• Nie Znaleziono Wyników

Structural interpretation of semi-detailed magnetotelluric survey in Kamienica Dolna-Gogołów area in the Polish Outer Carpathians

N/A
N/A
Protected

Academic year: 2022

Share "Structural interpretation of semi-detailed magnetotelluric survey in Kamienica Dolna-Gogołów area in the Polish Outer Carpathians"

Copied!
13
0
0

Pełen tekst

(1)

Annales Societatis Geologorum Poloniae (2003), vol. 73: 219-231.

STRUCTURAL INTERPRETATION OF SEMI-DETAILED MAGNETOTELLURIC SURVEY IN KAMIENICA DOLNA- GOGOLÓW AREA IN THE POLISH OUTER CARPATHIANS

Michał STEFANIUK1’ 3 & Andrzej ŚLĄCZKA2

1 Department o f General and M athematical Geology, A G H University o f Science and Technology, al. M ickiewicza 30, 30-059 Kraków, e-mail: stefan@ geolog.geol.agh.edii.pl

2 Institute o f Geological Sciences, Jagiellonian University, ul. Oleandry 2a, 30-063 Kraków, e-mail: slaczka@geos. ing. uj. edu.pl

Geophysical Exploration Company, 03-301 Warszawa, id. Jagiellońska 76

Stefaniuk, M. & Ślączka, A., 2003. Structural interpretation of semi-detailed magnetotelluric survey in Kamienica Dolna-Gogołów area in the Polish Outer Carpathians. Annales Societatis Geologorum Poloniae, 73: 219-231.

Abstract: Semi-detailcd magnetotelluric survey was carried out in the area between Kamienica Dolna, Gogołów and Łopuchowa in the Polish Outer Carpathians. Magnetotelluric soundings were made along three lines located in a zone of the tectonic loop in the Carpathians’ basement, which is reflected by the distribution of flysch outcrops.

The sounding sites along profiles were ca 1.5 km apart. Magnetotelluric data were measured with the use of MT-1 system. To eliminate the effects of electromagnetic noise, the magnetic field remote reference was applied.

Measurement data were processed using standard procedures of remote reference processing. Quantitative data interpretation was made with the use of ID LSQ inversion. Initial geoelectric models were constructed basing on geological cross-sections obtained from surface and borehole data. 2D resistivity cross-sections, obtained from MT data interpretation, allowed the general structure of the flysch cover and its basement to be identified. Two major high-resistivity horizons were related to the top of Meso-Palaeozoic and Precambrian basement. A low- resistivity layer, related to the Lower Palaeozoic sediments, was interpreted.

Key words: Outer Carpathians, magnetotelluric sounding, structural interpretation.

Manuscript received 6 August 2003, acctepted 17 December 2003

IN T R O D U C T IO N The Geophysical Exploration Company carried out a

semi-detailed magnetotelluric survey at Kamienica D olna- Gogolow area in the central part o f the Polish Outer Carpa­

thians during the years 1997-1998. The measurements were made with the use o f MT-1 measurement and interpretation system (produced by Electromagnetic Instruments Inc.) along three lines running over a zone o f the tectonic loop, which is reflected by the flysch outcrop pattern and residual gravity anomaly pattern (Fig. 1). Generally, the goal o f the survey was to recognize the structure o f the Carpathians and their basement. An integrated analysis o f magnetotelluric, gravity and seismic data made earlier (M iecznik et al., 1993, 1997) allowed the specific arrangement o f gravity anomalies generated by the sub-M iocene basement eleva­

tions to be identified. Therefore, the main objective o f the investigations was to prove the occurrence o f elevated base­

ment structures that were considered to be prospective for hydrocarbon accumulations. In particular, the MT data in­

terpretation aimed at:

- delimiting the prospective zones in the Palaeozoic and Mesozoic formations,

- determination o f the extent o f individual Palaeozoic and Mesozoic complexes,

- recognition o f the Carpathian orogen structure, - evaluation o f the thickness o f the Carpathian orogen, - identification o f the contact zones between major tectono-stratigraphic units.

The results o f investigations show a significant differ­

entiation in resistivity and prove the intense tectonic en­

gagement o f the area. The flysch cover and the basement form a complex tectonic loop with at least two systems o f faults recognized by MT data interpretation and change o f the vertical structural plan. The MT data interpretation, inte­

grated with surface and borehole geological data, resulted in construction o f geological cross-sections along the meas­

urement lines.

(2)

220

M. STEFANIUK & A. ŚLĄCZKA

POLAND

TARNÓW KRAKÓW

BIELSKO-BIAŁA

Krasne Limanowa

Sanok

Nowy Targ

Ustrzyki Dolne^

Krynica

akopane A *

SLOVAKIA

• - magnetotelluric soundings made by MT1 system o - boreholes

x - tectonic zones in the basement interpreted from MT-data

I | Inner Carpathians units | ■; "| Fore-Magura Units | IStebnik Unit I IPodhale Flysch I [Silesian Unit I IZgłobice Unit

I I Pieniny Klippen Belt I I Sub-Silesian Unit I ITransaressive Miocene h - ’l Carpathian frontal thrust

CHI

Magura Unit E Z IS ko le U n it EzIO verthrust

P —1

Profiles

Fig. 1. Study area. Location of magnetotelluric soundings at measurement lines

(3)

MAGNETOTELLURIC SURVEY IN THE POLISH OUTER CARPTAHIANS

221

GEOLOGICAL SETTING

Two major structural stages can be identified in the study area: the Outer Carpathian flysch nappes overlain by transgressive Miocene deposits and alluvial Quaternary sediments, and underlying North European Platform built up o f Precambrian and Meso-Palaeozoic formations cov­

ered by autochthonous and allochthonous (Zgłobice Unit) Miocene.

