org/saureus/,accessedon2 0 1 8 -07-

06(Jolleya ndMaiden,2010)].L ocis equencesusedforS.aureusM L STt ypingwereobtainedfromUSA300straingenomicsequence(acc essionversionCP014420.1)andusedasqueriesfornucleotideBLAS TsearchoftheremaininggenomeswithE-valuethreshold0.0001 andrequiredquerycoverage100%(ver.2.7.1+(Camacho etal.,2009).For2,129assemblies,classifiedasST5,cross-

referencestoNCBIBiosampledatabase(ftp://ftp.ncbi.nlm.nih.go v/biosample/,accessedon2018-07-

06)wereusedtoobtaininformationonthehost,yearofisolationand countryoforigin(attributesof“harmonized_name”propertyequal to“host,”“ geo_loc_name,”a nd“ collection_date,”respectively).

1,635assembliesc ontaineds uchi nformation.Thei nformationonth ereferencestrainsED98andN315,missinginNCBIBiosampledatab ase,wasaddedmanually.Thesegenomesweresearchwithnucleotid eBLASTwithE -

valuet hreshold0 .0001andminimalqueryc overage9 5 %forl ocis e quencesobtainedfromN315straingenome(accessionversionBA00 0018.3),whichwereutilizedbeforeforST5phylogeneticanalysisbyN ubeleta l.

( 2008).H owever,t oavoidf alsep ositiveh its,onlyl ociofl engthequ alorgreaterthan4 00 bpweres elected(intotal97of126,Suppleme ntaryTable10).Forasignificantover-

representationofstrainsisolatedfromhumanhostandoriginatingfro mtheUSA(1,248of1,474,85%),arandomsampleofsize50wasobta inedforthisgroup.Selectedinsuchaway279strainstogetherwithoth ersixbeinganalyzedinthisresearchandbelongingtoST5group(Sup plementaryTable11)weres ubjectedt op h ylogenetica nalysis.Fo reverys traint hesequencescorrespondingtotheaforementionedN3 15strainlociwereordered,c oncatenateda nda lignedusingClustalO megawithdefaultparameters[ver.1.2.1(SieversandHiggins,2014)]

.Subsequentlyeverycolumncontainingagapwasremovedfromt he a lignment,whichshortenedi tfrom4 4 ,295t o4 3 ,872bp.Thea lignm entwasc onvertedt oP HYLIPformat)a ndusedtocreateaphylogen etictreewithRAxML[ver.8.2.9(Stamatakis,2014)]basedonGTRG AMMAImodel[generaltime-

reversible,GTR(Tavaré,1986)].Thetreewassubsequentlyimported t oCLCMainWorkbench(Qiagen,CLCBio)t ogetherwithdataobtain edfromBiosampledatabase,asmetadata,andvisualized.

AnalysisofCodingSequencesandPutativePr omoters

Self-

developedP ythonscriptsutilizingnucleotidea ndp roteinBLASTfro mNCBIBLAST+toolkit( version2 .3.0)a ndmuscle[version3 .8.31(

Edgar,2 0 0 4)]wereusedforc reatingmultiplesequencealignmentst oanalyzecodingsequencesandputativepromoterregions.Annotat edc odings equenceswereextracted

fromtheanalyzedgenomestogetherwith200bpupstreamfragments containingtheputativepromoters.Translationsofthecodingsequen ceswereclusteredwithasimilaritythresholdof9 0 %.A lli denticalp r oteins equenceswithina c lusterweredesignatedasasingleallele.T hemultiplesequencealignmentsofdifferentallelesandpromoterseq uenceswithineachclusterwerescannedfordifferentiatingcolumns.

VisualGenomeComparisonWithBRIG

Theninegenomes,p ublishedh ere,a ndt hegenomeofN315strainas a h umanreferenceofST5werec omparedt oED98genomeusingB RIGtool(Alikhanetal.,2011).Theidentityt hresholdsweres ett o9 8 a nd9 5 %a ndED98mobilegeneticelements,prophagesϕAv1,ϕAv β,thepathogenicityislandSaPIAv,andplasmidspAvX,pT181,and pAvYwereannotated.

WholeGenomeGeneralComparisonofCH21andch 22Strains

Continuoussimilarsequencesegmentswereidentifiedusingnucleoti deBLAST.Mostsegmentswereseparatedbyshort

(5)

insertionsorduplications.Similarsequencesegmentsandtheireq uivalencebetweenstrainswerevisualizedusingCircos[version0.69- 3(Krzywinskietal.,2009)].

ProteomicA nalysis

ExoproteomeAnalysis

Forc omparativea nalysisoft heexoproteomesoft heCH21andch 22s trains,t riplicatesofc learedc ulturef l uidswerehandledasd escribedpreviously(Bonaretal.,2016).Toassurenocontaminatio nwithintracellularproteins,thesupernatantswerepassedthroug ha0.22-

µmPVDFfilter.Then,theproteinswereprecipitatedwithanequal volumeof20%

(w/v)trichloroaceticacidinacetoneandrecoveredbycentrifugatio n.Thepelletwaswashedwithacetoneandairdried.Thesamplesw eredissolvedi nl ysisbuffer( 30mMT risHClp H

8.5c ontaining7 Murea,2 Mt hioureaa nd4 %CHAPS).Theproteins ampleswerelabeledwithspectrallyresolvablefluorescentG- dyes(NHDyeAGNOSTICSGmbH)andsubjectedtotwo- dimensionaldifferencegelelectrophoresis[2DDIGE;

(Albane ta l.,2 0 0 3 ;Timmsa ndCramer,2 0 0 8 ;M i ndene ta l.,200 9)].Isoelectrofocusing(IEF)wasperformedusing17-

cmimmobilizedpH(3–10)gradientstripsandProteanIEFCell(Bio- Rad).P roteinsweres eparatedi nt hes econddimensionusingan1 2%acrylamidegelaccordingtotheLaemmlimethod

(Laemmli,1970).ThegelswerescannedusingTyphoonTrio+

(GE),andimageswereanalyzedusingImageQuantv.7.0and DeCyder2Dsoftwarev.7.2(GE).Proteinspotswereconsideredasdif ferentiatingift hestandardizedaveragespotv olumeratioexceeds1.

5-foldatt he95 %confidencelevel(Student’st-testp -

value<0.05).Subsequently,t hegelsweres ilvers tained(Shevchenk oetal.,1996).Thedifferentiatingspotswereexcisedanddestainedby severalsubsequentwashesin25%and50%

(v/v)acetonitrile( ACN)i n2 5 mMa mmoniumbicarbonatebuffer(NH

4HCO3),pH8.0at37C.ThegelfragmentsweredehydratedinACN,dr iedusingavacuumconcentrator,andrehydratedusingt rypsins oluti on( 10ng/µli n2 5 mMNH4HCO3,p H 8.0),anddigestionwascarried outovernightat37C.Peptideswereextractedbysonication,dehydr atedinACNanddriedusingavacuumconcentrator.Samplesweresu spendedin2%(v/v)ACNi nwaterc ontaining0 .05%

( v/v)t rifluoroaceticacid(TFA)andseparatedusinganUltiMate300 0RSLCnanoSystem(Dionex).P eptideswerea nalyzedona c ouple dM i crOTOF-

QIImasss pectrometer( Bruker)e quippedwitha nA polloSourceE SInanosprayerwithlow-flownebulizer.Rawdatawerepre- processedwithD ataA nalysis4 .0s oftware( Bruker,G ermany)into MascotG enericformat.TheSwissProtnon-

redundantproteind atabaset axonomicallyrestrictedt oFirmicutes(

gram-

positivebacteria)wasqueriedwiththeobtainedpeaklistsusingani n- houseMascots erver.A dditionally,a ni n-

housep repareddatabaseconstructedbasedonthefullgenomeseq uencesofCH21andch22obtainedinthisstudywasused.Onlyidentifi cationswithascorevalueover100wereconsideredrelevantforfurthe ranalysis.Ifmorethanasingleproteinwasidentifiedinparticularspot ,onlyhitsscoringover50%oft heh ighestscoringp roteinwerec onsid eredi nfurtheranalysis.

