• Nie Znaleziono Wyników

Numerical modeling of wheel-rail squeal-exciting contact

N/A
N/A
Protected

Academic year: 2021

Share "Numerical modeling of wheel-rail squeal-exciting contact"

Copied!
12
0
0

Pełen tekst

(1)

Delft University of Technology

Numerical modeling of wheel-rail squeal-exciting contact

Yang, Zhen; Li, Zili

DOI

10.1016/j.ijmecsci.2019.02.012

Publication date

2019

Document Version

Final published version

Published in

International Journal of Mechanical Sciences

Citation (APA)

Yang, Z., & Li, Z. (2019). Numerical modeling of wheel-rail squeal-exciting contact. International Journal of

Mechanical Sciences, 153-154, 490-499. https://doi.org/10.1016/j.ijmecsci.2019.02.012

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

InternationalJournalofMechanicalSciences153–154(2019)490–499

ContentslistsavailableatScienceDirect

International

Journal

of

Mechanical

Sciences

journalhomepage:www.elsevier.com/locate/ijmecsci

Numerical

modeling

of

wheel-rail

squeal-exciting

contact

Zhen Yang, Zili Li

Delft University of Technology, Section of Railway Engineering, Stevinweg 1, 2628 CN Delft, The Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: Wheel-rail contact Dynamic interaction Squeal Numerical modeling Explicit FEM

a

b

s

t

r

a

c

t

Complexfrictionalrollingcontactandhigh-frequencywheeldynamicbehaviormakemodelingsquealgreatly challenging.Thefalling-frictioneffectandwheelmode-couplingbehaviorarebelievedtobethetwomain mech-anismsthatgenerateunstablewheelvibrationandtheresultingsquealnoise.Torigorouslyconsiderboth mech-anismsinonemodel,weproposeanexplicitfiniteelement(FE)modeltosimulatewheel-raildynamicfrictional rolling.Wheel-railsqueal-excitingcontactisinvestigatedwithconsiderationsofdynamiceffects,unsteady lat-eralcreepageandvelocity-dependentfriction.Withtheinclusionofthedynamiceffectsinthecontactsolution, large-creepage-inducedwaves,whichsharefeatureswithRayleighwaves,arediscovered.Thesolutionsofthe dynamiccontactcalculatedusingtheproposedmodelindicatethattheexplicitFEmethodisabletoreproduce thefalling-frictioneffect.Thetransientanalysesofwheel-railfrictionalrollingwithwheellateralcreepageshow thecouplingoftheaxialandradialdynamicsoftherollingwheelmodel,suggestingthattheexplicitFEmethod canalsoreproducethemode-couplingbehavior.Thisstudyimprovestheunderstandingandmodelingof squeal-excitingcontactfromtheperspectiveofwheel-raildynamicinteraction.

1. Introductiontofriction-inducedsqueal

Squeal, which is an intrinsically nonlinear and transient phe-nomenon,posesgreatchallengesinmodeling[1].Systematicstudieson railwaycurvesquealbeganinthe1970swhenRudd[2]describedthe wheel-railfrictionalcharacteristic(thefunctionaldependencebetween friction force and wheel-rail relative velocity) in terms of ‘negative damping’(generalizedasfull‘stick-slip’)or‘fallingfriction’,and associ-atedthischaracteristicwiththemechanismofwheelsqueal.Sincethen, variousincreasinglysophisticatedtheoreticalmodelshaveadoptedparts ofthismechanismbasedonRudd’sseminalmodel[3–8].

Analyticalresearch[9],however,revealedthatinstabilitycanalso occurwithconstantorevenpositivecreepforce characteristicswhen additionalmechanicaldegreesoffreedomareconsidered.Similarly, fi-niteelement(FE)analysesbythecomplexeigenvalueapproachrevealed thatinstabilityariseswhentwomodescoupleinthepresenceoffriction [10].Toconsidertheinfluenceoftheverticaldynamicsonfriction,the ‘mode-couplingdynamicinstability’mechanismhavebeenemployedin combinationwithfalling-frictiontheoriestopredictfriction-induced in-stability[8,11–13].Chiello,etal.[14]concludedthatthetwotypes ofdestabilizationcausedbythefalling-frictionmechanismandbythe mode-couplingmechanismmaybecombinedineachparticular situa-tionofsqueal;thus,bothmechanismsshouldbeexplored[15].

Thegenerationofsquealischaracterizedas‘enigmatic’[16]or ‘er-ratic’[17,18]inrailwayresearchbecausefieldobservationsofsqueal

Correspondingauthor.

E-mailaddresses:z.yang-1@tudelft.nl(Z.Yang),z.li@tudelft.nl(Z.Li).

phenomenaoftenfailtobeexplainedbytheexistingtheories.The con-tact modelingaccounting for thefrictional instability of a vibrating wheel is considered thecentralpart of thesqueal prediction model [19].Oneshortcomingoftheexistingsquealpredictionmodelsisthe incompleterepresentationofthecontactmodel.Thesimplificationsof thepointcontactmodelsandKalker’scontactmodelswithdiscretized contactsurface(widelyusedintheexistingsquealpredictionmodels) haveunknowninfluencesonthepredictionoffriction-inducedvibration [20].Asreportedbyarecentreviewofthesquealstudy[21],although Kalker’scontactmodelscantreatsteady-statecreepage,moredetailed contactmodelsthatincludetransienteffectsmaybeneededforacorrect representationofthesquealmechanisms.

ThisstudyproposesanexplicitFEdynamiccontactmodelto simu-latewheel-railsqueal-excitingcontactwithunsteadylateralcreepage. Unsteadylateralcreepage,particularlybetweentheleadinginnerwheel andthelowrail,isthoughttobethemaincauseofsqueal[22].The twocommonlyconsideredmechanismsleadingtosqueal—the falling-frictionandmode-couplingmechanisms—areaddressedinthisstudy. Incontrastwiththesteady-statecontactassumedinKalker’stheories, theproposedexplicitFEcontactmodelaccommodatesthedynamic,or transient,effectsinvolvedinwheel-railinteractionsbycouplingthe cal-culationofwheel-railfrictionalrollingcontactwiththecalculationof wheel/railstructuraldynamics(seeSection2.1).Here,thedynamic ef-fectsdenotethattheinertiaofmaterialelementsinfluencesthestress field when the elements ‘flow’ through the deforming region [23]. Withtheinclusionofthedynamiceffectsinthecontactsolution,the

https://doi.org/10.1016/j.ijmecsci.2019.02.012

Received5November2018;Receivedinrevisedform14January2019;Accepted11February2019 Availableonline19February2019

(4)

Fig.1.Thestructureandtheschematiclogicofthisstudy.

large-creepage-induced waves, which share features with Rayleigh waves,arediscovered.Thisstudyreferstowheel-railcontactwith struc-turaldynamiceffectsaswheel-raildynamicinteraction.Theaimofthis workistocontributetothebettermodelingandunderstandingof fric-tioninstabilityandsquealgenerationfromtheperspectiveofwheel-rail dynamicinteraction.