OUTER CARPATHIAN NAPPES

The study area is built up o f three tectono-stratigraphic units: Skole Nappe, Sub-Silesian Nappe and Silesian Nappe (Fig. 1).

The Skole Nappe covers the northern part o f the study area between places o f Pilzno, Kamienica Dolna, Wiśniowa and Wielopole Skrzyńskie. This nappe is built up o f about 2,700 m thick Early Cretaceous-Early Miocene llysch beds and is irregularly folded with several thrust folds dipping to­

wards the south. The marginal part is uplifted and built up o f the Late Cretaceous-Paleogene Inoceramian beds. Siliceous Marls (Hołownia Marls), and variegated shales with the Late Cretaceous Spass shales in the cores o f anticlines.

Zones with transgressive sediments o f Middle Miocene age are preserved there, forming the so-called Pilzno Bay.

These are parautochthonous molasse-type beds covering the folded and partly eroded llysch (Geological Atlas 1988- 1989; Połtowicz, 1991). The Pilzno Bay and the marginal anticlinorium are separated from the Strzyżów Synclinor- ium by a transverse elevation o f Kamienica Dolna. The Strzyżów Synclinorium, filled with the Oligocene-Early Miocene Krosno beds and situated in the inner part o f the Skole Nappe, is an important feature o f the Skole Unit (Książkiewicz, 1972). The Skole Nappe is detached from pre-Early Cretaceous basement and it is overthrust on the Miocene cover o f the Platform.

The Sub-Silesian Nappe builds central part o f the study area near Kamienica Górna. Characteristic elements o f this unit are Late Cretaceous variegated W ęglówka Marls and Paleocene-Eocene variegated shales. They are under­

lain by Cenomanian red and green shales and Early.Creta- coeus flysch (Gaize/Lgota beds, Verovice Shales, Grodzi­

szcze Sandstones, and Upper Cieszyn Shales). The Sub- Silesian Nappe is thrust over the inner part of the Skole Nappe.

The Silesian Nappe is situated south o f the sub-Sile- sian Nappe. It is built up o f flysch formations o f Early Cre­

taceous to O ligocene-Early Miocene age. The Upper Ci­

eszyn Shales and Verovice Shales, as well as Grodziszcze sandstones and Lgota beds (V alanginian-Cenom anian) are distinguished there. They are covered by red shales and the Godula sandstones, which pass laterally into variegated shales (Cenom anian-Senonian) towards the north. The Senonian and Paleocene are represented mainly by thick- bedded sandstones o f Istebna beds covered by Ciężkowice Sandstones, Hieroglyphic beds (Eocene), Menilite beds, and Krosno beds with thick-bedded sandstones (Oligocene).

The total thickness o f the sediments reaches ca 3 -4 km.

The Silesian Nappe is built up o f several folds and

thrust folds overthrust on the Sub-Silesian Nappe and probably also directly on the North European Platform. Sig­

nificant changes in the pattern o f Silesian Nappe folds are observed near the W isłoka River. They include the half-wi­

ndow o f Brzostek - Kamienica Dolna, the Lower Creta­

ceous uplift within the B rzanka-Liw ocz fold west o f Kołac­

zyce, and the Z-shaped turn o f this fold.

THE BASEM ENT OF THE FLYSCH COVER The allochthonous Zgłobice Unit and North European Platform covered by autochthonous Miocene represent the basement o f flysch nappes.

The Zgłobice Unit is built up o f refolded and tectonized Middle Miocene clays and sandstones, and it is overthrust on the autochthonous Miocene deposits o f the Carpathian Foredeep. Its thickness in the Pilzno-D ębica area reaches 200^400 m. The depth o f its burial is 3,000 m in the Głobikowa-1 well and some 3,700 m in Kowalowy-1 well located southwest o f the study area.

The Carpathian basement is identified up to the line made by boreholes Zalasowa-1, Zalasowa-2, Kowalowy-1 and Szufnarow a-1. In the outer part o f the study area it is represented by platform-type Mesozoic sediments o f the ex­

tension o f the Miechów Trough with autochthonous mo- lasse cover o f Middle Miocene age (Geological Atlas, 1988-1989; Połtowicz, 1991). However, it cannot be ex­

cluded that farther to the south Lower Miocene sediments can be preserved as well. Seismic survey and drillings, reaching down to about 4,000 m, identified the ro o f o f the sub-Miocene basement, dipping south (Motyc, 1992, 1996,

1997). The foundation o f the platform is built up o f poorly metamorphosed folded shales and sandstones o f Upper Pre­

cambrian (Riphey ?) - Lower Cambrian age (Cadomian meta-flysch). The roof o f this complex was drilled at a depth o f 3,300 m in Zalasowa-1 and Zalasowa-2 boreholes, at 3,015 m by Dębica-2 well, and at 3,634 m in Zagórzyce-1 well.