AnalysisofIntracellularProteome

ForcomparativeanalysisoftheintracellularproteomesofstrainsC H21andch22,3mlofovernightcultures(OD600∼12)wasusedintr iplicate.Thecellswerecollectedbycentrifugation,washedthreeti meswith10mMTrisHClpH8.0andsuspendedin1 mlofT riR e age nt( SigmaA ldrich),t ransferredt oL ysis

MatrixTubes(MPBiomedicals)anddisruptedwithPrecellys24H omogenizer(BertinInstruments).Lysateswereclarifiedbycentrif ugation,andtheproteinphasewasisolatedaccordingtotheTriR eagentprotocol.Theobtainedproteinpelletwassuspendedinlysi sbufferandanalyzedby2DDIGEandMSasdescribedforexoprotei ns.

SurfaceProteomeAnalysis

Proteolytic“shaving”wasusedtocomparesurfaceproteomes(sur facomes)ofs trainsCH21a ndch22.A llsampleswereanalyzedi n biologicalt riplicates.Bacteriawerec ulturedovernighti nTSBa t3 7Cwithagitation.Thefreshmediumwasinoculatedwiththeovern ightcultureat1:100dilutionandcultureduntilOD600reached1.The culturesweredividedintotwosamples,experimentalandcontrol,b asedonthemethodofSolisetal.

(2010)tocontrolforcontaminationbycytoplasmicproteinsresulti ngfromunspecificc elll ysis.Bacteriawerecollectedbycentrifuga tion,washedwithphosphatebufferedsaline(PBS)andsuspendedi n30%sucroseinPBS.Experimentalsampleswereincubatedwithtry psin[1µg/µl;“Gold,MSGrade”(Promega)]for30minat37Cwithg entleagitation,clarifiedbycentrifugationandfilteredthrougha0.

22-

µmPVDFfilter.Thecontrolsamplewashandledasabovesavetha ttrypsinwasnotaddedduringtheinitialincubation.Thecontrolsam plewastreatedwitht rypsin( 1µg/µl)onlyafterf i ltering( condition sasabove).AllsampleswerereducedwithDTTandalkylatedwithi doacetamide,digestedovernightwitht rypsin0 .2µg/µl(Biocentru m)at37C,supplementedwith0.5%TFAand5%ACN( finalc on centration),c leanedusingP ierceC18Spincolumns(ThermoFis herScientific)andvacuumdried.SampleswereanalyzedbyMSas describedforexoproteins,savescorevaluesover50wereconsidere drelevant.

RESULTSANDDISCUSSION

OverallGenomicCharacteristicsofVirulenta ndNon-virulentStrainsofS.Aureus

Inap riors tudy,weevaluatedthev irulenceinachicken

embryoinfectionmodelofa numberofp oultryoriginatingstrainsofSta phylococcusaureusonabackgroundoftheirgeneticrelationships.T odeterminet hegenomicb asisofp h enotypicdifferencesbetweent heselectedstrains,inthisstudy,weobtainedthegenomicsequences offivehighlyvirulentstrains(CH3,CH5,CH9,CH21,andCH23)andfo urstrainscharacterizedbylowvirulence(ch22,ch24,pa3,andph2).

Twogenomes(CH21andch22)wereobtainedi nt heirc ompleteform ,whereast heremainingsevengenomeswereobtainedintheformofo rderedcontigs.Theoverallcharacteristicsoftheobtainedgenomesar esummarizedinSupplementaryTable1.Genomesizedoesnotcorr elatewithvirulentphenotypessinceallgenomes,savethatofstrainch 22(consideredinmoredetailinthenextsection),have

(6)

FIGURE1|

ComparisonofproteinclustersamongnineS.aureusstrains.Clusterswereobtainedforannotatedcodingsequencesatthresholdof90%similarity.Withinaclusteridenticalseque ncesaredenotedbythesamecolor.Whitedenotestheabsenceofanortholog.Longwhitegapsattheendoftheplotcorrespondtotheabsenceofdifferentmobilegeneticelementssu chasplasmids.TheclusterorderisrelatedtotheorderofcodingsequenceoccurrenceinthegenomeofED98.

asimilarsizeofca.2.8Mbp.Furthermore,theoverallnumberofgen

esandcodingsequencesdoesnotcorrelatewithvirulent TABLE1|Numberofclustersgatheringopenreadingframesexhibitingover90%proteinsequence similarityinthestudiedgroupofS.aureusstrains.

phenotypesandiscomparableamongtheanalyzedstrainssaveforch 22.Significantly,t hev irulentphenotypecorrelateswiththep resence ofp hageϕ AvB( 46,768bp;6 2 O RFs)a ndp AvYplasmid(1,442bp,1 ORF).AllVIRstrainscarrytheabovegenetic

Totalnumberofi dentifiedcluster

s

Number(percent )ofidenticalclust

ers

elements,whereasallNVIRstrains,withtheexceptionofch22,arede voidofbothoft hesee lements.A partfromt heabovemobilegenetice lements,weadditionallyidentifiedanumberofnovelp rophagesa nd p a thogenicityi slandsa nds everalk nownplasmids,neitherofwhich differentiatedtheVIRandNVIRgroups(SupplementaryTables3,4;

SupplementaryFigures1,2).Anothercleardistinctiondifferentiatin gtheVIRandNVIRgroupsbecomesa pparentwhenO RFsl ongert h an1 6 5 nucleotidesareextractedandclusteredaccordingtoproteins equencesimilaritiesabove90%

(Figure1).Whenthecoregenomeofallninestrainsisconsidered,only approximatelyone-

quarterofgenesfallwithinsuchdefinedclusters,whichclearlydemon stratess ignificantgeneticdifferencesa mongs trains.Interestingly,t hepercentageofgenesclusteredwiththeabovecriteriaamongt hec oregenomesoft heVIRa ndNVIRgroupsismuchhigherat72and42

%,respectively,demonstratingthecloserrelatednessofs trainswithi nbothgroupst hanbetweengroups.Sucha nalysisa lsoshowst hatt h eVIRgroupi smorehomogenoust hant heNVIRgroup( Table1).Whe nc omparedtohuman-

originstrainsofsequencetype5(ST5),theST5poultry-

origins trainsc omprisea c learevolutionarys ubgroup.Thisphylog eneticrelationshipbasedonmoreindepthanalysisofgenome- extracted97differentloci(Nubeletal.,2008)placespoultry- originST5strainsonaseparatebranchofthetreeregardlesst ogeogr aphicalorigin.I nterestingly,b asedont hisanalysisCH21a ndch22s trainsa res tillgeneticallyi dentical(Figure2).Markedly,thewholege nomeanalysisconfirmedtheirhighgeneticresemblancebyrevealing only85singlenucleotidep olymorphisms( SNPs).ThemaximalSNP numberamongt hewholep oultryST5s ubgroupi s3 5 5 ,whereast h edistancetothetypestrainN315ofhumanoriginishigher(from663to 823SNPs).Non-

ST5poultrystrainsanalyzedinthisstudy,allbeingnon-

virulent,areclearlymoredistantfromtheaforementionedST5subgro upbyhavingfrom19,384to21,127SNPs.TheST692strainspa3and ph2,although

Pan-genome 3,307 1,277(38.62)

Core-genome 2,317 586(25.29)

VIRstrainspan-genome 2,949 2,513(85.22)

VIRstrainscore-genome 2,527 1,826(72.26)

NVIRstrainspan-genome 3,009 1,862(61.88)

NVIRstrainscore-genome 2,471 1,050(42.25)

isolatedfromdifferentp oultryh osts,respectivelyp a rtridgeandp h e asant,a regeneticallyh ighlys imilart oe achotherbydisplayingonly1 6 5 SNPs.TheST1s trainch24i sh ighlydistantfromt herestoft hea nalyzeds trainsbyhavingfrom19,384to20,875SNPs(Figure3;Sup plementaryTable12).Allthesegeneticsimilaritiesanddifferencesar ealsovisiblewhent hea nalyzedgenomesa rev isuallyc omparedt o ED98genomeasareference(Lowderetal.,2009).Notably,noneoft henon-

ST5s trainsc ontainmobilegenetice lements uchasprophagesϕAv 1,ϕAvβandthepathogenicityislandSaPIAv,whichs eemt obechara cteristict ot heST5p oultrys ubgroup(Figure4).