Fig.1shows thestructure andtheschematiclogicof this study. Afterreviewingstudiesonthetwowidelyacceptedgeneration mech-anismsinSection1, Section2presentstheexplicitFEwheel-rail dy-namicinteractionmodel.Section3thenanalyzesthesimulatedcontact forces(Section3.1),thedynamic contactsolutions (Section3.2)and thewheeldynamicbehavior(Section3.3).Theanalysessuggestthat theexplicitFEmodelcanreproducethefalling-frictioneffectandthe wheelmode-couplingbehaviorandthusconfirmthattheexplicitfinite elementmethod(FEM)issuitableformodelingsqueal-excitingcontact. 2. ExplicitFEwheel-raildynamicinteractionmodel

2.1. AlgorithmsoftheexplicitFEwheel-raildynamicinteractionanalysis

Thissubsectionsummarizesthecorealgorithmsemployedinthe ex-plicitFEwheel-railinteractionanalyseswithafocusonthe mathemati-calmodelandthenumericalsolutionprocedure.Theexplicitintegration schemeusesthecentraldifferencemethodtoapproximatethe accel-erationvector̈u.Theequilibriumequationforthewheel-raildynamic interactionproblemattimesteptcanbewrittenasEq.(1):

̈𝐮𝑡=𝐌−1(𝐟

ext𝑡𝐟int𝑡+𝐟con𝑡 )

(1) whereM,fint andfextarethemassmatrix,internal forcevectorand externalforcevector,respectively,andfconisthecontactforcevector, whichcanbeincludedasacontributiontotheexternallyapplied trac-tions[24,25].Thevelocityanddisplacementvectorscanthenbe ob-tainedusingcentraldifferencetimeintegrationviaEqs.(2)and(3):

̇𝐮𝑡+1∕2= ̇𝐮𝑡−1∕2+Δ𝑡𝑡+1∕2̈𝐮𝑡 (2)

𝐮𝑡+1=𝐮𝑡+Δ𝑡𝑡+1̇𝐮𝑡+1∕2 (3)

whereΔtisthetimestepsize.TheCourant–Friedrichs–Lewystability condition[26]was used in thisstudy toguarantee theconvergence oftheexplicitintegration,whichrequiresthatasoundwavemaynot crossthesmallestelementwithinonetimestep.Thecriticaltimestep characterizedbythesmallestelementmayvaryinnonlineardynamic analysis[24]becauseofchangesinthematerialparametersand/or ge-ometry.Ascalefactorof0.9isthusemployedtocontrolthetimestep (Δt=0.9×criticaltimestep),sothattheconvergenceconditioncanbe satisfiedwithcertainty.Inthisstudy,thetimestepoftheexplicit inte-grationΔt≈86ns.

Table1outlinesthenumericalprocedurefortheexplicitFE wheel-raildynamicinteractionanalysis,whichiscomposedprimarilyof cal-culationsofthemassmatrixandforcevectorsinequilibriumEq.(1).A lumpedmassmatrixcanbeconstructedpriortotheiterationtopromote

Table1

NumericalprocedurefortheexplicitFEwheel-raildynamicinteractionanalysis.

Initialize algorithm: apply initial conditions; define contact pairs; construct the lumped mass matrix M; and set the termination time.

LOOP1 t = 0, 1, 2,…, n (time step number)

(I) Apply load conditions to construct the external force vector 𝐟 𝑡 ext . (II) Process elements to construct the internal force vector 𝐟 𝑡

int . (III) Construct the wheel-rail contact force vector 𝐟 𝑡

con using the penalty contact method.

LOOP2 N = 1, 2,…, m (slave wheel node number) i. Locate the master rail segment for the slave wheel node N .

ii. Locate the wheel-rail contact point (projection of the slave node on the master segment).

iii. Calculate the contact force. END LOOP2

(IV) Update the nodal accelerations ̈u 𝑡 , velocities ̇u 𝑡+1∕2 and displacements u t+1 . (V) Check for termination.

END LOOP1

Output: wheel/rail nodal force and nodal motion ( ̈u , ̇u and u)

theefficiencyandpracticalityoftheexplicitFEM.Fortheforce vec-tors,theexternalforcevectorfextcanbecalculateddirectlybythegiven loadconditions;theinternalforcevectorfintcontributedbystressescan becalculatedbytheconstitutiveandstrain-displacementformulations builtintheelementandmaterialmodels;andthecontactforcevector fconcanbecalculatedusingthepenaltycontactmethod[27].Whenthe penaltycontactalgorithmisapplied,thetimestepsizeΔtusedinthe ex-plicitintegrationshouldnotexceedthecontact-basedcriticaltimestep toavoidcontactinstability.Thecontact-basedcriticaltimestep deter-minedbythepenaltycontactalgorithmisproportionaltomin{√𝑚𝐽𝑘} wheremJ(J=1,2)isthemassattachedtothecontact"spring"andkis

thepenalty contactstiffness[28]. Inthisstudy,thepenalty contact-basedcriticaltimestepis118ns,biggerthanthetimestepofthe ex-plicitintegrationΔt(86ns);theconvergenceofcontactcalculationcan, therefore,beguaranteed.

ThenumericalsolutionprocedurepresentedinTable1containstwo loops.Theouterloopisconstructedmainlybyformulatingtheequation ofmotionandsolvingtheequationwiththecentraldifferencescheme. Incontrast,theinnerloopcalculatesthewheel-railcontact,whichis calledasasubroutineateachtimesteppriortoupdatingthestructural dynamicresponses.Thecalculationofwheel/raildynamicsandthe cal-culationof wheel-railcontactarethereforecoupledinthenumerical algorithm.

TheCoulombfrictionlawisappliedtosolvethewheel-railtangential contact[27].Atrialtangentialcontactnodalforcef∗ attimestept+1 canbedefinedasEq.(4):

𝐟=𝐟

cT𝑡𝑘Δ𝐞 (4)

wherefcTtisthetangential contactforce calculatedattimestept,k isthepenaltycontactstiffness,andΔeistheincrementalmovementof theslavewheelnodealongtherailsurface.Thetractionboundfboundtat timesteptintheCoulombfrictionlawistheproductofthemagnitudeof thenormalforcefcNtatthesametimestepandthecoefficientoffriction

(5)

Z. Yang and Z. Li International Journal of Mechanical Sciences 153–154 (2019) 490–499

(COF)𝜇,asEq.(5):

𝑓bound𝑡=𝜇||𝐟cN𝑡|| (5)

Thetangentialcontactforceattimestept+1canthusbewrittenas Eq.(6): 𝐟cT𝑡+1= { 𝐟𝑖𝑓|𝐟| ≤𝑓 bound𝑡+1 𝑓bound𝑡+1𝐟∗∕|𝐟∗| 𝑖𝑓|𝐟| >𝑓bound𝑡+1 (6) TheCOF𝜇,whichisconsideredaconstantintheclassicalCoulomb’s law,canvarywithvariousfactorsinwheel-railcontact,suchassliding speed,contactpressure, surfacelubricationor contamination, rough-ness,temperatureandhumidity[29].BecausetheexplicitFEMcouples thecalculationofwheel/raildynamicresponseswiththecalculationof wheel-railcontactinthetimedomain,avelocity-dependentCoulomb’s lawwithafunctionalCOFcanbeimplementedintheexplicitFEM.The COFupdatedateachtimestepcanbeexpressedintermsofthestatic anddynamicfrictioncoefficients𝜇sand𝜇d,respectively,adecay

con-stantcandwheel-railrelativeslidingvelocities ̇𝐮relbetweentheslave nodesandmastersegmentsatthesametimestepusingEqs.(7)and(8):

𝜇(̇𝐮rel )

=𝜇𝑑+(𝜇𝑠𝜇𝑑)e−𝑐|̇𝐮 rel| (7)

̇𝐮rel=Δ𝐞∕Δ𝑡 (8)

Thedecayconstantcdescribeshowquicklythestaticcoefficient ap-proachesthedynamiccoefficientandcanbedeterminedbyfittingthe measuredresults[29].