Between boreholes Staw iska-1, Zalasowa-1 and Zala­

sowa-2 (south) and Dębica-2, Zagórzyce-1, Zagórzyce-6, and Będzienica-2 (north) there runs a strip o f Ordovician dolomites and limestones, 140 m thick, which turns farther east into thin graptolitic shales. Silurian graptolitic shales occur in the same area with the maximum thickness o f 206 m in borehole Pilzno-40. The Devonian has not been observed in the area. Clastic and carbonate formations o f Lower Carboniferous (Tournaisian) age were found only in borehole D ębica-1 OK. The overlying carbonate complex o f Visean age with the thickness up to 200 m extends from Podgórska W ola near Pilzno to Zagórzyce and Nawsie to the east. Formations o f Upper Visean, Upper Carboniferous and Permian have not been found there.

North o f boreholes Staw iska-1, Zalasowa-1 and Zala- sowa-2, along a line Podgórska W ola - Łęki Górne - Pilzno, there is a narrow trough w ith W-S strike filled with a com­

plex o f Lower Triassic sandstones, conglomerates and shales up to 600 m in thickness (Moryc, 1996). The beds o f the same age with their thickness reduced to a few dozen meters (occasionally 125 m) were observed in boreholes in the area o f Zagórzyce, Nawsie and Będzienica.

(4)

222

M. STEFANIUK & A. ŚLĄCZKA

The Jurassic formations are bipartite. The lower com­

plex o f Middle Jurassic is built up o f dark clays and silts in­

tercalated with sandstones and sometimes conglomerates.

The upper complex is formed o f limestones observed over the entire area, although they can be eroded between Łęki Górne and Zalasowa (Moryc, 1996). The maximum thick­

ness o f the complex was observed in boreholes Nawsie-1 (1339 m), Zagórzyce-1 (1297 m) and Zagórzyce-6 (1187 m). The recent thickness and the extent o f Jurassic lime­

stones are a result o f the block tectonics and erosion, mainly post-Laramide but pre-Cenomanian as well. The ro o f o f the complex dips to the south. The maximum depth o f burial was found in Szufnarowa-1 well (Moryc, 1996).

The platform-type Lower Cretaceous sediments were found in boreholes Pilzno-20, Pilzno-21, Stasiówka-1, Zagórzyce-6, and Nawsie-1 (Moryc, 1997). The sediments have the form o f isolated lobes o f limestones intercalated with silts and their thickness ranges from several to a few dozen meters. The platform-type Upper Cretaceous sedi­

ments are divided into two sedimentary covers (Cenoma- nian-Coniacian and Santonian-M astrichtian) by local gaps and disconformities. Locally pinching out, the Cenomanian sediments are built up o f sandstones whose thickness ranges from several to a few dozen meters. Turonian-M astrichtian sediments are represented by carbonates: limestones and marls o f the total thickness o f 220-270 m near Dębica.

Platform-type Cretaceous sediments have not been found in Stawiska-1, Zalasow a-1, Zalasowa-2, Globikowa-2 and Szufnarowa-1 boreholes. This is a result o f post-Laramide erosion.

Terrestrial sediments o f Palaeogene are not observed in the study area. In the Palaeogene and Early Miocene strong erosion took place, palaeovalleys were formed; they were reached by boreholes Podgórska W ola-15, Łęki G órne-1, Pilzno-41 and Łączki Kucharskie-1. The palaeovalleys dip to the south and are filled with M iddle Miocene sediments that create the autochthonous cover in the roof o f the sub- flysch basement. The boundary between the cover and the overthrust molasses ofZ globice Unit, which are o f the same age, is hardly noticeable in borehole logs. The thickness o f the cover changes from 1,100- 1,200 m in palaeovalleys through 300 m o ff them to the complete reduction. The oc­

currence o f Lower Miocene sediments in the Carpathian basement is considered both as an extension o f the Zglo- bice/Stebnik Unit and the autochthon.

METHODOLOGY OF MAGNETOTELLURIC

INVESTIGATIONS

The magnetotelluric survey was carried out over the area with complex geology and rough morphology. M agne­

totelluric sounding sites were distributed along three m eas­

urement lines: two o f them (no 11 and 1 lb) were transverse to the strike o f major flysch structures and the third one (no

1 la) linked the two others (Fig. 1). The azimuths o f the measurement array were the same as those o f the measure­

ment lines. Magnetotelluric sounding sites were ca 1.5 km apart. Measurements were made over a frequency range o f

500-0.001 Hz with the use o f MT-1 system. To evaluate the influence o f near-surface non-homogeneities (the static shift), short, four-site continuous profiling o f electric com ­ ponents referred to magnetic components was carried out (Stefaniuk et al., 1998a, b, c). The basic measurement array consisted o f four pairs o f mutually perpendicular electric di­

poles Exi, Eyj and one pair o f magnetic sensors located near the centre o f electric dipole spacing. In general, the length o f the electric dipole was 100 m, however, sometimes it was shorter due to terrain conditions. A remote magnetic field reference was applied to reduce the effects o f electromag­

netic noise.

The standard remote reference processing was applied to electromagnetic field time series in order to compute am ­ plitude and phase curves, skew, and impedance polar dia­

grams, which were further interpreted. Qualitative and quantitative MT data interpretation was performed. In quali­

tative interpretation, parameters describing general charac­

teristics o f a geoelectric medium were analysed. Based on results o f quantitative interpretation o f MT sounding data, resistivity distribution in the geoelectric medium was evalu­

ated and geoelectric layers were assigned to geological complexes. ID automatic LSQ inversion was applied and, additionally, Bostick inversion was also used (Anderson, 1979; Bostick, 1977; MT-1 Operation Manual) (Fig. 2).