GeneticDifferencesBetweenV irulent(CH21)andNon -

virulent(ch22)StrainsC

H21a ndch22showoppositep h enoty pesi na chickenembryoi nfectionmodel( VIRvs.NVIR,respectively) buta reindistinguishablebyc ommont ypingt echniques.Weassum edthattheirdifferentphenotypesmaybeexplainedbydeepgenomese quencing.Suchanapproachisgenerallyappliedtoelucidatethegenet icbasesofthesuddenacquisitionofantibioticresistance(Sabatetal., 2015).However,itwaslikelythattheswitchbetweentheVIRandNVI Rph enotypesinCH21vs.ch22wasalsoduetomutationsorthelossor acquisitionofgeneticmaterial,whichwouldbetraceablebyNGS.Ther efore,weobtainedthecompletegenomicsequencesofbothstrains.T he

(7)

FIGURE2|

PhylogeneticrelatednessofanalyzedpoultrystrainstoarepresentativegroupofotherstrainsbelongingtoST5groupdeterminedbytheanalysisof97differentloci,44kbofsequen ceintotal.Thepoultry-

associatedstrainscompriseadistinctivephylogeneticgroup.Markedly,CH21andch22strainsareindistinguishable.FragmentsofthetreecontainingreferencestrainsED98and N315forpoultry-andhuman-originstrains,respectively,aremagnified.

FIGURE3|

PhylogeneticrelationshipofstrainsmappedagainstreferencetypestrainED98.PhylogeneticmaximumlikelihoodtreeconstructedonthebasisofSNPswasobtainedbyCSIphylog eny1.4.Aconfidencescorerangingfrom0to1(×100duringvisualizationinMEGA6software)wascalculatedforrobustnessevaluationofthenodes.Thescalebarindicatestheevol utionarydistancebetweenthesequencesdeterminedby0.05substitutionspernucleotideatthevariablepositions.

firststrikingdifferencebetweenthestrainswasthetotallengthoftheir genomes,whichwas2.8and3.1Mbp,respectively,forthevirulentan dnon-

virulentstrains.Theadditionalgeneticpoolofover2 5 0 kbpwithint he

genomeofch22a rosemainlyfromthreeduplications.Thelongestone(

CP0178071552041..

(8)

1722216and1777324..1947499)encompassed170kbpandenc oded230proteins.Twoshorterones(CP0178071496929..1551606an d1722212..1776889,54kbp;andCP017807

1978955..1990796and2244863..2256780,12kbp)encoded 70a nd1 6 p roteins,respectively( SupplementaryTables5–9).

(9)

FIGURE4|Visualcomparisonofgenomesofpoultry-

originS.aureusstrainsagainstareferencestrainED98.Thegroupofvirulentstrainsisgeneticallymorehomogenouswhencomparedwiththemorediversegroupofnon-

virulentstrains.ParticularlyregardingindistinguishableCH21andch22strains.Noticeably,mobilegeneticelementssuchasprophagesϕAv1,ϕAvβandpathogenicityislandSaPIA vseemtobecharacteristicfortheST5poultrysubgroup.Human-originMRSAstrainN315belongingtoST5wasalsoincluded.

Interestingly,themajorduplicationsresidedwithinthecorepartoft he b acterialchromosome,whereast hep oolofmobilegeneticelements ,encompassingplasmidspAvXandpAvY,twoprophagesandpatho genicityislandSaPIAv,remainedidenticalinbothstrains(Figure5;S upplementaryTable3).Therefore,thefirstc onclusioni st hatl ossof t hev irulentp h enotypebych22wasnotrelatedtolosingasubstantial partofitsgeneticmaterial,whichcouldhavebeenresponsibleforvirule nce.Ontheopposite,pathogenicb acteriawereshownt ohavegenera llys mallergenomesthantheirclosenon-

virulentrelatives(GeorgiadesandRaoult,2 0 1 1).Therefore,onec a ni maginet hatt heburdenofdispensablegeneticmaterialc ouldi mp airt herateofgrowthandt hust hev irulenceofch22.H owever,t hegr owthratei nrichTSBmediumaswellasinminimalM9-

CAAmediumwerecomparablebetweenCH21andch22(Suppleme ntaryFigure6).Moreover,apossiblerelationbetweengenomesizea ndvirulenceisnots upportedbya nalysisoft hegenomesoft heremain ingstrains,whichhavesimilarsizeswithinboththeVIRandNVIRgrou ps.

Adetailedcomparativeanalysisrevealedgeneticdifferencesthat possiblyaffectthevirulencestatusofCH21andch22.Thefirstnotable differencebetweenCH21andch22followstheoveralldistinctionchar acteristicfortheanalyzedVIRandNVIRstrainsandencompasses10 ORFs(Table2)withestablishedrolesinstaphylococcalcolonizationa ndvirulence(Fosteretal.,2014).

Amongothers,a deletiona nda ni nternals topc odonwithintherep eat-

containingfragmentsofclfAandclfBresultinthetruncationofprot einsequencesby113and254 aminoacidresidues,respectively ,inCH22.InthecaseofsdrD,eightsensemutationsandapointmuta tionupstreamofthecodingsequencearedifferentinthestrains.CH 21andch22areindistinguishablewithp opulart ypingmethods,i n cludingM LVF(Sabate ta l.,2003).Significantly,MLVFisbasedo nvirulence-

relatedgenesandthusallowedustoclearlydistinguishvirulent(CH 3,CH5,CH9,CH21,a ndCH23)fromnon-

virulent( ch24,p a 2 ,a ndph2)strains(Polakowskaetal.,2012).T hisstudyshowsthatCH21andch22indeedcontaindifferentallele softhreegenes(clfA,clfB,andsdrD)amongthesevenusedfortypin g;however,thedifferenceswereonlydetectableusingdeepseque ncing.Thisf i ndingc orroboratesmultiplep reviousreportsont h einvolvementoftheseproteinsinstaphylococcalvirulence,where clumpingfactorsa ndotherSdrp roteinsf acilitates uccessfulcolo nization-

mediatinginteractionswithhostproteins,suchasfibrinogen,desm oglein-

1a ndc ytokeratin1 0 (O’Briene ta l.,2002;Walshe ta l.,2 0 0 8 ;W ertheime ta l.,2 0 0 8 ;Askarianeta l.,20 16).Asa na dditionalexa mpledifferentiatingCH21andch22,thegenesencodingpyruvatec arboxylase(pycA)andexotoxinSeN(seN)arepseudogenizedinth eNVIRch22strain(Table2).Interestingly,seNistotallyabsentinal

(10)

lotherNVIRstrains.PycAc atalyzest heATP- dependentc arboxylationof

(11)

FIGURE5|

ComparisonofwholegenomesequencesoftheCH21andch22strains.Colorbandsr epresentcontinuoussimilarsequencesegmentscharacterizingthetwostrains.Parti cularsegmentsareseparatedbyshortinsertionsorduplicationsunlessindicatedoth erwise.Threelongerduplicationsinthech22genome(170,54,and11kbp)areadditio nallymarkedbyoutwardribbons.Lociofintrachromosomalmobilegeneticelements, suchasprophageϕAvβ,putativeprophageϕch21andpathogenicityislandSaPIAv,a remarked.Thelocidifferentiatingthetwostrainsareidentifiedwithacronymsandcolor edasfollows.Genomics:codingsequencesinblueandpromotersingreen(pseudog enesinsquarebrackets).Proteomics:intracellularinred;extracellularinorange;ands urfaceinmagenta(upregulatedproteinsonly).

pyruvatetooxaloacetate,animportantanapleroticreactionthatpr ovidesintermediatesforthetricarboxylicacidcycle(SauerandEik manns,2005).TheactivityofPycArequiresC-terminaldomain- driventetramerization(XiangandTong,2008).Inch22,ani nternals topc odont runcatesP ycAby1 1 0 a minoacidresidues,mostlikel ydisturbingtetramerizationandthusproteinfunction.Bentonandc olleagues(Bentonetal.,2004)previouslydemonstratedtheimport anceofPycAinvirulencebyshowingthatthepycAmutantwasamo ngthemostseverelyattenuatedmutantsinamurinemodelofsyste micinfection.Theavirulentphenotypeofch22isinlinewiththosest udies.