2.2. Wheel-raildynamicinteractionmodelwithwheellateralmotion

Fig.2(a)showstheemployedthree-dimensionalexplicitFE wheel-trackdynamic interactionmodelwithwheel lateral motion.A10-m lengthofhalf-trackandahalfwheelsetwithsprungmassofthecar bodyandthebogiewereconsidered.Thewheel,therailandthe sleep-ersweremodeledusing8-nodesolidelements.Toachievehighsolution accuracywithareasonablemodelsize,nonuniformmeshingwasused. Themeshsizearoundtheinitialpositionofthewheel-railcontactand

Fig.2. Wheel-raildynamicinteractionmodel.(a)3DFEmodel;(b)simulated frictionalrollingwithwheellateralmotion.

Table2

Prescribeddisplacementboundaryconditionsappliedtothesimulationcases.

Prescribed displacement boundary conditions

Simulation cases with a constant COF

Simulation case with a velocity-dependent COF No lateral wheel motion case 1

Small lateral wheel motion case 2

Medium lateral wheel motion case 3 case 5

Large lateral wheel motion case 4

the150-mmlengthofthesolutionzonewas1mm.Thelumpedmassof thecarbodyandbogiewasmodeledasmasselementsthatwere con-nectedtothewheelsetbytheprimarysuspensionofthevehiclewith parallellinearspringsandviscousdampers.Becausethesleepersand ballasthavelittleinfluenceonthehigh-frequencydynamicbehavior un-derstudy,eachsleepermodelcontainedonly12solidelementsandthe ballastwassimplifiedasverticalspringanddamperelementswiththe displacementconstrainedinthelateralandlongitudinaldirections.The sameconstrainttypewasusedatthetwoendsoftherailmodel.The pa-rametersinvolvedinthetrackmodelaretakenprimarilyfrom[30].The wheel-railcontactwasdefinedwithrealgeometryandwiththewheel flangeincluded.Thewheelgeometrycorrespondedtoapassengercar wheeloftheDutchrailwaywiththestandardprofileofS1002;therail was UIC54E1withaninclinationof1:40.Nogeometryirregularities wereconsideredonthesurfacesofthewheelorrail.

Thewheel-raildynamicinteractionwassimulatedbyemployingthe softwareANSYS&LS-DYNA:thestaticequilibriumofthesystemunder gravitywasfirstsolvedwithanimplicitsolverofANSYS;andanexplicit solverofLS-DYNA,whosecorealgorithmsispresentedinSection2.1, was thenemployedtosimulatewheel-raildynamic frictionalrolling. Thedynamicsimulationappliedthedisplacementfieldcalculatedwith theimplicitsolverforstressinitialization.Inthetransientdynamic sim-ulation,thewheelrolledfromitsinitialpositionattimet0=0stothe so-lutionzonewithaninitialspeedof100km/halongtherail,asshownin Fig.2(b).Thedynamicsarisingfromthewheel/railinitialkinematicand potentialenergyduetoimperfectstaticequilibrium[31]haverelaxed attimet1=15ms.Thewheellateralmotionwassubsequentlysimulated fromtimet2=16msbyapplyingtheprescribeddisplacementboundary conditionslistedinTable2tobothendsofthewheelhalf-axle(except forincase1).Notethat,inthisstudy,theangleofattackwas approx-imatedtozerobecause,inthesimulations,theinitialanglesofattack werezeroandbothendsofthewheelhalf-axlemodelappliedthesame displacementboundaryconditionduringtransientrolling.Fig.3(a)and (b)presenttheprescribeddisplacementboundaryconditionsappliedin thesimulationsandtheresultinglateralwheeldisplacements, respec-tively. Thetwo graphs sharethe sametrend, butthesimulated dis-placementsfluctuatedduetotheflexibilityofthewheelandaxle;the

Fig.3.Timehistoriesoftheprescribeddisplacementboundaryconditionsand theresultinglateralwheeldisplacements.(a)Prescribeddisplacementboundary conditionsappliedtothesimulationcases;(b)simulatedresultinglateralwheel displacements.

(6)

unsteadylateralcreepagewasthussimulated.Thewheelenteredthe so-lutionzoneattimet3=16.5msandexitedatt4=18.7ms.Thedynamic evolutionofthecontactsolutionswascapturedbetweent3andt4.

Adrivingwheelwasmodeledinthisstudybyapplyingatorqueon thewheelaxle.Thetorqueinitiallyincreasedgraduallyfromzerountil reachingitsmaximumvalueat6msandremainingconstant.A longi-tudinalcreepforce wasthus generated.TheexplicitFEMcanalsobe employedtosimulatefrictionalrollingcontactbetweenadrivenwheel andrail,e.g.,byapplyingalongitudinaltractionforceonthewheelaxle [32],which,however,producesalongitudinalcreepforceinthe oppo-sitedirection.Thecorrespondingtractioncoefficientequalsthequotient ofthelongitudinalcreepforceandthewheelloadandis considered tobeconstantinsteady-staterolling[31],whereasitvarieswithtime indynamicrollingbecauseofvibration.Thequasi-steady-statetraction coefficientwas0.27inthisstudy.AconstantCOF=0.45wasusedfor simulationcases1–4.

Knothe,etal.[33]reportedthatthefalling-friction characteristic canbereproducedonlybyassumingthatCOFdependsonthe wheel-railslidingvelocity;simulationcase5listedinTable2wastherefore conductedwitha velocity-dependentCOF. Simulation case 5shared thesameconfigurationascase3(exceptforCOF).Whena velocity-dependentCOFisapplied,theoverallCOFmaydifferfromthelocal COFatanode[29].

3. Analysesofwheel-railcontactanddynamicsresults

Thissectionfirstanalyzesthecontactforcescalculatedbythe ex-plicitFEmodelinSection3.1toprovideabroadoverviewofthe wheel-raildynamicinteractionwithwheellateralmotion.Toreproducethe twopotentialmechanismsofsquealintroducedinSection1(the falling-frictionandmode-couplingmechanisms),thesimulatedwheel-rail dy-namiccontactsolutionsandstructuraldynamicresponsesareanalyzed inSections3.2and3.3,respectively.

3.1. Contactforces

Fig.4(a)and(b)showthetimehistoriesofthecontactforces sim-ulatedwithoutwheellateralmotion(case1)andwithmediumlateral

motion(case3),respectively.Beforetimet1=15ms,thesimulated con-tactforcesfluctuatedmostlyduetovibrationsexcitedbyinitialkinetic andpotentialenergyintheunrelaxedsystem.Thetractionbound (de-notedbythecyancurve)fluctuated aroundthestaticvalue50kN.It couldbeassumedthataquasi-steadystatewasenteredafterthe oscilla-tionsweredampedtolessthan10%ofthestaticvaluesattimet1.The creepforceistheresultantforceofthelateralandlongitudinalcontact forces.InFig.4(a),thesimulatedcreepforce(denotedbytheredcurve) almostoverlapsthelongitudinalforce(denotedbythegreencurve) be-causethevalueofthelateralforce(denotedbythebluecurve)issmall. Bycontrast,asshowninFig.4(b),thelateralforcesimulatedbycase3 jumpedtolargevalueaftert2=16msduetotheenforcementofa pre-scribeddisplacementboundarycondition;consequently,thecreepforce reachedthetractionboundandfrictionsaturationoccurredat approx-imately19ms.Thedynamicevolutionofthecontactsolutionbetween timest3=16.5msandt4=18.7mswereoutputandareanalyzedinthe nextsubsection.