TE-mode curves were used in inversion because they were less sensitive to horizontal variability o f resistivity distribu­

tion in a geological medium. The program for I D LSQ in­

version is based on the least-square minimization algorithm by M arquardt (Anderson, 1979; Oldenburg, 1990; Pedersen

& Hermance, 1986). An initial model for the inversion was constructed basing on ID Bostick inversion (Bostick, 1977) and provisional geological cross-sections and results o f pa­

rametric sounding data interpretation. Parametric soundings were made near boreholes. W ell-logging data were used to construct initial models for interpretation o f parametric sounding data. This enabled for the differentiation o f geoe­

lectric medium to be evaluated and verified the quantitative interpretation results, and tied geological, lithological or stratigraphic complexes with interpreted geoelectric layers.

The construction o f final 2D geoelectric models as well as geological interpretation o f M T sounding data were based on ID LSQ inversion. Geoelectrical-cross-sections were made basing on the correlation o f resistivity layers along profiles. The position o f resistivity horizons was ex­

trapolated in near-fault zones to avoid disturbances caused by real geoelectric environment, which is not ID. In inter­

pretation o f the fault zones, disturbances o f MT sounding curves and rapid depth changes o f interpreted horizons were taken into account. The interpretation o f geoelectric boundaries in flysch complexes was adjusted to the general idea o f its structure presented in geological cross-sections (Figs 3 ,5 , 7).

RESULTS OF INTERPRETATION

The survey was made in a zone o f a specific tectonic loop. The complex geology o f the area can be seen when analysing the surface geological map. The geology is re-

(5)

MAGNETOTELLURIC SURVEY IN THE POLISH OUTER CARPTAHIANS

223

LOGIO RESISTIVITY [Qm]

M O D ELS 1D O ccam — - LSQ

Bostick •— • -

0.1

E

1 CL LU

D

10

E

>- H

>

I—w coLU OH

LU OH CLŹ

<

o

5 o

LOG 10 FREQUENCY [Hz]

LOGIO FREQUENCY [Hz]

SO U N D IN G C U R V ES O ccam • — • — • — LSQ

e m pirical

F i g . 2 . E x a m p l e o f 1 D a u l o m a t i c in v e r s i o n . S o u n d i n g N o 2 5 , p r o f i l e S i e k l ó w k a - L a t o s z y n

fleeted in the distribution o f geophysical parameters and geophysical fields. The qualitative analysis o f impedance polar diagrams and skew allows three structural plans (i.e., levels o f different orientation o f the main axis o f geolectric medium) to be separated (Stefaniuk et al., 1999). Also, the azimuth o f the main geoelectric axis was variable along m easurement lines, irrespective o f the structural levels. It can be concluded that the structural arrangement changes both vertically and along the cross-sections o f the flysch cover and its basement. 2D automatic inversion is not appli­

cable to such complex 3D geoeletric medium.

Geological cross-sections along the MT measurement lines (Figs 3, 5, 7) were applied to construct initial interpre­

tation models. Results o f data interpretation are shown in 2D geoelectric cross-sections (Figs 4, 6, 8).

A characteristic feature o f the geoelectric medium in the study area is a bipartite resistivity distribution. The up­

per part o f the medium is associated with the flysch cover and autochthonous and para-autochthonous Miocene sedi­

ments. It is characterized by relatively low values o f resis­

tivity (occasionally exceeding 50 Q m) and strong resistivity differentiation (Figs 3-8). Resistivities o f the lower part o f the medium are higher and range from a few hundred to a few thousand Q m. The ro o f o f the sub-M iocene basement, built up o f Mesozoic and Palaeozoic formations forms the sharp resistivity boundary, which first o f all could be associ­

ated with Jurassic limestones. That boundary is not so dis­

tinct when Cretaceous beds occur in the roof o f the sub- Miocene basement and in zones where deep-seated low- resistivity complexes had been erosionally exposed.

A layer o f 1 km thickness and low resistivity of 6— 20 Q m occurs below the high-resistivity (100-500 Q m ) layer in the upper part o f the sub-M iocene basement, which probably is built up o f shales, silts, and sandstones o f Lower

(6)

224

M. STEFANIUK & A. ŚLĄCZKA

0 c CD O o c 3 c

03

‘co _0

r n " 5 " R V } 77.

CO3 oc

-Co

^ CD

JD 2

13 O 9 CO U - <

CDE

ro 8

CL CLCD

! □ □ □ ! №

CO _0

CD

® J) t ! d) -Q .2 -O o S TO CD c = O) c w c .® -Q

2 » ^

^ S i> « T5CO

CD CO

-Q t:

CO E05

05 C/) 0) 03 JZ V) co

o13 CD CD co

o •- 03

O : = CL - ( / ) ( / }

0 Q D 1 D D I

CD _C

TDC

= 3o

CO

o

0 O

"55 CDc 03

E

CO

=3i—

-C

■c0

>o

H

CDc tdc

^ o 13

a .g

E w

0 0 3 0

^ o

> 0 .22 D)

co 03

0c

c>>

N COo

03 'O£

0

ćo

H

x>H

T 3o

HPJ

c

CQi

o

bno

TDbfl c

in CD CO cn

w rń .2f u.