Thes econddistinctione ncompasses1 2 differencesfoundonly betweenCH21a ndch22,butt hesedifferencesa renotcharacteristic oftheVIRorNVIRgroupsaltogether.Inthisgroup,gamma-

aminobutyratepermease(gabP)isapseudogeneinch22butnotinCH 21,whereaspeptideABCtransporterATP-

bindingprotein(nikE)isapseudogeneinCH21butnotinch22.Allrem ainingdifferencesares ensemutationst hataffecttheaminoacidseq uenceoftheirrespectiveproteins(Table3).Interestingly,amongthe attenuatedmutantsstudiedbyBentonetal.,onemutantcarriedamuta tioningabP,whichcodesfora t ransmembranep roteinc atalyzingt he t ranslocationof4 -aminobutyrate[ GABA;(Marchler-

Bauere ta l.,2 0 1 7)].I nch22

aninternalstopc odontruncatest herespectiveproteinby206amino acidresidues.Thus,togetherwithpycA,t wogenesindependentlyde monstratedasimportanttothevirulenceofS.aureusareswitchedoffi nch22.NikE,pseudogenizedinCH21butnotinch22,i sencodedbyth enikBCDEoperon,whichconstitutesa nickelt ransports ystem.Ther efore,Ni2+uptakeislikelydisturbedinCH21,butnickelionsarerequire dforureaseactivity.A ni ncreasei ne nvironmentalp H duet ot hepr oductionofammoniabyureasewasshowntobeasignificantfactori ns taphylococcalurinaryt racti nfections(GatermannandMarre,1 9 8 9

;G atermanne ta l.,1 9 8 9 ;H irone ta l.,2 0 1 0).Moreover,anincrea seinskinpHduetotheactivityofargininedeiminaseencodedinACM E(Diepetal.,2008)ofMRSAUSA300strainswaslinkedtosuccessf ulcolonizationandconsideredtobeahuman-

hostadaptation(Thurlowetal.,2013).Onecouldt husexpectt hatt he p s eudogenizationofnikEi nCH21shouldattenuatevirulence,which ishowevernotthecase.Instead,weattributenikEpseudogenizationt oanadaptationtoapoultryhost.Itwasshownthatthehuman-to- poultryhostjumpwasassociatedwiththelossofcertaingenesdispen sableforvirulenceinanewhost(suchasspa,encodingIgG- bindingproteinA ) a ndt heacquisitionofothergenes(Lowdere ta l., 2009).SincethepHofchickenskin(pH6.6–

7.2)issignificantlyhighert hant hatofh umans kin( pH5 .5),i ti sreas onablet ospeculatethatanacidicpHisnotasignificantbarrierforpoult rycolonizationbystaphylococci.Hence,itsincreasebyureasewould bedispensable,andassuch,thepseudogenizationofnikEwouldnotm anifestasa na ttenuationoft hev irulenceoft heCH21straininachick enembryoinfectionmodelasfoundinourexperiments.

Thelastgroup,differentiatingCH21andch22,encompasses1 9differencesinthepromoterregions,whichmayinfluenceexpres sionofthedownstreamgenes/proteins.Thedifferencesrangefro msinglenucleotidechanges[e.g.,fibrinogen-

bindingprotein(FnBP),thiaminase(TenA)andSdrD]toentirelydi fferentsequenceswithinthepromoterregionasexemplifiedbycyst eineproteasestaphopainA(ScpA;Table4).

DifferencesinProteomesofCH21andch 22Strains

Genomicc omparisonoft heCH21a ndch22s trainsp rovided certainc luesregardingt hel ikelygeneticdeterminantsofdifferences inthevirulentphenotype.Nevertheless,theinfluenceofgeneticalterat ionsontheoverallproteomicspectrumremainshardtoreliablypredict andthuswastestedexperimentally.Wehavep reviouslyc omparedt heexoproteomesofa numberofVIRandNVIRS.aureusstrainstode monstratetheextracellularfingerprintsofe achp h enotype(Bonare t a l.,2 0 1 6).H ere,wefocusedoncomparingthecellular,cellwall/me mbraneassociatedandsecretedproteomesoftwogeneticallyrelate dstrainsCH21andch22t op i npointt hecharacteristicsdeterminingt heirdifferentvirulencep henotypes.A mongt hec ellularproteins,12 differentiatings potswerei dentifiedascharacteristicofCH21compa redt och22,wherease ights potswerecharacteristicofch22.M S a n alysisi dentified1 0 a ndt hreeuniquep roteinsi n

(12)

TABLE2|DifferencesingenesbetweenVIRandNVIRstrainsexemplifiedbydifferencesidentifiedintheVIRCH21andNVIRch22strains.

No. Cl.* Product Acronym CH21loci ch22loci Proteinlengths Differences

1. 188 Hypotheticalprotein(associated BJL64_01345 BJL65_01345 166 161 Mergebetweentwo

withtypeVIIsecretionsystemop eron)

BJL64_01350 —————— 161 —— codingsequencesof

CH21.

2. 438 Serine-aspartaterepeatproteinD SdrD BJL64_02690 BJL65_02680 1,385 1,385 Eightsensemutations,o nepointmutationupstre amofCDS.

3. 670 ClumpingfactorA ClfA BJL64_03875 BJL65_03870 875 762 113aadeletionwithinth

erepeat-

containingfragment.

4. 891 Hypotheticalprotein(associated withbacteriocino peron)

BJL64_05095 [BJL65_05090] 654 —— Internalstopcodoninch2

2.

5. 938 Hypotheticalprotein(lipoprotein) BJL64_05335 [BJL65_05325] 69 —— Internalstopcodoninch2

2.

6. 975 Pyruvatecarboxylase PycA BJL64_05525 [BJL65_05515] 1,150 —— Internalstopcodoninch2

2.

7. 1017 Hypotheticalp rotein BJL64_05735 [BJL65_05725] 55 —— Internalstopcodoninch2

2.

8. 1702 Exotoxin SeN BJL64_09410 [BJL65_10575] 251 —— Internalstopcodoninch2

2.

9. 1767 Celldivisionprotein FtsK BJL64_08675 BJL65_09840 453 453 Fivesensemutationand

13pointmutationsupstr eamofCDS.

10. 2529 ClumpingfactorB ClfB BJL64_13955 [BJL65_15235] 865 —— Internalstopcodoninch2

2.

*Cluster’snumber,ford etailedp r o teins equencesandalignments ee“https://mol058.mol.uj.edu.pl/extra/clusters.htm.”

TABLE3|IdentifieddifferencesingenesexclusivelyfoundbetweentheVIRCH21andNVIRch22strains.

No. Cl.* Product Acronym CH21loci ch22loci Proteinlengths Differences

1. 89 Hypotheticalp rotein BJL64_00820 BJL65_00820 199 199 Sevensensemutationsinahi

ghlyvariableregion.

2. 385 Zincmetalloprotease FtsH BJL64_02360 BJL65_02355 710 697 Onesensemutation.OneSNPres

ultinginaframeshiftattheendofth egene.36terminalaachangedto 23differentaa.

3. 475 NAD(P)H-

dependentoxidoredu ctase

WrbA BJL64_02885 BJL65_02880 178 178 Onesensemutation.