3.2. Contactsolutions

This subsectionanalyzesthedynamic contactsolutionscalculated usingtheproposedexplicitFEwheel-railinteractionmodel,including contactstressesandthedistributionsofmicro-slipandadhesion-slip re-gionswithinthecontactpatch.Thissubsectionalsodiscussesthe influ-encesoflateralcreepageandvelocity-dependentCOFonthedynamic contactsolutions.

3.2.1. Contactsolutionswithdynamiceffects

Fig.5(a)showsamagnifiedviewofthetimehistoriesofthe con-tactforcescalculatedbycase1betweentimest3=16.5andt4=18.7ms (withinthesolutionzone).Theclose-upviewshowsthatthesimulated tractionboundandcreepforceoscillatedperiodicallybutwerenot ex-actlyinphase.Eighttimepointswithafixedinterval(0.06ms)were selectedfromacertainperiodofthecreepforcefluctuation,designated 1–8inthemagnifiedviewinFig.5(a).Fig.5(b)plotsthedistributionsof thesimulatedsurfaceshearstress(redcurve)andtractionbound(blue curve)withinthecontactpatchattheseeightselectedtimepoints.The adhesionandslipregionsdeterminedbythecontactstressaredenoted Fig.4. Timehistoriesofthesimulatedcontactforces. (a)Contactforces simulatedbycase1; (b)contact forcessimulatedbycase3.

(7)

Z. Yang and Z. Li International Journal of Mechanical Sciences 153–154 (2019) 490–499

Fig.5.Periodicsurfacestressdistributionsfor simula-tioncase1.(a)Magnifiedview(withinthesolution zone)of thetimehistoriesof thecontactforcesfor simulationcase1;(b)stressdistributionscalculatedat correspondingtimepointsdenotedby1–8in(a)(blue curve:tractionbound;redcurve:surfaceshearstress; A:adhesionregion;andS:slipregion;thegreen ar-rowsindicatethepositionofthemovinglocalpeak). (Forinterpretationofthereferencestocolorinthis fig-urelegend,thereaderisreferredtothewebversionof thisarticle.)

‘A’and‘S’inthefigure,respectively.Acomparisonofthestress distri-butionscalculatedattheeighttimepointsinFig.5(b)indicatesthat thesurfaceshearstresswithintheadhesionregionincreasedgradually fromthe1sttimepointtothe4thtimepointanddecreasedfromthe5th timepointtothe8thtimepoint.Thistrendisinaccordancewiththe variationinthecreepforceshowninthemagnifiedviewofFig.5(a). Theanimationdisplayingthevariationinthesurfacestresswithtime [34]indicatesthatthesurfaceshearstressandthetractionboundvaried periodicallywiththecontactforces.Asreportedby[10],theinterface pressuredistributionvarieswithtimeduringvibration;thus,the peri-odicvariationinthesurfacenormalandshearstressesreproducedin thisnumericalexamplemayreflectthedynamiceffectsinvolvedinthe explicitFEcontactsolutions.

Inaddition,amovinglocalpeakoftheshearstress,indicatedbythe greenarrowsinFig.5(b),wasobservedwithintheadhesionregioninthe variationprocessofthecontactstress.Thepeakstartsattheleadingedge ofthecontactpatch,movestowardsthetrailingpart,andultimately exitstheadhesionregionatthejunctureoftheadhesion-slipregions. Becausetheshearstressis closetothetractionbound whencloseto theleadingedgeofthecontactpatchandwhenclosetothejunctureof theadhesion-slipregions,suddenfrictionsaturation,oraturbulenceof micro-slip[35],mayarisewhensuchalocalpeakofshearstressenters orexitstheadhesionregion.

3.2.2. Contactsolutionswithlateralcreepage

Contactstressandmicro-sliparesymmetricallydistributedwith re-specttothelongitudinalaxiswithinthecontactpatchwhencreepage existsonlyinthelongitudinaldirection.Whensimulatingwheellateral

motioninthis study,theresulting wheel-raillateralcreepagecaused asymmetricdistributionsofcontactstressandmicro-slipwithinthe con-tactpatch,asshowninFig.6.Tocomparecontactsolutionswithabroad rangeoflateralcreepage,Fig.6plotssixtypicalcontactsolutions ob-tainedforseveralsimulationcases:(a)and(b)wereobtainedwith sim-ulation case1at17.58msandwithcase2at17.58ms,respectively; (c)and(e)wereobtainedwithcase3at17.58msand18.54ms, re-spectively;and(d)and(f)wereobtainedwithcase4at17.07msand 17.94ms,respectively.Fromtoptobottom,thegraphsinFig.6display thesimulatedstressdistributionsalongthelongitudinalcenterlineofthe contactpatch(1strow),stressdistributions(2ndrow)andmicro-slip distributions(3rdrow)withinthecontactpatch,aswellasshearstress andadhesion-slipregiondistributionsobtainedwithKalker’sboundary elementmethodprogramCONTACT[36](4throw).The correspond-ingcreepagevalues(lateralcreepage𝜂 andlongitudinalcreepage𝜉)are presentedinTable3(exceptforFig.6(f)).

Traditionalrollingcontacttheoriesaregenerallybasedonthe half-space assumption;themainparts of contactbodies not close tothe contactpointcan,therefore,beconsideredasrigid.Thecreepagemay thenbeconvenientlycalculatedwiththe‘rigid’wheel-railrelative ve-locityandthewheelrollingvelocity.However,thisisnolongervalid forFEcontactmodels,whichdropthehalf-spaceassumptionandare flexibleeverywhere.Thetraditionalmethodofthecreepagecalculation isthus notapplicableforthepresentedexplicitFEwheel-railcontact model.ConsideringthattheexplicitFEMandCONTACTshouldprovide similarcreepage-creepforcerelationships,asreportedin[37],we esti-matedthecorrespondingcreepagevaluesoftheexplicitFEcontact solu-tionsusingCONTACTinthisstudy:thecreepforcescalculatedwiththe

(8)

Fig.6. Simulatedcontactsolutionswithlateralcreepage(1strow:stressdistributionsalongthelongitudinalcenterline;2ndrow:stressdistributionswithinthe contactpatch(colordepth:pressuremagnitude;bluearrows:directionsandmagnitudesoftheshearstress);3rdrow:micro-slipdistributions(colordepth:magnitude ofthenormalwheel-railrelativevelocity;redarrows:directionsandmagnitudesofthemicro-slips);and4throw:shearstressandadhesion-slipregiondistributions calculatedwithKalker’sCONTACT[36](blackarrows:directionsandmagnitudesoftheshearstress).(a)simulationcase1at17.58ms;(b)case2at17.58ms;(c) case3at17.58ms;(d)case4at17.07ms;(e)case3at18.54ms;and(f)case4at17.94ms.(Forinterpretationofthereferencestocolorinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)

Table3

InputforcesandoutputcreepageinthesimulationswithCONTACT.