Palaeozoic age. This layer is visible in cross-sections Sieklówka-Brzeziny (l i b, Figs 3, 4) and Sieklówka-Lato- szyn (1 la, Figs 7, 8), but it is not interpretable in the Kamie­

nica Dolna - Łopuchowa cross-section (11, Figs 5, 6). The possible reason of this is that the measurement line runs over the structural elevation in the roof of Mesozoic and crystalline basement. The structural elevation caused either reduction of thickness, so the layer could not be visible for MT method, or facies changes, which could increase meas­

ured values of resistivity. Beneath the low-resisitivity layer,

there occur a high-resistivity complex that is probably built up of the crystalline Precambrian rocks.

Zones of tectonic discontinuity in the sub-Miocene basement were interpreted basing on the resistivity distribu­

tion and characteristic disturbances o f MT sounding curves.

These zones correlate well with zones of strong gradients of residual gravity anomalies (Stefaniuk et a l, 1999).

Diverse lithology and strong tectonic deformations of the flysch beds result in complex and ambiguous resistivity distribution. Generally, single structures and lithological

(7)

MAGNETOTELLURIC SURVEY IN THE POLISH OUTER CARPTAHIANS

225

I- 1 *....*-

4 km

H---1--- h-

—a. SL28

km

■ 1

314 100-500 30-50 10-20 0-5

[fim] ' I S M

>500 50-100 20-30 5-10

hypothetical top of crystalline basement hypothetical top of Meso-Palaeozoic basement

8 re s is tiv ity (8 Q m )

Fig. 4. 2D geoelectric cross-section 1 lb: Sieklowka-Brzeziny f magnetotelluric sounding sl28 magnetotelluric sounding (Sieklowka-Latoszyn line )

— fault

complexes are reflected by resistivity changes. Yet, the quantitative interpretation is not quite reliable because the structures are built up of thin layers showing different lithol- ogy and resistivity and the volume proportion o f each litho- type determines the equivalent resistivity. Tectonic sur­

faces, such as faults and overthrusts do not show as distinct resistivity boundaries and this reduces the accuracy o f inter­

pretation. Some parts o f the flysch cover with distinct resis­

tivity contrast can be visible in each cross-section. An ex­

ample is given by high-resistivity portions o f the central part o f the Kamienica Dolna - Lopuchowa and Sieklow ka- Brzeziny sections.

Cross-section no lib : Sieklowka-Brzeziny

The Sieklowka-Brzeziny profile is oriented meridion- ally (Fig. 1). The roof o f the high-resistivity horizon rests at a depth o f 3 km at the northern edge o f the section and dips steeply to the south. The fault with the ro o f displacement o f ca 2 km to S is observed between MTS9 and MTS3 (Figs 3, 4). The stratigraphic and lithological identification o f geoe­

lectric layers is difficult because there are no boreholes in the neighbourhood (Stefaniuk et al., 1999). The high- resistivity horizon is probably associated with the roof o f Jurassic carbonates and sandstones (Fig. 3). Lower resistivi­

ties in the northern part o f the cross-section can be attributed to Cretaceous sediments. A layer with resistivity o f ca 10 Q m and thickness o f 1 km occurs beneath. The layer overlies a high-resistivity complex, probably built up of crystalline rocks. In the zone o f steep sloping sub-Miocene basement roof, a high-resistivity layer pinches out, so that the low-resistivity layer and the crystalline basement occur directly at tbhe top o f the sub-M iocene basement roof. Two normal faults divide the sub-M iocene basement into blocks forming a steep step system descending to the south (Fig. 4).

Resistivities o f the upper part o f the medium range from 5 to 20 Q m, occasionally exceeding 50 Q m (Figs 3, 4). In the northern part o f the section, geolectric layers rest flat and gradually dip to the south. A great synclinal structure, probably modified by secondary folding, is clearly visible in the southern part o f the section. Geoelectric layers dip steeply in the central part o f the cross-section and their resis­

tivities are variable. The zone is related to the Silesian and sub-Silesian overthrusts.

The upper part o f the sub-flysch basement is built up o f a thin complex o f autochthonous M iocene sediments. The Miocene sediments o f the northern part join with Lower Cretaceous flysch sediments forming a layer with 5 Q m re­

sistivity. In the central part o f the cross-section, auto-

(8)

SilesianUnit

226

M. STEFANIUK. & A. SL^CZKA

I I N 1 1

C/3 0 03 J Z CO c/3

"O

TD 0

0 -Q

TO03 0 3 c

0 _Q

i_ 0 03

> _co

03 (/)

03

irj

o‘x

E

ResultsofID inversion and geologicalcross-section. Profile11: Kamienica Dolna- Lopuchowa.TEmode,YX

(9)

MAGNETOTELLURIC SURVEY IN THE POLISH OUTER CARPTAHIANS

227

c

CD

E

CD ^ CO O 03 N

-Q O

® S

03 03 Q_

o

> * ^ 1_ CD

O ^ o

Q .O Q_O

CDO 03

_O

CD Q) 0

* £ Eo o CD Q_ Q_ c/)

> > , 03 J = _£Z _Q

a

E 00^

co0 k ao

CDC TDC 13o C/)o

"0 o

0c a) 03

E

Q) _CO

CD^ =5

O 05

_ Q « 4 -

cd

£o -Co3 a ,o

"o Q

Scd

O<D W) Q

.S°u .