4. 1221 Cholinetransporter BetT BJL64_06800 BJL65_06835 548 548 Onesensemutation.

5. 1368 Hypotheticalp rotein (lipoprotein)

BJL64_07580 BJL65_07610 230 308 Ahighlyvariableregionshorten edby78aainCH21.

6. 1573 Gamma-

aminobutyratepermeas e

GabP BJL64_08625 [BJL65_09790] 453 —— Internalstopcodoninch22.

7. 1700 Hypotheticalp rotein BJL64_09400 BJL65_10565 258 258 Onesensemutation.

8. 1766 AAAfamilyATPase(FtsKo peronassociated)

VirB4 [BJL64_08695] BJL65_09860 —— 832 InternalstopcodoninCH21.

9. 2127 Malonatetransporter YfdV BJL64_11910 BJL65_13180 302 302 Twosensemutations.

10. 2185 Conjugaltransferprotein TpcC BJL64_00290 BJL65_00290 353 353 Foursensemutations.

(FtsKoperonassociated) BJL64_08710 BJL65_09875 358 358 Avariable17aaregioncontaining

15sensemutations.

11. 2356 PeptideABCtransporterA TP-bindingp rotein

NikE [BJL64_13030] BJL65_14305 —— 249 InternalstopcodoninCH21.

12. 2902 Hypotheticalp rotein BJL64_11025 BJL65_12290 30 30 Identicalproteinsequences.

—————— BJL65_12295 —— 30 Tandemduplication.Acopywithon

epointmutation.

*Cluster’snumber,ford etailedp r o teins equencesandalignments ee“https://mol058.mol.uj.edu.pl/extra/clusters.htm.”

(13)

September2018|Volume8|Article313

10

FrontiersinCellularandInfectionMicrobiology|www.frontiersin.org

TABLE4|IdentifieddifferencesinputativepromoterregionsbetweentheVIRCH21andNVIRch22strains.

No.

Downstreamcodings equence

Acronym CH21loci ch22loci Proteinlengths Differences

1. Ring-cleavingdioxygenase GloA BJL64_01535 BJL65_01530 308 308 OnepointmutationupstreamofCDS.

2. Hypotheticalp rotein BJL64_01915 BJL65_01910 227 227 Completelydifferentsequencesfrom113

bpupstreamofCDS.

3. Serine-

aspartaterepeatprotein D

SdrD BJL64_02690 BJL65_02680 1,385 1,385 OnepointmutationupstreamofCDS.

4. Hypotheticalp rotein BJL64_04510 BJL65_04505 37 37 Completelydifferentsequencesfrom145

bpupstreamofCDS.

5. Hypotheticalp rotein BJL64_05100 BJL65_05095 106 106 Completelydifferentsequencesfrom54

bpupstreamofCDS.Inch22,thepreced ingCDSispseudogenized.

6. Fibrinogen-bindingp rotein FnBP BJL64_05765 BJL65_05755 116 116 Onesinglenucleotidedeletionu pstreamofCDS.

7. Hypotheticalp rotein BJL64_07020 BJL65_07055 55 55 FivepointmutationsupstreamofC

DS.

8. DNA-

bindingresponseregula tor

OmpR BJL64_08605 BJL65_09770 234 234 ThreepointmutationsupstreamofC

DS.

9. Hypotheticalp rotein BJL64_08650 BJL65_09815 120 120 TwopointmutationsupstreamofC

DS.

10. Hypotheticalprotein(FtsKoper onassociated)

BJL64_08655 BJL65_09820 197 197 TwopointmutationsupstreamofC DS.

11. Hypotheticalprotein(FtsKoper onassociated)

BJL64_08670 BJL65_09835 77 77 19pointmutationsandonesinglenucleo tidedeletionupstreamofCDS.

12. Celldivisionprotein FtsK BJL64_08675 BJL65_09840 453 453 13pointmutationsupstreamofCDS.

13. Hypotheticalprotein(FtsKoper onassociated)

BJL64_08680 BJL65_09845 110 110 OnepointmutationupstreamofCDS.

14. Exotoxin SeO BJL64_09435 BJL65_10600 254 254 Fourone-

nucleotidedeletionsupstreamo fCDS.

15. Cysteineprotease (staphopainA)

ScpA BJL64_10140 BJL65_11405 388 388 Completelydifferentsequencesstartin

gfromthefirstbpupstreamofCDSbeca useoftranslocation.

16. Hypotheticalp rotein BJL64_11025 BJL65_12290 30 30 Geneduplication.fourpoint

BJL65_12295 30 mutationsintheregionupto100bpupst

reamofCDSandsubstantialdifference sintheregionfrom101to200bpupstrea mofCDS.

17. ThiaminaseI I TenA BJL64_11050 BJL65_12320 229 229 OnepointmutationupstreamofCDS.

18. Hypotheticalp rotein BJL64_11905 BJL65_13175 43 43 OnepointmutationupstreamofCDS.

19. Hypotheticalp rotein BJL64_13105 BJL65_14385 140 140 Deletionof46bprightupstreamofCD

SinCH21.

therespectivegroupsofdifferentiatingspots(Table5;Figure6;Supp lementaryTable13).

Althoughi ntracellularp roteinsdonotdirectlyi nteractwiththehos t,theysignificantlycontributetowardmaintainingthevirulentphenot ypebymaintainingmetabolisminstressconditions.Proteinscharact erizedbymoreabundantexpressioni nv irulents trainCH21c ompare dt och22i ncludeddiapolycopeneoxygenase( CrtP),whichi si nvolv edi nt hebiosynthesisofstaphyloxanthin.Interestingly,howeverboth s trainsexhibitedt hesamel evelofp i gmentation(SupplementaryF igure5).Thisgoldenpigmenthasbeenlinkedwithstaphylococcalviru lenceasitshieldsthemicrobefromoxidation-

basedclearance,whichistheinnatehostimmuneresponset oi nfecti on(Clauditze ta l.,2 0 0 6).I nterestingly,

ithasbeenshownthatstrainswithgeneknock-

outsinthestaphyloxanthinbiosynthesispathwayexhibitattenuatedv irulence(Liue ta l.,2 0 0 5).Nevertheless,s taphyloxanthinoverex pressiondoesnotdirectlycorrelatewithvirulence.Ithasbeenshownt hatstrainswithelevatedp igmentation(associatedwithmutationsi n genesresponsibleforoxidativephosphorylationandpurinebiosynth esis)werelessvirulentinamurineabscessmodelofinfection.Somest rainswereevenunablet oexhibitl ong-

termc olonization(Lane ta l.,2010).Furthermore,supplementation ofS.argenteuswithagenec lusterresponsiblefors taphyloxanthinp r oductionl edtoi ncreaseds usceptibilityt ot heh ostdefensep e ptide sL L-37andh NP-

1i nvitroa ndreducedv irulencei na nexperimentalrabbite ndocardit ismodel(Xionge ta l.,2 0 1 5).Therefore,CrtP

(14)

TABLE5|ListofproteinsdifferentiallyexpressedbyVIRCH21andNVIRch22strainsasidentifiedbyproteomics.