Calculated forces and creepage corresponding to the

graphs in Fig. 6 (a) (b) (c) (d) (e) (f)

Normal load F n (kN) 126.68 125.61 123.87 102.60 116.19 106.46 Lateral creep force

Fty (kN) 2.19 9.30 20.27 18.41 36.83 47.04 Longitudinal creep force F tx (kN) 39.46 39.19 38.12 33.59 34.01 6.09 Lateral creepage 𝜂 (%) 0.019 0.080 0.185 0.199 0.440 – Longitudinal creepage 𝜉 (%) 0.304 0.308 0.317 0.331 0.326 –

explicitFEmodel(seeTable3)wereinputintothesimulationswith CONTACTastheprescribedtangentialforces,andtheotherinput pa-rametersusedintheCONTACTsimulationswerethesameasthose in-volvedintheexplicitFEsimulations.Contactsolutionsandthecreepage valueswerethenobtainedwithCONTACTandpresentedinthe4throw ofFig.6andinTable3,respectively.Notethatnocreepagevaluewas presentedforFig.6(f)becausewhenfrictionsaturationoccurs,a pre-scribedcreepforcecorrespondstononuniquecreepage.

Inthecontour/vectordiagramsshowingthestressdistributions(2nd row),thepressuremagnitudecorrespondstothedepthofthecolor;the bluearrowsindicatethedirectionsoftheshearstress,andtheirlengths areproportional totheshearstressmagnitude.Similarly,inthe con-tour/vectordiagramsshowing themicro-slipdistributions(3rdrow), thedepthof thecolorwithin thecontactpatchindicatesthe magni-tudeofthenormalwheel-railrelativevelocity;theredarrowsindicate thedirectionsof themicro-slip,andtheirlengthsareproportionalto themicro-slipmagnitude.Theasymmetryofthedistributionofthe con-tactpatchcanbecharacterizedbyanorientationangle𝜃,asshownin Fig.6(c).Theorientationangleincreaseswiththelateralcreepagefrom Fig.6(a)to(e).ForthesolutionscalculatedwithCONTACT(4throw),

theblackarrowsindicatethedirectionsoftheshearstress,andtheir lengthsareproportionaltotheshearstressmagnitude.Theorientation anglesobtainedwithCONTACTareconsistentwiththoseobtainedwith theexplicitFEM.

Thedistributionsoftheadhesion-slipregionsdeterminedbythe sim-ulatedexplicit FEcontactstressesin the1strowandthemicro-slips in the3rdrowareinlinewitheach other.They arealsoin reason-ableagreementwiththedistributionsoftheadhesion-slipregions de-terminedwithCONTACTinthe4throw.Inthegraphsofthemicro-slip distribution(3rdrow),theslipregionscoveredwithmicro-slipvectors arelocatedat thetrailingpartofthecontactpatch,whilethe adhe-sionregions‘A’indicatedbydashedovalsshrinkwithincreasinglateral creepagefromFig.6(a)to(e).Fig.6(f)showsfrictionsaturation.

Thecolordepthoutsidethecontactpatchcorrespondstoazero nor-malrelativevelocityin thegraphsof themicro-slipdistribution(3rd row).Thus,thecolordepthsattheleadingandtrailingedgesarelighter anddarker,respectively,indicatingapositiveandnegativenormal rela-tivevelocity.Wavephenomenaindicatedbythevariationincolordepth canbeobservedinthemicro-slipdistributionscalculatedwiththe ex-plicitFEMinFig.6(e)and(f).Becausethesurfaceelementsofthewheel andrailwereincontact,furthermovementtowardsorawayfromeach othercausedtransientintensificationorrelaxationof thecontact, re-spectively.Thewaveswerethereforeessentiallyembodiedinthe alter-nationofcompressionintensificationandrelaxation[35].Accordingto thevibrationfrequenciesoftherailsurfacenodesandthewavelengths observedinFig.6,thewavespeedcanbeestimatedasapproximately 3km/s,whichisinlinewiththespeedofRayleighwavetravelingin steel. Moreover,thephasedifferencebetween normalandtangential surfacenodalvibrationsisapproximately𝜋/2,whichalsocorresponds wellwiththeRayleighwave.

3.2.3. Contactsolutionswithavelocity-dependentCOF

Avelocity-dependentCOFdefinedinEq.(7)wasadoptedin simula-tioncase5.Thedecaycoefficientc,staticCOF𝜇sanddynamicCOF𝜇d

weresetto6,0.5and0.32,respectively,asusedin[29].Fig.7presents oneexample ofthecontactsolutionscalculatedwithsimulationcase

(9)

Z. Yang and Z. Li International Journal of Mechanical Sciences 153–154 (2019) 490–499

Fig.7. Oneexampleof thecontactsolutions calcu-latedusingavelocity-dependentCOF(simulationcase 5.S1,S2andS3:slipregions).(a)Adhesion-slip divi-siondeterminedbythemicro-slip(redarrows: micro-slips); (b) stress distribution (color depth: pressure magnitude;blue arrows: directions andmagnitudes oftheshearstress);(c)adhesion-slipdivisions deter-minedbythestressdistributionsextracted from(b) alongthefourlongitudinallinesofthecontactpatches indicatedbyblackarrows.(Forinterpretationofthe referencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

5at16.68ms.Althoughsimulationcase5sharedthesame configura-tionascase3(exceptforCOF),theorientationangleshowninFig.7(b) ismuchsmallerthanthoseshowninFig.6(c)and(e)becauselateral creepforceincreasedwhenthewheelpassedthesolutionzone(seethe bluecurvebetweentimet3andt4inFig.4(b))andthecontactsolution presentedinFig.7wascalculatedatanearliertimestepthanthoseof Fig.6(c)and(e)andthushadasmallerlateralcreepage.

Fig. 7(a) shows the simulated micro-slip distribution within the contactpatch.Compared totheadhesion-slipdistributionssimulated withaconstantCOFshowninFig.6,theadhesion-slipdistributionin Fig.7showsalessregularpattern:theslipregionsdenotedbytheblack ovalsS1,S2andS3arescatteredinthetrailingpartofthecontactpatch. However,thisresultisbelievedtobearealisticcontactcondition[29]. ThecontactpressuresandsurfaceshearstressesplottedinFig.7(c) wereextractedfromthestressdistributionshowninFig.7(b)alongthe fourlongitudinallinesofthecontactpatchesindicatedbyblackarrows. InFig.7(c),theredandbluecurvesindicatethesimulatedsurfaceshear stressFtandthetractionbound (theproductofthecontactpressure

Fnandthevelocity-dependentCOF𝜇(v)),respectively,thegreencurve

indicatestheproductofthecontactpressureandthestaticCOF𝜇s,and

theblackcurveindicatestheproductofthecontactpressureandthe dynamicCOF𝜇d.