(10)

KamienicaGórna1

228

M. STEFANIUK & A. ŚLĄCZKA

C/5

i'fel CD

03 (0

“O CD

-C (I ) T 3 0

C/D

■o (f) TD CD

JD JD CD _Q

O 0 03 03

~ 7 c D ) C

A c/) F 0 _Q

O CD \ _ 03 -+-jCD

> JO

= roCL

(Z) C/3

□Dl

GE

0 c 03

£o

CDJ =o

C =3 TD Q .

c o

Z3o

C/) 03c

o o

Q is 03o

o ' c

o 0

CZ CDE

03 03

E 2 1 s s a

3 o 3 tfl IL <

Fig. 7.ResultsofID inversion and geologicalcross-section. Profile11a:Sieklowka-Latoszyn. TEmode,YX

(11)

MAGNETOTELLURIC SURVEY IN THE POLISH OUTER CARPTAHIANS

229

o oN o 0 03 03 Q_

O CO 0

M—

O Q_

O

“ro O i ■

~ ~ c

0 0

s z

■+—' E

o 0

Q . (/) 03 x : JD

c

CD E CD C/5

-O03

<D

C J5

o M—O

Q. O

0C

03

£ o _£=

CD ^

i S.

3 T

O 03

(J) _c

o o

■§ «

= 03

0 o O "d

11

z p 03 03 v ; E Z ,

CDc

~oc

o(J) o J3

"0 o

0c

CD 03 E

_ 0 o

±; _ c0 w

o _Q

a

E

>

CO 0

o<L>

si) Q<N

00

©£

E

(12)

230

M. STEFANIUK & A. ŚLĄCZKA

chthonous Miocene sediments and Low er Cretaceous flysch are too thin to be distinguished in the geoelectric profile or the flysch cover lies directly over the ro o f o f Meso-Palaeo- zoic basement. Low-resistivity beds o f the southern part o f the section, representing probably Lower Cretaceous flysch o f Silesian and sub-Silesian units and autochthonous M io­

cene, form a 1 km thick complex.

Cross-section no 11: Kamienica Dolna - Lopuchowa The line Kamienica Dolna - Lopuchowa is located in NW part o f the study area (Fig. 1). The low-resistivity upper complex is fairly homogeneous in the central and NE parts o f the section (Figs 5, 6). Somewhat higher resistivities are observed in SW part o f the section, in the Silesian Unit. The surfaces o f the overthrusts o f the Silesian and sub-Silesian Units and minor overthrusts o f the Skole Unit are rather clearly visible. The Carpathian overthrust onto autochtho­

nous Miocene sediments in NE part o f the section is evident, as well (Stefaniuk et al., 1998c).

Three geoelectric layers can be distinguished in the sub-Miocene basement. Resistivities o f the uppermost layer are rather low (20-30 Q m) and the layer is probably built up o f Cretaceous sediments. The medium layer with resistivity o f 80-250 Q m is composed o f Middle Jurassic rocks and sedimentary complex o f the Palaeozoic. The lowermost layer has high resistivity (exceeding 1000 Q m ) and is probably associated with crystalline Precambrian rocks.

Based on analysis o f magnetotelluric and geological data, it is supposed that a system o f faults divides the base­

ment into five blocks (Fig. 6). Two blocks occur in the base­

ment alone, while the other three are visible in the overlying complexes. A deep and narrow depression filled with low- resistivity sediments occurs in the basement ro o f in the northern part o f the cross-section. That is probably an ero- sional form, which developed on the tectonic zone and was filled with younger sediments.

Cross-section no 1 la: Sieklowka-Latoszyn

The Sieklowka-Latoszyn line runs across the study area and connects two other lines. Three fault zones divide the basement into separate blocks that dip steeply to SE (Fig. 8).

Resistivity distribution in NW part o f the cross-section is similar to that in NE part o f the Kamienica Dolna - Lopu­

chowa section, however, it correlates well with SE part o f the Sieklowka-Brzeziny section (Figs 7, 8).

CONCLUSIONS

The Meso-Palaeozoic basement o f the Carpathians is cut at least by two systems o f faults, which divide the Ka­

mienica Dolna - Gogolow area into several blocks with dif­

ferent geological structure. Two main resistivity horizons are related to the roof o f Meso-Palaeozoic and Precambrian basement. The upper high-resistivity layer o f the basement is built up of carbonate and sandy sediments o f Jurassic and Upper Palaeozoic age. It is locally overlain by Cretaceous formations o f rather low resistivity (20-60 Q m). Between the two high-resistivity complexes, there occurs a low- resistivity layer (5-15 Q m ) built up o f Lower Palaeozoic

sediments. That complex is not observed in the Kamienica Dolna - Lopuchowa section in NW part o f the study area.

Resistivities o f the upper part o f geological profile re­

lated to the flysch cover and autochthonous or para-auto- chthonous Miocene sediments are low, seldom exceeding 50 Q m. Resistivities o f the flysch complexes are variable.

Generally, younger complexes have higher resistivity, e.g.

Lower Cretaceous rocks have the lowest values whereas Oligocene sediments - the highest.

The tectonic interpretation o f the sub-Miocene base­

ment was made bearing in mind a general conception o f normal faults creating a steep step system, which divided the basement into regularly stratified blocks. The undula­

tions in the roof o f M eso-Palaeozoic basement are a result o f erosion. The analysis o f resistiviy distribution, obtained from MT sounding interpretation, encourages a concept o f more complex tectonics o f the basement, which had been formed by normal and inverse faults or overthrusts.