Location Locustag CH21

Locustag ch22

Protein Acronym Clasteroforthologou

sgroups(functionalc ategory)

Elevatedin/

shavedfro mstrain

in BJL64_13565 BJL65_14845 Diapolycopeneoxygenase CrtP 1233(Q) CH21

in BJL64_11045 BJL65_12315 Bifunctionalhydroxymethylpyrimidine kinase/phosphomethylpyrimidinekin ase

ThiD/J 0351(H) CH21

in BJL64_01840 BJL65_01835 NAD(P)-

dependentoxidore ductase

3β-HSD 0702(R) CH21

in BJL64_14305 BJL65_15585 ArylamineN-acetyltransferase NhoA 2162(Q) CH21

in BJL64_11040 BJL65_12310 Hydroxyethylthiazolekinase ThiM 2145(H) CH21

in BJL64_09170 BJL65_10335 Translaldolase TalA 0176(G) CH21

in BJL64_09115 BJL65_10280 Riboflavinsynthasesubunitalpha RibE 0307(H) CH21

in BJL64_00690 BJL65_00690 Hypotheticalp rotein Hyp n/a CH21

in BJL64_01760 BJL65_01755 Peroxiredoxin AhpC 0450(V) CH21

in BJL64_11525 BJL65_12795 Alkalineshockp rotein Asp23 1302(S) CH21

in BJL64_00965 BJL65_00965 FormateC-acetyltransferase PflD 1882(C) ch22

in BJL64_08575 BJL65_09740 TypeI

glyceraldehyde-3- phosphatedehydrogenase

G3p2 0057(G) ch22

in BJL64_12445 BJL65_13715 HeminABCtransporterA

TP-bindingp rotein

HrtA 1136(M) ch22

out BJL64_09350 BJL65_10515 DUF4888d omain-

containingprotein

DUF4888 n/a CH21

out BJL64_02695 BJL65_02685 MSCRAMMfamilyadhesion

SdrE

SdrE 4932(S) ch22

out BJL64_07905 BJL65_09090 Superoxided ismutase SodM1 0605(P) ch22

out BJL64_01760 BJL65_01755 Peroxiredoxin AhpC 0450(V) ch22

out BJL64_03485 BJL65_03480 Glycerolp hosphatelipoteichoica cidsynthase

LtaS 1368(M) ch22

out BJL64_01445 BJL65_01440 Lipase2 Lip2 1075(I) ch22

out BJL64_11645 BJL65_12915 Toxin n/a ch22

out BJL64_14165 BJL65_15445 Lipase1 Lip1 1075(I) ch22

surf BJL64_02580 BJL65_02570 50Sr ibosomalproteinL7/L12 RL7/12 0222(J) CH21

surf BJL64_12760 BJL65_14035 Immunoglobulin-

bindingproteinSbi

Sbi n/a CH21

surf BJL64_14035 BJL65_15315 N-acetylmuramoyl-L-

alanineamidase

Y2979 1705(MN) CH21

surf BJL64_03805 BJL65_03800 Phosphopyruvateh ydratase Eno 0148(G) ch22

surf BJL64_07465 BJL65_08690 DNA-bindingp rotein HU 0776(L) ch22

surf BJL64_11780 BJL65_13050 30SribosomalproteinS5 RS5 0098(J) ch22

surf BJL64_13785 BJL65_15065 Fructosebisphosphatealdolase Alf2 3588(G) ch22

surf BJL64_14045 BJL65_15325 Adhesin(surfaceproteinF) SasF n/a ch22

overexpressioni nCH21maynotnecessarilyrelatet ot hevirulenceoft hisstrain.

Peroxiredoxin,a nothere nzymep rotectingt heseb acteriaag ainstoxidativehostattackbyscavenginghydrogenperoxide,was a lsoupregulatedi nCH21c omparedt och22.Thisf i ndingdemon stratest hegenerali mportanceofa ntioxidativemechanismsi ns t aphylococcalv irulence.Thelevelofa lkalineshockprotein( Asp2 3),whichwaslinkedwithc ellh omeostasisa ndp rotectionoft hec ellenvelopeinnon-

growingcells(Mülleretal.,2014),wasalsoe levatedi nCH21c om paredt och22.I na ddition,

enzymesi mplicatedi nt hes ynthesisofv itamins[ thiamine(hydr oxymethylpyrimidine/phosphomethylpyrimidinek inaseandh yr oxyethylthiazolek inase),a ndriboflavin( riboflavinsynthasesubu nitalpha)]andanenzymeinvolvedinthemetabolismofbileacid[ N AD(P)-

dependentoxidoreductase]werealsoelevatedinthevirulentCH2 1straincomparedtoch22;however,thesignificanceofthisfactinvir ulenceremainselusive.

Proteinscharacterizedbyh igherexpressioni nnon-

virulentstrainch22comparedtovirulentstrainCH21includedtypeIgl yceraldehyde-3-

(15)

phosphatedehydrogenase2 ( G3P2),a nisoenzymeofG 3PD- 1i nvolvedi nglycolysis,a ndformate

(16)

FIGURE6|2D-

DIGEofcellularproteinsisolatedfromCH21andch22strains.Proteinspotspositively differentiatinginVIRCH21andNVIRch22aremoreintensiveinredandgreencanal,re spectively.Proteinspotswithequalexpressioninbothstrainsareyellow.Identifieddiff erentiatingproteinsaremarkedwithacronyms.

C-

acetyltransferase,whichi si mplicatedi na naerobicglucosemetab olism.H eminA BCt ransporterATP-

bindingp rotein(HrtA)wasalsoelevatedinch22(Figure6).HrtAisres ponsibleforc opingwithh emes tressa ndwasa lreadydemonstratedt onegativelycorrelatewithstaphylococcalvirulence(HammerandSk aar,2011).Thetransporterpreventsheme-

mediatedtoxicity.Ithasbeendemonstratedt hata ni nabilityt oc ope withh emestressparadoxicallyyieldsahypervirulentphenotype(H ammerandSkaar,2011).InhrtAmutants,suchaphenotypewasass ociatedwitht hel ossofmembranei ntegritya ndi ncreasedsecretion ofimmunomodulatoryproteins(Attiaetal.,2010).Theabovef i nding sp ointt ot hel ikelys ignificanceoft heinabilitytoproduceHrtAbyCH2 1inmaintainingthestrainvirulence.

Inconclusion,althoughtheexpressionofonly13intracellularpro teinsiss ignificantlydifferentbetweent heVIRandNVIRstrains,th epatternofexpressionisstrikinglyconsistent.VIRstrainCH21ov er-

expressesproteinsinvolvedincopingwithoxidativestress,which characterizesthehostresponseagainstinvadingpathogens.Inco ntrast,NVIRstrainch22overproducesenzymesa daptingt hec el lt oa naerobicc onditions,whichcharacterizei tsnichesofc omm ensalc oexistencewitht hehost.

TheexoproteomesofstrainsCH21andch22aredominatedbys ta phopainC,a p l asmid-encodedc ysteinep rotease

overproducedbya rangeofp oultry-

derivedS.aureuss trainsthatwaspreviouslydemonstratedtobeafact orunrelatedtovirulence(Bonare ta l.,2 0 1 6).O nlyt hreedifferentia tings potswereidentifiedasoverexpressedwithintheexoproteomeof virulentstrainCH21comparedtoch22,andallthreespotscontainedD UF4888domain-

containingprotein(Table5;SupplementaryTable13).Thisproteino f193residueshasnok nownfunction(Marchler-

Bauere ta l.,2 0 1 7).H omologesareprimarilyfoundinvariousspec iesofstaphylococci,suggestingaspecies-

specificrole,theelucidationofwhichisofsignificanti nteresti nt hel ig htoft hiss tudy.I nterestingly,t heexoproteomeoft hev irulents train CH21i snotcharacterizedbytheoverexpressionofanyknownvirulen cefactorscomparedtononvirulentstrainch22.Evenalpha-

hemolysin,whichwasp reviouslyc onsistentlyfoundt obeoverexpre ssedi nt heexoproteomesofv irulents trainsisolatedfromp oultry,i s notoverproducedbyCH21c omparedt och22(Bonare ta l.,2016).

WithintheexoproteomeofNVIRstrainch22,sevenproteinswer efoundtobeoverexpressedcomparedtoCH21(Table5;Supple mentaryTable13).Themostpronounceddifferencesinexpressi onwerecharacterizedbylipase1(Lip1,foundin15differentiating p roteins pots)a ndl ipoteichoicacids ynthase(LtaS,foundin10di fferentiatingspots).Further,peroxiredoxin(AhpC)wasidentifiedi nthreedifferentiatingspots,whereassuperoxidedismutase1(So dM1)andlipase2(Lip2)werefoundintwodifferentiatingspots.Addi tionalproteinswereidentifiedassingledifferentiatingspots.

