• Nie Znaleziono Wyników

Entire Functions with Gap Power Series

N/A
N/A
Protected

Academic year: 2021

Share "Entire Functions with Gap Power Series"

Copied!
4
0
0

Pełen tekst

(1)

ANNALES

UNIVERSITATIS MARIAE C U RIE-S К Ł O D O W S К A LUBLIN - POLONIA

VOL. XXII/XXIII/XXIV, 9 SECTIO A 1968/1969/1970

Mathematisches Institutder Justus Liebig Universität, Giessen, Deutsche Bundesrepublik

DIETER GAIER

Entire Functions with Gap Power Series Funkcjo całkowite z lukowym szeregiem potęgowym

Целые функции с лакунарным степенным рядом

In this talk I shall present some results on entire functions whose power series expansion at 0 has gaps, which have been obtained some time ago [1], but which I thought would be best suitable to report at this conference.

1. Motivation. Assume that a series ]?an with partial sums sn is given.

We say that is Borel-summable to s, i.e. В —£an = «, if

(2 =®->+oo).

n!

Several authors, Pitt, Erdós, Meyer-Kónig, Zeller, and recently Melnik have considered the problem:

B — ^an=s, an = 0 for “many” n =>: Van = s, which is the so called high indices theorem for Borel summability.

The most difficult part in results of this type is to obtain first some order condition on the an, for example an — О (A”) (n -> oo) for some К< oo, and this is where complex variable methods can be applied successfully.

Namely, the hypothesis B—^an =s implies that —>0 nl (x-> +oo), and the order condition an — O(Kn) is equivalent to saying that У —-— is entire and of exponential type. So our problem is trans- 67-

«.!

formed into the following

(2)

70 Dieter Gaier

Problem: If f(z) — ^anzn is entire, and an = 0 for “many” n, and if further f(x) = 0(ex) (x -> + oo), show that f is of exponential type.

The gap condition permits us to conclude from the radial growth of f to the growth of f in the plane.

2. Theorem. More precisely, we shall prove the following

Theorem. Let f(z) = £ anzn be entire, and an = 0 for n Xk with

^^■k1 < °°« V then f(.x) — 0(exp(æ°)) (æ -»■ +oo) for some a > 0, then f is at most of order a, type 1.

We remark that the condition on the {Afc} is best possible. According to Macintyre there is, to any given {Afc} with A*1 = oo,an entire function f of infinite order which is hounded for z = x > 0.

3. Proof of theorem. With V. Bernstein we consider for arbitrary fixed T < oo the transform

T

H(e) = f f(t)t—ldt.

We assume, as we may, a0 = 0, so that the integral converges for Rez < 1, and J? is a regular function in the halfplane Rez < 1.

To obtain its analytic continuation beyond Rez =1, we write in Rez < 0

The right hand side is a meromorphic function in the plane, and thus it represents the analytic continuation of H beyond Rez = 1. Possible singularities are simple poles at z = n with residues — an (n = 1,2,...).

Thus we transformed the gap condition: Many an are zero, to a complex analytic condition: H has few poles.

We also notice that on the imaginary axis, z = iy,

T

|S(z)|< f ifWlt^dt < CxexptT“)/!“ (T> 1).

0

Finally, if we stay away from the poles of H, \z — n\^rj> 0, we have

|H(z)|

(3)

Entirefunctions with gap power series 71 In order to remove the poles, we consider the Blaschke product

and the new function

rp[z) — H(z)B{z) in Re «>0.

It is regular in Re« > 0, and on the imaginary axis IH*)I = |H(«)|<O1exp(T°)/2w.

Furthermore, the estimate of II outside the poles gives

|<p(z)| < C3(T)T~X for Re« = a? > 0;

in particular, y is bounded in the positive half plane.

Now we apply a theorem of Phragm6n-Lindelof type:

If f is regular and of exponential type in Rez> 0, |/(ii/)| < Jf, and limsupi—< 0, then |/(z)| < MeCx (z = x + iy, x 0).