A cknow ledgem ents

The MT surveys over the study area were initiated by Zenon Borys of the Jaslo Division of Polish Oil and Gas Company and Henryk Trygar of the Geofizyka-Krakow Co. The measurements were made by the Geophysical Exploration Company for the Pol­

ish Oil and Gas Company as part of ‘The project of MT survey in the Carpathians’. The authors thank the management of the com­

panies for their consent to use the data. The paper was written as a result of statutory research of the Department of General and Mathematical Geology, AGH University of Science and Technology, Cracow, which was financed by the Committee for Scientific Research (project No 11.11.140.808).

REFERENCES

Anderson, W. L., 1979. Program 1MSL PW: Marquardt inversion o f plane-wave frequency soundings. USGS open-file report:

79-586.

Bostick, F. X. Jr., 1977. A simple almost exact method of magne­

totelluric analysis. In: Ward S. (ed.), Workshop o f Electrical Methods in Geothermal Exploration. Univ. of Utah Res. Inst., USGeol. Surv. Contract 14-08-0001-g: 1-319.

Geological Atlas of the Western Outer Carpathians and their Fore­

land, 1988 - 1989. (Coord.: D. Poprawa, J. Nemcok), PIG, Warszawa.

Książkiewicz, M., 1972. Budowa geologiczna Polski. T. IV. Tek­

tonika, część 3. Karpaty. (In Polosh) Wydawnictwa Geologic­

zne War- szawa, 228 pp.

Miecznik, J., Stefaniuk, M., Klityński, W., Trygar, H., Mać­

kowski, T. et al., 1993. Reinterpretacja sondowań magneto- tellurycznych w obszarze dodatnich anomalii grawimetrycz­

nych Strzyżowa - Babicy i Gogolowa (In Polish). Unpub­

lished. Archiwum PGNiG S.A. - Ośrodek BG Geonafta - Jasło, 36 pp.

Miecznik, J., Stefaniuk, M., Trygar, H., Borczuch, M., etal., 1997.

Projekt kompleksowej interpretacji badań magnetotellwycz- nych, grawimetrycznych i sejsmicznych w rejonie Kamienicy Dolnej - Gogolowa. (in Polish). Unpublished. Archiwum PGNiG S. A. - Oddział BG Geonafta - Warszawa, 30 pp.

Moryc, W., 1992. Budowa geologiczna utworów podłoża miocenu w rejonie Sędziszów Młp.- Rzeszów i ich perspektywiczność.

lin Polish, English summary). Nafta 9-10: 205-223.

(13)

MAGNETOTELLURIC SURVEY IN THE POLISH OUTER CARPTAH1ANS

231

Moryc, W., 1996. Budowa geologiczna podłoża miocenu w re­

jonie Pilzno - Dębica -Sędziszów Młp. (in Polish, English summary). Nafta - Gaz, 12: 522-550.

Moryc, W., 1997. The Lower Cretaceous in the pre-Miocene sub­

stratum of the southern part of the Carpathian Foredeep in Po­

land. Annates Societatis Geologorum Poloniae, 67: 287-296.

MT-1 Magnetotelluric System Operation Manual, version 3.2, 1996. EMI Inc., Richmond, Ca., USA, 235 pp.

Oldenburg, D., 1990. Inversion of electromagnetic data: an over­

view of new techniques. Surveys in Geophysics, 11: 231-270.

Pedersen, J. & Hermance, J. F., 1986. Least-squares inversion of one-dimensional magnetotelluric data: an assessment of pro­

cedures employed by Brown University. Surveys in Geophys­

ics, 8: 187-231.

Połtowicz, S., 1991. Miocen strefy karpackiej między Wieliczkąa Dębicą. (In Polish, English summary). Kwartalnik AGH, Kraków, 17 z. 3: 19-57.

Stefaniuk, M., Czerwiński, T., Wajda, A. & Mrzygłód T., 1998a.

First results of high-frequency magnetotelluric investigations in Poland. In: Book o f Abstracts, the 14th Workshop on Elec­

tromagnetic Induction in the Earth, Sinaia: 172-173.

Stefaniuk, M„ Czerwiński, T., Wajda, A. & Mrzygłód, T., 1998b.

Perspektywy i problemy wykorzystania badań magnetotel- lurycznych do rozpoznawania utworów fliszowych na przykładzie przekroju Zawoja-Potrójna. (In Polish). In: Mate­

riały konferencyjne XIX Konferencji Terenowej Sekcji Tek­

tonicznej PTG - Magura ‘98: 42-43.

Stefaniuk, M., Miecznik, J., Pepel, A., Wajda, A., Mrzygłód, T., Klityński, W., Pałka-Zielińska, E., 1998c. Dokumentacja ba­

dań magnetotellurycznych wzdłuż profili Zawoja - Potrójna i Kamienica Dolna - Łopuchowa 1997 - 1998. Opracowanie przejściowe. (In Polish). Unpublished. Archiwum PBG

Warszawa, 78 pp.

Stefaniuk, M., Miecznik, J., Pepel, A., Wajda, A., Mrzygłód, T., Klityński, W., Pałka-Zielińska E., 1999. Dokumentacja ba­

dań magnetotellurycznych w obszarze Kamienica Dolna - Gogolów 1998 - 1999. (In Polish). Unpublished. Archiwum PBG Warszawa, 76 pp.