Theh igherc omplexityoft heexoproteomeofnonvirulentstrain ch22comparedtovirulentstrainCH21corroboratestheresultsofo urp reviouss tudy,whichdocumenteda generalregularityinthem orecomplexedexoproteomesofNVIRstrainsrelativetoVIRstrain s(Bonaretal.,2016).Moreover,ClustersofOrthologousGroups(

COGs)analysisconfirmedthatproteinsdifferentiatingbothexo- andintracellularproteomesofCH21andch22wereassignedtodiff erentfunctionalcategories(Figure7;SupplementaryFigure4).

Gelproteomicsperformspoorlyincomparingcellmembrane /

c ellwallassociatedp roteomes.Therefore,t oc omparet hesesubset softheproteomesofCH21andch22,weusedthec ell“shaving”appro ach(Solisetal.,2010)coupledtodirect,LC-

MSbasedidentification.Thisapproachenableddirectcomparisons, butunlikesemiquantitativegelproteomics,thedirectapproachisqua litativeonlyandsuffersfroml argevariabilityamongpoolsidentifiedin differentbiologicalrepeats.Assuch,onlyidentificationspresentintw oormoresampleswereconsideredfurther( Table5;S upplementar yTable13).P roteinsi dentifiedexclusivelyont hes urfaceofv irulents trainCH21i ncludeimmunoglobulin-bindingprotein(Sbi)andN- acetylmuramoyl-L-

alanineamidase(Y2979;BJL64_14035).Sbiandstaphylococcalprot einA(SpA)areIgGbinderswithademonstratedroleins taphylococca lv irulence(Gonzaleze tal.,20 15).WhileSpAbindsFcγofI gGs,Sbih ast woI g-

bindingdomainsa ndt wodomainst hatbindt oc omplementc ompon entC3(Zhaoe ta l.,2016).Apriorstudydemonstratedthepseudogen izationofspa,agenee ncodinga majorS.aureusI gG-

bindingp rotein,asa specificadaptationtoapoultryhostsinceSpAisu nabletobind

(17)

FIGURE7|

DistributionoffunctionalcategoriesofClustersofOrthologousGroups(COGs)withindifferentiatingproteinsidentifiedduringanalysisofintracellular(in),extracellular(out)andcell membrane/wall-associated(surf)proteome.OnelettercodeoffunctionalcategoriescorrespondstothecodeinCOGsdatabase[https://www.ncbi.nlm.nih.gov/COG/;

(Galperinetal.,2015)].

chickenimmunoglobulins(Lowderetal.,2009).Itistemptingtosp eculatethatSbimayreplaceSpAinpoultrystrains.Sbihasabroad erabilitytobindmammalianIgGthanSpA,butitsabilitytobindavian Igsremainstobetested(Atkinsetal.,2008).AmidaseY2979isconsi stentlyfoundintheexoproteomesofdifferentvirulentS.aureusstr ainsisolatedfrompoultry(Bonaretal.,2016),butitsroleinstaphyl ococcalvirulenceremainsunknown.

SasFa dhesina ndD NA-

bindingp rotein( HU)a redistinguisheda mongp roteinsi dentifiedex clusivelyont hesurfaceofnon-

virulents trainch22.SasFwasi nitiallyidentifiedasa c ellwalla ttache da dhesionp rotein(Rochee ta l.,2 0 0 3),butlater,itwasdemonstrat edthatitprovidesresistancetounsaturatedfreef attyacids,s uchasl i noleicacid(Kennyeta l.,2 0 0 9).I ti st husl ikelyt hatS asFhasa p rot ectiverole,compensatingtheincreasedlipasecontentintheexoprot eomeofch22.Highlipasewouldresultinhighproductionoffreefattyaci ds,whichinturn,couldadverselyaffecttheintegrityofthebacterialce llmembrane(Cadieuxetal.,2014).SasFwouldcounteractsuchadv erseeffects.HUproteinisoneofthemajornucleoid-

associatedproteinsinvolvedinDNAbendingandthusthedeterminat ionofprokaryoticchromosomestructure(Kimetal.,2014a).Italsoact sasatranscriptionalregulatorofgenes,respondingtoanaerobiosis,a cidstress,highosmolarityandSOSinduction(Obertoe ta l.,2 0 0 9).

Abundanti ntracellularp roteinsareoftenconcomitantlypresentatth esurfaceofthesebacteria,andt heyusuallyhavemoonlightingfunctio ns.ExtracellularDNAi sa ni mportantc omponentofb acterialbiofilms ,a ndDNA-

bindingp roteinsothert hanH Ua reassociatedwithbiofilmformation (JooandOtto,2012),suggestingthatHUmayhaveasimilarfunction.

AdvantageousInfluenceof“Individualized”

GenomicsinProteomicIdentifications

Thenumberofs tudiesc ombininggenomica ndp roteomic approachesi srelativelyl imited,butt hec omplexityofh ost- pathogeninteractionscallsforsuchaholisticapproach.Byapplyi ngtheadvantageofthegrowingavailabilityofNGS,t hiss tudy,fort hef i rstt ime,b asedp roteomicidentificationson“individualized”in formationretrievedfromt hegenomesoft hes tudieds trains.M or ei mportantly,however,suchanapproachenabledthecorrelation ofgenomicandp roteomicd ata,p rovidingrationalexplanationsfo rt hevariedexpressionofspecificproteinsdifferentiatingthevirule ntandnonvirulentstrains.Bifunctionalhydroxymethylpyrimidine kinase/phosphomethylpyrimidinekinase(BJL64_11045)andh y droxyethylthiazolek inase( BJL64_11040),p roteinsupregulate di nCH21c omparedt och22,a ree ncodedi na singleoperon(Mül leretal.,2009)togetherwiththethiaminasegene(BJL64_11050,T enA).Genomicsdemonstratesasinglenucleotidep olymorphismi nt hep utativep romoterregionoftheoperoninwhichapolymorphi smmayberesponsiblefordifferentialexpression.Evenmorei nter estingly,i nt hec aseofsuperoxidedismutase(BJL65_09090)and DNA-

bindingprotein(BJL65_08690;HU),whichwereupregulatedinch 22comparedtoCH21,additionalcopies(BJL65_07935andBJL6 5_07500,respectively)oftheencodinggeneswerefoundin1 7 0 a nd5 4 kbpduplications,respectively,explainingt heobservedincre asedexpression.Nevertheless,ofthe28proteinsdifferentiallyexpre ssedinCH21andch22,differencesintheexpressionofonlyt heab ovefourp roteinsc ouldhavebeenexplainedongeneticbasis.This resultdemonstratesthatglobalexpressionregulatorsinfluenceth eproteomemoresignificantly

(18)

thana lterationsi np a rticularp romoterregions.Superoxidedismuta ses(SODs)givebacteriaadefensemechanismagainstprofessional phagocytes.Mn-

dependentSOD(SodM1)isspecificforS.aureusandnotfoundincoag ulase-

negativestaphylococci,agroupofstaphylococcithatisgenerallyless pathogenicthantheformerspecies(WrightValderasetal.,2002).Sod M1isgenerallyacytosolicprotein,howeverextracellularSodM1was previouslyidentifiedandimplicatedinbiofilmformation(Atshanetal., 2015).AlthoughCH21andch22areweakbiofilmproducers,thelatteri ndeedformsaslightlyhigherbiofilmwhentestedinvitrothantheforme r(SupplementaryFigure3).Intheabovecontext,itisinterestingtono tethatanotherprimarilyintracellularDNA-

bindingprotein(HU),identifiedintheexoproteomeofch22,maybei nv olvedi nbiofilmformation.ExtracellularD NAi sa nimportantcompon entofbacterialbiofilms,andDNA-

bindingproteinshavebeenassociatedwithbiofilmformation(Jooa nd Otto,2012).Theimportanceofsuchmoonlightingproteinsisshown byt hef actt hats pecificmonoclonala ntibodiesa reablet odisrupta nestablishedbiofilma ndrestoret hea ntibioticsensitivityofreleasedb acteria(Estellésetal.,2016).Nonetheless,itremainstobedetermined whethertheoverexpressionofHUbych22trulyinfluencesbiofilmfor mationandvirulence.