£->+00 X

Applied to <p, we obtain exp(T°)

—T~* (» = x + iy,x^Q), and if we put z — n for n = Ak, this gives

where the right hand side is

0(1)|V^1+-^| ,

if T > 0 is chosen so that Ta = 1 + — . A more detailed estimate (see [1],n p. 252) now shows that |B'(1A.)|~1 = 0(l)eeAfc for every e > 0. Putting everything together, we arrive at

a„ = 0(1) e**• — (»-►<»),

valid for every e > 0, which proves our theorem.

(4)

72 Dieter Gaier

We may remark that in the case of larger gaps 4+i - 4 > ® ^4 (0 > 0 fixed), our method gives (if a = 1)

an=O(l)e'^~ (»->oo) n!

for every e > 0.

In conclusion, we point out that our method was modified by Halasz [2] to give a complex variable proof of the high indices theorem of Hardy- Littlewood and some refinements of it.

REFERENCES

[1] Gaier, D., Onthe coefficients andthegrowth of gappower series, J. SIAM Numer.

Analysis 3 (1966), 248-265.

[2] Hal&sz, G., Eemarhs to a paper of D. Oaier on gap theorems, Acta Sci. Math.

(Szeged) 28 (1967), 311-322.

Added in proof:

Further generalizations of our theorem have been obtained by Anderson and Binmorein Trans. Amer. Math. Soc. 161 (1971), 381-400.

STRESZCZENIE

Jak wykazał Macintyre w r. 1952, funkcja całkowita f, której szereg Taylora ze środkiem w zerze ma luki Fabry’ego i która jest ograniczona dla z = x > 0, redukuje się do stałej.

Twierdzenie to można uogólnić osłabiając ograniczenie wzrostu.

Np. jeśli/ma luki Fabry’ego oraz/(a?) = O (exp a;“) (a? -> +oo) dla pewnego a > 0, to / jest rzędu conajwyżej a i typu 1. Przypadek a = 1 pozwala na otrzymanie dowodu twierdzenia o dużych wskaźnikach dla sumowal- ności borelowskiej.

РЕЗЮМЕ

Как доказано Макинтайром, целая функция, которая имеет степенной ряд в начале координат с лакунами Фабри и которая огра­

ничена для г = аа > 0, редуцирует к константе.

Эта теорема допускает следующее обобщение.

Пусть / — целая функция, /(ж) = 0(ехрж“) (ж -> +оо) для неко­

торого а > 0 и степенной ряд имеет лакуны Фабри, тогда / конечного порядка небольше а и типа 1. Случай а = 1 дает доказательство теоремы о больших индексах для борелевской суммируемости.

Cytaty

Powiązane dokumenty

 We shall see that our extensions of the classical Fatou–Hurwitz–Polya Theorem (Theorem 4.2.8 in [1]) are a direct consequence of the following Lemma 3.2 (slight modification of

Furthermore, Baum and Sweet [2] have also described the power series in F 2 ((T −1 )) which have all partial quotients of degree one in their continued fraction expansion.. We

Given a diffuse concordant sequence X of integers we define below an entire function T X , following the constructions of Gel’fond and B´ezivin, that plays the role of the

The difference between the number of partitions of n into an even number of parts from the multiset S and the number of partitions into an odd number of parts from S is bounded if

The following theorem gives necessary and sufficient conditions for an entire function / (z) to be of perfectly regular logarithmic

Clearly, the proximate order and the corresponding generalized (p, &lt;?)-type of the given function are not uniquely determined. We have also shown that an entire

Let S(a,0) be the subclass of the familiar class S of normalized univalent functions consisting of functions with Hayman’s index a and the unique direction of maximal

The main aim of this paper is to study the growth properties of generalized iterated entire functions in almost a new direction in the light of their relative orders, relative types