AccordingtoCoulomb’slawofstatics,thebluecurveinFig.7(c) shouldcoincideeitherwiththegreencurveoftheadhesionregionsor withtheredcurveoftheslipregions.Discrepancieswere,however, ob-servedinthenumericalsolutionsattwodatapoints,asindicatedbythe tworedarrows:thebluecurvesatthesetwodatapointsshouldhave

overlappedwiththered curvesbecausethecalculatedmicro-slipsat theselocationsarenonzeroinFig.7(a),asindicatedbythetwogreen arrows.Thesediscrepanciesmaystemfromtwoaspects.First,theshear stressandtractionboundshowninFig.7(c)wereobtainedatdifferent timesteps.Becausethevelocity-dependentCOF𝜇(̇𝐮rel)usedto calcu-latethetractionbound(Eq.(5))andthetangentialforce(Eq.(6))at acertaintimestep reliesonthenodaldisplacementsobtained atthe previoustimestep(Table1step(d)),thetractionbounddisplayedin Fig.7(c)wasinfactcalculatedonetimesteplaterthantheshearstress. Consideringthatthetimestepusedin thesimulationwassmall (ap-proximately86ns),thesecondaspectisexpectedtodominate:the dis-crepancieswereduetothedifferentsensitivitiesoftheapproachesused todeterminetheslipregion.Themicro-slipshowninFig.7(a)andthe velocity-dependentCOF𝜇(v)usedforFig.7werecalculatedusingthe wheel-railrelativevelocities,whereastheshearstressFtwasobtained usingtherelativedisplacement(Eq.(4)).Becausethedisplacementwas obtainedbyintegratingvelocity(Eq.(3))andintegrationcanactasa filter,thetractionboundshowninFig.7(c)isexpectedtoreflect dy-namiceffectsmoresensitivelythanthesurfaceshearstresscalculated usingthedisplacement.

Theadhesion-slipdistributiondeterminedusingthecalculated con-tactstressesinFig.7(c)isinreasonableagreementwiththatdetermined usingthecalculatedmicro-slipinFig.7(a),indicatingthattheexplicit FEM can predictwheel-rail dynamic contactsolutionswith velocity-dependent COFs.Becausethefalling-frictioncharacteristiccan be re-producedonlybythevelocity-dependentCOF[33],theexplicitFEMis expectedtobecapableofreproducingthefalling-frictioncharacteristic.

(10)

Fig.8. Comparisonof thecalculatedandmeasuredwheel modalfrequencies(solidlines:measured;dottedlines:FE sim-ulated).

3.3. Wheeldynamicbehavior

Basedontheanalysisofthesimulatedwheel-raildynamiccontact solutionwithvelocity-dependentCOF,theprecedingsubsection indi-catedthattheexplicitFEMiscapableofaddressingthefalling-friction generationmechanismofwheelsqueal.Asreportedin[38],anexplicit FEmodelmayincludeinitssolutionallrelevantvibrationmodesand associatedwavepropagationsaslongastheelementsandtimesteps aresufficientlysmall.Thecomputationaltimestep(ΔtinEqs.(2)and (3))ofthetransientanalysesinthisstudyfluctuatedaround86ns;thus, thevibrationfrequencyupto5.8MHzcantheoreticallybepredicted. Thissubsectionanalyzesthewheeldynamicbehaviorandcomparesthe wheeldynamicresponsessimulatedwithandwithoutlateralmotionto addressthemode-couplingmechanismofsqueal.

3.3.1. Validationofwheeldynamicbehavior

Wheeldynamicbehaviorplaysamoreimportantroleinthe gener-ationofhigh-frequencysquealthantrackdynamicbehavior[22].Each tonalfrequencyofsquealisexpectedtorelatetoawheel mode[17, 39]. Toaccuratelysimulate wheeldynamic responsesduring rolling, thisstudyfirstvalidatedthedynamicbehavioroftheexplicitFEwheel submodelwithalaboratoryhammertest.AtypicalNS-intercitywheel usedintheDutchrailwaywasmeasured.Becausematerialdampingof awheelisgenerallyverylowandtheexactvalueofthewheelmodal dampingis notcriticalfornoiseprediction[22],thewheel dynamic behaviorcanbecharacterizedbythemodesandthecorresponding nat-uralfrequencies[21,30].Thewheelmodesaregenerallycharacterized bythenumbersofnodaldiametersandnodalcircles[22].Fig.8 com-paresthewheelvibrationmodesmeasuredbythehammertestandthose identifiedthroughtheFEmodalanalysiswithinthefrequencyrangeof squeal(upto10kHz).Thenaturalfrequenciesofthewheelmodesin var-iousdirectionsareplottedagainstthenumberofnodaldiameters. Mea-suredresultsareplottedusingsolidlinesandthecorrespondingresults fromtheFEmodalanalysisarepresentedusingdottedlines.Reasonable agreementwasreached.Allthesephysicalmodeswerethusincludedin thetransientdynamicsimulationbyvirtueofthefullFEmodelandthe smalltimestep[31].

3.3.2. Squeal-likewheelvibration

Afterthevalidationofwheeldynamicbehavior,wheeldynamic re-sponsesweresimulatedusingtheproposed explicitFEwheel-rail dy-namicinteractionmodel.Fig.9(a)and(b)showthetimehistoriesand thecorrespondingpowerspectrumdensities(PSDs),respectively,ofthe lateralvibrationoftherollingwheelcalculatedinsimulationcases1–4. Thesqueal-likevibrationsignalsrepresentedbylargeamplitude limit-cycleswereproducedbytheexplicitFEmodelwhenapplyingthewheel lateralmotion.Theamplitudesofthelimitcyclesofthetimehistories

Fig.9. TimehistoriesandPSDsofthewheellateralvibration simulatedby differentsimulationcases.(a)Timehistories;(b)PSDs.

increasedwithincreasingamplitudeofthelateralmotionappliedtothe wheelmodel.Thethreedominantfrequenciesofthesqueal-like vibra-tionsignalsshowninPSDsinFig.9(b)are163Hz,1172Hzand1921Hz. Comparingthesefrequenciestothewheelmodalfrequenciesidentified inSubsection3.3.1,wecandeterminethewheelmodesexcitedinthe simulationsofwheel-rail dynamicinteractionwithwheel lateral mo-tion:themodewithzeronodalcircleandzeronodaldiameter(0,0),the modewithzeronodalcircleandthreenodaldiameters(0,3),andthe modewithzeronodalcircleandfournodaldiameters(0,4),asshown inFig.9(b)andTable4.Theresultscorrespondwelltotheconclusion thatzero-nodal-circlemodestendtobeexcitedinsqueal[22].

3.3.3. Mode-couplingbehavior

Fig.10comparesthewheelvibrationscalculatedwithnolateral mo-tion(case1)andwithlargelateralmotion(case4).Thecomparisonof thesimulatedwheellateralvibrationsinFig.10(a)and(d)indicatesthat

(11)

Z. Yang and Z. Li International Journal of Mechanical Sciences 153–154 (2019) 490–499

Fig.10. WPSsofthesimulatedwheelvibrationwithout lat-eralwheelmotion(case1)andwithlargelateralwheelmotion (case4).(a)Lateralvibrationforcase1;(b)verticalvibration forcase1;(c)longitudinalvibrationforcase1;(d)lateral vi-brationforcase4;(e)verticalvibrationforcase4;(f) longitu-dinalvibrationforcase4.

Table4

Correspondingdominantfrequenciesofthesimulatedvibrationsandthewheel modes.