Streszczenie

STRUKTURALNA INTERPRETACJA PÓŁSZCZEGÓŁOWYCH BADAŃ MAGNETOTELLURYCZNYCH W REJONIE KAM IENICY DOLNEJ - GOGOŁOW A, POLSKIE

KARPATY ZEW NĘTRZNE

M ichał Stefaniuk & Andrzej Slączka

W latach 1997-1998 Przedsiębiorstwo Badań Geofizycznych w Warszawie wykonało badania magnetotelluryczne w centralnej części polskich Karpat zewnętrznych w rejonie Kamienicy Dolnej

- Gogołowa. Wykonane zostały one na trzech profilach zlokali­

zowanych w strefie specyficznego węzła tektonicznego zazna­

czającego się w intersekcyjnym obrazie powierzchniowym (Fig. 1) oraz w rozkładzie anomalii grawimetrycznych. Celem geologicz­

nym badań było rozpoznanie strukturalne orogenu karpackiego i jego podłoża. Wykonana wcześniej kompleksowa analiza danych magnetotellurycznych, grawimetrycznych i sejsmicznych pozwo­

liła na stwierdzenie obecności charakterystycznego układu ano­

malii grawimetrycznych w tym obszarze, związanych prawdopo­

dobnie z elewacjami podłoża podmioceńskiego. Głównym zada­

niem prezentowanych badań było potwierdzenie obecności wynie­

sionych struktur podłoża, które uważane są za perspektywiczne dla prospekcji węglowodorów. W szczególności celem inteipretacji było wyznaczenie stref perspektywicznych w utworach paleozoiku i mezozoiku, wyznaczenie zasięgu poszczególnych serii mezo- zoiku i paleozoiku, rozpoznanie budowy strukturalnej orogenu fliszowego, określenie jego miąższości i stref kontaktu wielkich jednostek tektoniczno-stratygraficznych.

Punkty sondowań magnetotellurycznych rozmieszczone były co 1,5 km. Pomiary wykonano za pomocą systemu MT-1 produk­

cji Electromagnetic Instruments Inc. z Richmond, USA. Zasto­

sowano tzw. zdalne odniesienie magnetyczne (magnetic field remote reference) w celu eliminacji wpływu zakłóceń elektromag­

netycznych. Wyniki pomiarów opracowano wykorzystując stan­

dardowy processing referencyjny. W interpretacji ilościowej za­

stosowano 1D automatyczną inwersję LSQ (Fig. 2). Początkowe modele geoelektryczne przyjmowano bazując na przekrojach geo­

logicznych skonstruowanych na podstawie danych powierzch­

niowych i otworowych (Fig. 3, 5, 7). W wyniku interpretacji ID uzyskano pionowe modele rozkładu oporności w ośrodku geolo­

gicznym w punktach sondowań. Przekroje opornościowe wzdłuż profili magnetotellurycznych (Fig. 4, 6, 8) skonstruowane zostały na podstawie wyników interpretacji ID przy uwzględnieniu ogól­

nego modelu geologicznego rejonu oraz danych z otworów wiert­

niczych.

Rezultaty badań wskazują na duże zróżnicowanie oporności oraz intensywne zaangażowanie tektoniczne utworów fliszowych, i ich podłoża. Zarówno pokrywa fliszowa jak i podłoże tworzą skomplikowany węzeł tektoniczny, charakteryzujący się obec­

nością przynajmniej dwu systemów przecinających się uskoków w podłożu, wyinterpretowanych na podstawie badań magnetotel­

lurycznych, oraz zmianą planu strukturalnego w pionie. 2D prze­

kroje oporności, otrzymane z interpretacji danych magnetotellu­

rycznych, pozwoliły na określenie generalnej budowy pokrywy fliszu i jego podłoża. W podłożu podmioceńskim wyinterpreto­

wane zostały trzy główne kompleksy opornościowe:

- stropowy wysokooporowy (100-500 fi m), związany z wę­

glanowymi i klastycznymi skałami mezozoiku i górnego paleo­

zoiku;

- pośredni niskooporowy (3-20 fim ), odpowiadający praw­

dopodobnie ilasto-mułowcowym utworom dolnego paleozoiku;

- dolny wysokooporowy (500-2000 £2m), odpowiadający skalom krystalicznym.

Interpretacja litologiczna i stratygraficzna pokrywy fliszowej jest utrudniona wobec dużej zmienności litologicznej i facjalnej fliszu (a zatem jego oporności) oraz stosunkowo słabych kon­

trastów opornościowych i płynnych przejść pomiędzy komplek­

sami stratygraficznymi.

Cytaty

Powiązane dokumenty

In bore hole Nowy S¹cz 4 these Var ie gated Shales of Mid-Eocene age were pen e trated at the top of the Early Mio cene Zawada For ma tion, and in ter preted as the thrust sole of

This paper is focusscd on ofigin of calcite and quartz- calcite veins hosted in joints and small-scale faults within the Tertiary sandstones of the central part of

The lower boundary of the Sarmat ian stage in the Central Paratethys is placed in the nannoplankton Zone NN7 and the upper boundary in the NN9 Zo ne, which is also the

Tubulichnium incertum and Phycosiphon incertum are frequent only in the sections poor in ichnotaxa (Inoceramian Beds, Szczawnica Formation).. These ichnotaxa

Individual rock corridors occur within m ost of the isolated sandstone tors in the C arpathians (Klimaszewski, 1947; Z. Sandstone blocks in the tors on the ridge

ding only the lower p art o f the Niebylec shales is exposed in the field road running.. The spots, sometimes observed, are probably due to weathering and are

Schem atyzow any szkic m ikrodyslokacji na pow ierzchni zgładu piaskow ca (рог. The m icro-faults usually do not exceed the boundaries of individual sandstone layers,

pes of the Outer Carpathians is proved by drilling in the area west of