Inconclusion,staphylococcalvirulencehasbeeninvestigatedusi nggenetic,proteomic,biochemicalandmolecularapproaches(Heck ere ta l.,2 0 1 8).I ti sc urrentlywell-

establishedt hatt hevirulentphenotypereliesonmultiplefactorsthata resubjecttof i ne-

tunedregulationa ndacti na h ighlyorchestratedmanner(Thomeret al.,2016).Nevertheless,thecorrespondinginterconnectionsandgu idingprinciplesremainelusive.Here,wedemonstratedt hatt hel evel ofv irulenceofwild-

typeS.aureusstrainsmaybes ignificantlyi nfluencedbyminordiffere ncesi ntheirgeneticmaterial.Performedproteomicsindicatethatcopi ngwithoxidativestressiscrucialforvirulentstrainCH21,whereasbas icmetabolismandnutrientacquisitionarefi ne-tunedinnon- virulentch22.H owever,wea rea lsoa waret hatt hes tudywasperfor medonalimitednumberofstrainsandchangesinp roteomeswereass essedusingi nvitrob acterialc ultures

whichnotoptimallyreflectsinvivoconditions.Nevertheless,wep oint edmutationsi nwild-

typeS.aureuswhichhavebeenpreviouslyshowedt obel inkedwiths t aphylococcalv irulenceusingrecombinantstrains(Bentonetal.,2004 ),whichstrengthenaccuracyofourfindings.Otherresultsarecandidat esforfurtherdetailedstudies.

AUTHORCONTRIBUTIONS

EB,MB,andBWdesignedthestudy.EB,MB,MH,UJ,SK- K,VA,andASperformedtheexperiments.EB,MB,SK-

K,MG,GD,JM,AS,AF,andBWanalyzedandinterpreteddata.EB,MB, GD,andBWwrotet hemanuscript.A lla uthorsrevisedt hemanuscrip tandagreedtobeaccountableforallaspectsoftheworkherein.

FUNDING

Thisresearchwass upportedbyfundsgrantedbytheNationalScienc eCentre(NCN,Poland)onthebasisofdecisionno.DEC-

2012/07/D/NZ2/04282( toBW).P roteomicss tudieswerecarriedout withequipmentpurchasedthroughEuropeanUnionstructuralfunds, grantPOIG.02.01.00-12-

167/08(MalopolskaCentreofBiotechnology).

ACKNOWLEDGMENTS

Wea ret hankfult oI wonaWojcikforh elpi np roteomics.TheFacultyo fBiochemistry,Biophysicsa ndBiotechnologyofJagiellonianUniver sityisapartneroftheLeadingNationalResearchCenter( KNOW),wh ichi ss upportedbyt heM i nistryofScienceandHigherEducation,Wa rsaw,Poland.

SUPPLEMENTARYM ATERIAL

TheSupplementaryMaterialforthisarticlecanbefoundonlinea t:h ttps://www.frontiersin.org/articles/10.3389/fcimb.2018.00313/f ull#supplementary-material

REFERENCES

Aanensen,D.M.,Feil,E.J.,Holden,M.T.,Dordel,J.,Yeats,C.A.,Fedosejev,A.,etal.

(2016).Whole-

genomesequencingforroutinepathogensurveillanceinpublichealth:apopulation snapshotofinvasiveStaphylococcusa ureusinEurope.MBio7:e00444- 16.doi:10.1128/mBio.00444-16

Alban,A.,David,S.O.,Bjorkesten,L.,Andersson,C.,Sloge,E.,Lewis,S.,etal.

(2003).Anovelexperimentaldesignforcomparativetwo- dimensionalgelanalysis:two-

dimensionaldifferencegelelectrophoresisincorporatingapooledinternalstandard.

Proteomics3,36–44.doi:10.1002/pmic.200390006 Alikhan,N.F.,Petty,N.K.,BenZakour,N.L.,andBeatson,S.A.

(2011).BLASTringimageg enerator(BRIG):s implep rokaryoteg enomecompariso ns.BMCGenomics1 2 :402.doi:1 0 .1186/1471-2164-12-402

Askarian,F.,Ajayi,C .,Hanssen,A .M .,vanS orge,N .M .,Pettersen,I .,Diep, D.B.,e tal.

(2016).Theinteractionb etweenStaphylococcusa ureusS drDanddesmoglein1isimport antf oradhesiontohostcells.S ci.Rep.6 :22134.doi:10.1038/srep22134

Atkins,K.L.,Burman,J.D.,Chamberlain,E.S.,Cooper,J.E.,Poutrel,B.,Bagby,S.,etal.

(2008).S.aureusIgG-bindingproteinsSpAandSbi:hostspecificityand

mechanismsofimmunecomplexf ormation.Mol.Immunol.4 5 ,1 6 0 0 – 1611.doi:10.1016/j.molimm.2007.10.021

Atshan,S.S.,Shamsudin,M.N.,Sekawi,Z.,ThianL ung,L.T.,Barantalab,F.,Liew,Y.K .,e tal.

(2015).C omparativep r oteomicanalysisofextracellularproteinsexpressedb y va riousclonaltypesofStaphylococcusa ureusandduringp l anktonicg rowthandb iofi lmdevelopment.F ront.Microbiol.6 :524.doi:10.3389/fmicb.2015.00524 Attia,A .S .,Benson,M .A .,S tauff,D.L .,Torres,V .J.,andS kaar,E .P.(2010).

Membranedamagee licitsanimmunomodulatorypr ograminStaphylococcusaureu s.P LoSPathog.6 :e1000802.doi:1 0 .1371/journal.ppat.1000802

Benton,B.M .,Z hang,J.P.,Bond,S .,Pope,C .,C hristian,T.,L ee,L .,etal.(2004).Large- scaleidentificationofg enesr e quiredf orf ullvirulenceofStaphylococcusaureuslar ge-

scaaleidentificationofgenesrequiredforfullvirulenceofStaphylococcusa ureus.J.

B acteriol.1 8 6 ,8 4 7 8 –8489.doi:10.1128/JB.186.24.8478-8489.2004 Bonar,E.,Wojcik,I.,Jankowska,U.,Kedracka-

Krok,S.,Bukowski,M.,Polakowska,K.,etal.

(2016).Identificationofsecretedexoproteomefingerprintsofhighly-virulentandnon- virulentStaphylococcusaureusstrains.Front.Cell.Infect.Microbiol.6:51.doi:10.33 89/fcimb.2016.00051

Cytaty

Powiązane dokumenty

Staphylococcus aureus carriage in the throat and ves- tibule of the nose was determined in 20% of the exam- ined adults (Figure 1), whereas 11 people with recognized

Susceptibility profile to Daptomycin of tested Staphylococcus aureus strains isolated from patients with atopic dermatitis (AD).. Minimal inhibitory concentration was determined

Działania promocyjne, czyli słowa i obrazy, mają moc kreowania rzeczywistości (Austin 1993), ale ich siła tworzenia czegoś z niczego ma swoje granice. Za promocją

see also Lee-Treweek and Linkogle, 2000).. stranger to enter a community or organization and study it. Diverse examples of such fieldwork challenges are consistently discussed

Przeważają opisy negatywnych konsekwencji pracy emocjonalnej (np. wypalenia zawodowego), jednak według części badaczy „praca emocjonalna nie musi mieć jedynie

Izolacja CA-MRSA, a także powszechny problem infekcji MRSA w środowiskach szpitalnych podkreśla pilną potrzebę znalezienia nowych możliwości leczenia lekoopornych zakażeń

9,000 Number of supported SMEs which implemented and/or integrated information systems of the B2B type 4,000 Measure 8.2 Support for the implementation of elec- tronic business

W przypadku p53 podstawowym mechanizmem odpo- wiadającym za blokowanie ekspresji genu jest wystąpienie mutacji. Inaczej przedstawia się kwestia inaktywacji genów supresorowych p16