Dominant frequency in

PSDs Corresponding modal frequency Corresponding mode

163 Hz 183 Hz 0 nodal circle, 0 nodal diameter

1172 Hz 1075 Hz 0 nodal circle, 3 nodal diameters

1921 Hz 1934 Hz 0 nodal circle, 4 nodal diameters

theenforcementofthelateraldisplacementboundaryconditionattime

t2=16msexcitedtheout-of-planeaxialmodes(0,0),(0,3)and(0,4),as denotedinFig.10(d).Thecomparisonsofthesimulatedwheelvertical andlongitudinalvibrationsinFig.10(b)and(e)andinFig.10(c)and(f) indicatethattheprescribedwheelmotionintheaxledirectionmayalso excitethein-planeradialwheelmodeswithone nodaldiameterand twonodaldiameters,whicharedenotedbymodeRadial1andmode Radial2inFig.10(e)and(f),respectively. Thecouplingoftheaxial andradialdynamicsshowninFig.10suggeststhatthemode-coupling mechanismcan bereproducedbytheproposedexplicitFE wheel-rail dynamicinteractionmodel.

The dominant frequency component of approximately 150Hz in Fig.10(f)was excitedmainlybythelongitudinal creepforce,which generallyfluctuatedinantiphasewiththelateralcreepforceaftertime

t3(seeFig.4(b)).Thedominantfrequencyofthecreepforce fluctua-tionscanbeestimatedbyFig.4(b)asapproximately150Hz.However, becausetheaxialwheelmode((0,0):183Hz)withaclosemodal fre-quencywasexcited,theenergyamplitudeofthecalculatedwheel lat-eralvibrationconcentratedatapproximately150Hzwasmuchlarger thanthatofthelongitudinalvibration,asindicatedbythecolorbarsof Fig.10(d)and(f).

4. Conclusionsandfutureresearch

We have proposed an explicit FE wheel-rail dynamic interaction model with wheel lateral motion toaddress the falling-friction and mode-couplingmechanisms,whicharecommonlyconsideredto gener-atesqueal.TheexplicitFEMcouplesthecalculationoffrictionalrolling contactwiththecalculationofstructuraldynamicresponsesandis in-trinsicallysuitableformodelingfriction-inducedunstablevibration.The simulationresultsindicatedthattheproposedmodelcanreproduceboth mechanisms,thusconfirmingthattheexplicitFEMisreliablefor pre-dictingwheel-railsqueal-excitingcontactandispromisingforthe accu-ratepredictionofsqueal.

Wehaveanalyzedthedynamiccontactsolutionscalculatedbythe explicitFEwheel-railinteractionmodel,includingcontactstressesand thedistributionsofmicro-slipandadhesion-slipregionswithinthe con-tactpatch.ThecontactsolutionsobtainedwiththeexplicitFE arein reasonableagreementwiththoseobtainedwithKalker’sboundary el-ementprogramCONTACT. Wavephenomenacausedbylargelateral creepagewereobservedintheexplicitFEcontactsolutions.Amoving local peakofshearstresswas discoveredwithin theadhesion region inthevariationofcontactstress,whichwasconcludedtorelatetothe generationoftheturbulence-inducedwavesreportedin[35].

Wealsodiscussedtheinfluenceofthevelocity-dependentCOFon thedynamic contactsolutions.Applyingthevelocity-dependent COF resulted in a less regular adhesion-slip distribution pattern, which mayshowamorerealisticcontactcondition.Thedistributionsofthe adhesion-slipregionsdeterminedbythesimulatedcontactstressesand bythemicro-slipsweremutuallyconsistentwhentheconstantCOFwas used, whereas small discrepancieswere observedwhen the velocity-dependent COFwasused.Thediscrepancieswereconcludedtostem fromthedifferentsensitivitiesoftheapproachesusedtodeterminethe slipregion.

ThedynamicbehavioroftheFEwheelmodelwasvalidatedthrough alaboratoryhammertest.Byrelatingthedominantfrequenciesofthe simulatedsqueal-likevibrationtotheidentifiedwheelmodal frequen-cies,threezero-nodal-circlemodespronetobeexcitedinsquealwere determinedandfoundtocorrespondwelltopreviouslyreportedresults. Because‘enigmatic’squealissensitivetobothstructuraldynamic be-haviorandcontactcondition,thedynamiccontactalgorithmsshouldbe furtherstudiedandexperimentallyvalidated.Inaddition,the displace-mentboundaryconditionsappliedtotheproposedexplicitFE wheel modelmaynotbe sufficientlyaccurateforsimulatingwheelcurving behaviorandrollingcontactonthecurvetracks.Morerealistic kine-maticboundaryconditionsorafullwheelsetmodelmayberequiredto reliablycalculateunstablewheelvibrationandconsequentsqueal. Acknowledgments

ThisworkwassupportedbytheChinaScholarshipCouncilandthe DutchrailwayinfrastructuremanagerProRail.

Declarationsofinterest None.

Figuresreproducedincolorintheprintedversion:None.

(12)

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.ijmecsci.2019.02.012.

References

[1] Pieringer A. A numerical investigation of curve squeal in the case of constant wheel/rail friction. J Sound Vibration 2014;333:4295–313.

https://doi.org/10.1016/j.jsv.2014.04.024 .

[2] Rudd MJ. Wheel/rail noise —Part II: Wheel squeal. J Sound Vibration 1976;46:381– 94. https://doi.org/10.1016/0022-460x(76)90862-2 .

[3] Remington PJ. Wheel/rail squeal and impact noise: What do we know? What don’t we know? Where do we go from here? J Sound Vibration 1987;116:339–53.

https://doi.org/10.1016/s0022-460x(87)81306-8 .

[4] Fingberg U. A model of wheel-rail squealing noise. J Sound Vibration 1990;143:365– 77. https://doi.org/10.1016/0022-460x(90)90729-j .

[5] Périard FJ . Wheel-Rail Noise Generation: Curve Squealing by Trams Doctoral thesis. Delft University of Technology; 1998 .

[6] Heckl MA, Abrahams ID. Curve squeal of train wheels, Part 1: Mathe- matical model for its generation. J Sound Vibration 2000;229:669–93.

https://doi.org/10.1006/jsvi.1999.2510 .

[7] de Beer FG, Janssens MHA, Kooijman PP. Squeal noise of rail-bound vehicles influenced by lateral contact position. J Sound Vibration 2003;267:497–507.

https://doi.org/10.1016/s0022-460x(03)00710-7 .

[8] Huang ZY . Theoretical modelling of railway curve squeal. Doctoral thesis. University of Southampton; 2007 .

[9] Graf M, Ostermeyer GP. Friction-induced vibration and dynamic friction laws: Instability at positive friction–velocity-characteristic. Tribol Int 2015;92:255–8.

https://doi.org/10.1016/j.triboint.2015.06.019 .

[10] Ouyang H, Nack W, Yuan Y, Chen F. Numerical analysis of automotive disc brake squeal: a review. Int J Vehicle Noise Vibration 2005;1:207.

https://doi.org/10.1504/ijvnv.2005.007524 .

[11] Kang J, Krousgrill CM, Sadeghi F. Analytical formulation of mode-coupling instability in disc–pad coupled system. Int J Mech Sci 2009;51:52–63.

https://doi.org/10.1016/j.ijmecsci.2008.11.002 .

[12] Giner-Navarro J, Martínez-Casas J, Denia FD, Baeza L. Study of railway curve squeal in the time domain using a high-frequency vehicle/track interaction model. J Sound Vibration 2018;431:177–91. https://doi.org/10.1016/j.jsv.2018.06.004 .

[13] Li Z, Wang X, Zhang Q, Guan Z, Mo J, Ouyang H. Model reduction for friction- induced vibration of multi-degree-of-freedom systems and experimental validation. Int J Mech Sci 2018;145:106–19. https://doi.org/10.1016/j.ijmecsci.2018.06.039 .

[14] Chiello O, Ayasse JB, Vincent N, Koch JR. Curve squeal of urban rolling stock —Part 3: Theoretical model. J Sound Vibration 2006;293:710–27.

https://doi.org/10.1016/j.jsv.2005.12.010 .

[15] Ding B, Squicciarini G, Thompson D, Corradi R. An assessment of mode-coupling and falling-friction mechanisms in railway curve squeal through a simplified approach. J Sound Vibration 2018;423:126–40. https://doi.org/10.1016/j.jsv.2018.02.048 .

[16] Jiang J, Anderson DC, Dwight R. The Mechanisms of Curve Squeal. Noise Vibration Mitigation Rail Transport Syst 2015;126:587–94.

https://doi.org/10.1007/978-3-662-44832-8_69 .

[17] Vincent N, Koch JR, Chollet H, Guerder JY. Curve squeal of urban rolling stock —Part 1: State of the art and field measurements. J Sound Vibration 2006;293:691–700.

https://doi.org/10.1016/j.jsv.2005.12.008 .

[18] Glocker C, Cataldi-Spinola E, Leine RI. Curve squealing of trains: Mea- surement, modelling and simulation. J Sound Vibration 2009;324:365–86.

https://doi.org/10.1016/j.jsv.2009.01.048 .

[19] Zenzerovic I, Kropp W, Pieringer A. An engineering time-domain model for curve squeal: Tangential point-contact model and Green ׳s functions approach. J Sound Vibration 2016;376:149–65. https://doi.org/10.1016/j.jsv.2016.04.037 .

[20] Lai V-V, Chiello O, Brunel J-F, Dufrénoy P. Full finite element models and reduction strategies for the simulation of friction-induced vibrations of rolling contact systems. J Sound Vibration 2019;444:197–215. https://doi.org/10.1016/j.jsv.2018.12.024 .

[21] Thompson DJ, Squicciarini G, Ding B, Baeza L. A state-of-the-art re- view of curve squeal noise: Phenomena, mechanisms, modelling and mit- igation. Noise Vibration Mitigation Rail Transport Syst 2018;139:3–41.

https://doi.org/10.1007/978-3-319-73411-8_1 .

[22] Thompson DJ . Railway noise and vibration: Mechanisms, modelling and means of control. Elsevier; 2009 .

[23] Johnson KL . Contact mechanics. Cambridge University Press; 1985 .

[24] Bathe KJ . Finite element procedures. Prentice Hall; 1996 .

[25] Wu SR , Gu L . Introduction to the explicit finite element method for nonlinear tran- sient dynamics. John Wiley & Sons; 2012. Incorporated .

[26] Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM J Res Dev 1967;11:215–34. https://doi.org/10.1147/rd.112.0215 .

[27] Hallquist JO, Goudreau GL, Benson DJ. Sliding interfaces with contact-impact in large-scale lagrangian computations. Comput Methods Appl Mech Eng 1985;51:107– 37. https://doi.org/10.1016/0045-7825(85)90030-1 .

[28] Hallquist J.O. LS-DYNA Theory Manual. 2006.

[29] Zhao X, Li Z. A solution of transient rolling contact with velocity dependent friction by the explicit finite element method. Eng Comput 2016;33:1033–50.

https://doi.org/10.1108/ec-09-2014-0180 .

[30] Yang Z, Boogaard A, Chen R, Dollevoet R, Li Z. Numerical and experimental study of wheel-rail impact vibration and noise generated at an insulated rail joint. Int J Impact Eng 2018;113:29–39. https://doi.org/10.1016/j.ijimpeng.2017.11.008 .

[31] Zhao X, Li ZL. The solution of frictional wheel-rail rolling contact with a 3D tran- sient finite element model: Validation and error analysis. Wear 2011;271:444–52.

https://doi.org/10.1016/j.wear.2010.10.007 .

[32] Wei ZL, Li ZL, Qian ZW, Chen R, Dollevoet R. 3D FE modelling and validation of frictional contact with partial slip in compression-shift-rolling evolution. Int J Rail Transport 2016;4:20–36. https://doi.org/10.1080/23248378.2015.1094753 .

[33] Knothe K, Wille R, Zastrau BW. Advanced contact mechanics–road and rail. Vehicle Syst. Dynamics 2001;35:361–407. https://doi.org/10.1076/vesd.35.4.361.2043 .

[34] Animation for Fig. 5. https://youtu.be/3jeei3NTP84 . [accessed 18.08.11]. [35] Yang Z, Li ZL, Dollevoet R. Modelling of non-steady-state transition from

single-point to two-point rolling contact. Tribol Int 2016;101:152–63.

https://doi.org/10.1016/j.triboint.2016.04.023 .

[36] Kalker JJ. Three-dimensional elastic bodies in rolling contact. Netherlands: Springer; 1990 https://doi.org/10.1007/978-94-015-7889-9 .

[37] Vo KD, Tieu AK, Zhu HT, Kosasih PB. A 3D dynamic model to investigate wheel–rail contact under high and low adhesion. Int J Mech Sci 2014;85:63–75.

https://doi.org/10.1016/j.ijmecsci.2014.05.007 .

[38] Zhao X, Li ZL. A three-dimensional finite element solution of frictional wheel- rail rolling contact in elasto-plasticity. Proc Inst Mech Eng Part J J Eng Tribol 2015;229:86–100. https://doi.org/10.1177/1350650114543717 .

[39] Squicciarini G, Usberti S, Thompson DJ, Corradi R, Barbera A. Curve squeal in the presence of two wheel/rail contact points. Noise Vibration Mitigation Rail Transport Syst 2015;126:603–10. https://doi.org/10.1007/978-3-662-44832-8_71 .

Cytaty

Powiązane dokumenty

czenia, co do zasady z kompetencji organów samorządu załogi, indywi­ dualnych spraw pracowniczych. Tylko raczej wyjątkowo, w sprawach ściśle wymienionych w ustawie, organy

Celem badań było uzyskanie mikroproszku szkła o uziarnieniu charakteryzującym się możliwie największym udziałem klas ziarnowych 0-1 μm i 0-2 μm oraz jak największej

Tłumaczenie przez reprezentację wiedzy – polega na generacji tekstu w obcym języku na bazie wiedzy pozyskanej z wypowiedzi w języku macierzystym... Przykładowe

podstawie fal konieczne jest zastosowanie duŜej ilości elektrod..  Do diagnozowania wystąpienia

24 Analiza sytuacji gospodarczej w krajach Europy Środkowej i Wschodniej...op.. Economic transformation processes o f central and eastern European countries 239 euro

- studenci dziennikarstwa i komunikacji społecznej ujawnili, że jako od­ biorców kampanii społecznych bardziej porusza ich namawianie w reklamach do zaniechania zachowań

Oksana Mikolaïvna Slipuško [Oksana Nikolaevna Slipuško, Oksana Miko- laïvna Slipuško [Оксана Николаевна Слипушко, Оксана Миколаївна Сліпушко]),

Powiązanie „jako” z przyczynowością zaznacza się dobitnie w polszczyźnie, jeśli „ponieważ” zastąpić przez „jako, że”: człowiek jako, że jest myślący,