• Nie Znaleziono Wyników

Dynamic instability and chaotic motions of a single point moored tanker

N/A
N/A
Protected

Academic year: 2021

Share "Dynamic instability and chaotic motions of a single point moored tanker"

Copied!
22
0
0

Pełen tekst

(1)

DYNAMIC INSTABILITY AND CHAOTIC MOTIONS

OF A SINGLE-POINT-MOORED TANKER

S.D. Sharma, T . Jiang, T.E. Schellin

Federal Republic of Germany

A s y m p t o t i c motions o f an exemplary s u p e r t a n k e r vhen s i n g l e - p o i n t - m o o r e d , i n steady c u r r e n t , w i t h o r w i t h o u t c o n s t a n t w i n d o r r e g u l a r waves, were i n v e s t i g a t e d . N o n l i n e a r time-domain s i m u l a t i o n s o f phasespace t r a j e c t o r i e s and l o c a l l y l i n e a r i z e d s t a b i l i t y analyses o f e q u i l i b r i u m s t a t e s were p e r -formed. F i v e s e t s o f f o r c e s were modeled: l ) n o n l i n e a r q u a s i - s t e a d y hydrodynamic response and con-t r o l f o r c e s based on a f o u r - q u a d r a n con-t maneuvering model, 2 ) l i n e a r memory e f f e c con-t s due con-t o r a d i a con-t e d waves, 3) n o n l i n e a r mooring l i n e c h a r a c t e r i s t i c s , h) w i n d a c t i o n i n s t a n d a r d f o r m , and 5) f i r s t -and second-order f o r c e s due t o i n c i d e n t r e g u l a r waves. F i v e parameters were s y s t e m a t i c a l l y v a r i e d : c u r r e n t speed, f a i r l e a d l o c a t i o n , mooring l i n e l e n g t h , p r o p e l l e r r a t e , and r u d d e r d e f l e c t i o n . The system was found t o e x h i b i t i n t r i g u i n g phenomena such as m u l t i p l e e q u i l i b r i a and dynamic i n s t a b i l i t y , l e a d i n g t o s e l f - s u s t a i n e d o s c i l l a t i o n s o r even d e t e r m i n i s t i c chaos. Scale e f f e c t s were shown t o be s i g n i f i c a n t ; memory e f f e c t s , i n c o n s e q u e n t i a l . R e s u l t s are g r a p h i c a l l y p r e s e n t e d as s t a b i l i t y domains and b i f u r c a t i o n l o c i i n parameter space, and as motion h i s t o r i e s and t r a j e c t o r i e s i n phase space.

NOMENCLATURE Note: Symbols not l i s t e d conform t o ITTC s t a n

-d a r -d nomenclature. V e c t o r s an-d m a t r i c e s a r e i n b o l d p r i n t i components 1,2,3 r e p r e s e n t s u r g e , sway, and yaw; s u p e r s c r i p t T denotes t r a n s p o s e . S u b s c r i p t s A,E on c o o r d i n a t e s i n d i c a t e mooring l i n e (attachment p o i n t ) and s h i p e q u i l i b r i v m i s t a t e . S u b s c r i p t s A,Q,M,S,W on f o r c e s and mo-ments s t a n d f o r mooring l i n e , q u a s i - s t e a d y , me-mory, waves, and w i n d . Overbar means t i m e - a v e r a g e .

L A ^AU 0 p p Q

C i r c u l a r wave niimber o f component j I n s t a n t a n e o u s l e n g t h o f mooring l i n e Unloaded l e n g t h o f mooring l i n e N u l l m a t r i x o f s u i t a b l e dimension E f f e c t i v e p o s i t i o n o f mooring p o i n t 18 X 1 8 C o e f f . m a t r i x i n s t a b i l i t y a n a l . 6 x 6 C o e f f . m a t r i x i n s t a b i l i t y a n a l y s i s A A m p l i t u d e o f i n c i d e n t wave

\

3 x 1 S t a t e v e c t o r f o r k = 0 , l , . . . , n A Mooring l i n e attachment p o i n t ( f a i r l e a d ) Mean wave p e r i o d 2iT/tüQ

A L , T L o n g i t u d i n a l , t r a n s v e r s e w i n d a t t a c k a r e a " ' ^ r e l Ship v e l o c i t y components r e l a t i v e t o w a t e r A 3 x 3 I n e r t i a m a t r i x i n s t a b i l i t y a n a l y s i s Speed o f c u r r e n t , w i n d

\

3 x 3 Parameter m a t r i x f o r k = 0,1,. . . ,n V 3 x 1 V e l o c i t y v e c t o r (Uj.g-L,Vj.g-i,r)^ a 3 x 3 Hydrodyn. i n e r t i a m a t r i x f u n c t i o n X 3 x 1 P e r t u r b a t i o n v e c t o r (5Q,T)Q»X)''' B 3 x 3 Damping m a t r i x i n s t a b i l i t y a n a l y s i s y 18 X 1 S t a t e v e c t o r i n s t a b i l i t y a n a l y s i s 3 x 3 Parameter m a t r i x f o r k = 0,1,.. . ,n z 6 x 1 S t a t e v e c t o r i n s t a b i l i t y a n a l y s i s b 3 x 3 Hydrodyn. damping m a t r i x f u n c t i o n A(ij Frequency d i f f e r e n c e (u-j^-Ug)

C 3 x 3 S t i f f n e s s m a t r i x i n s t a b i l i t y a n a l . C n Wave e l e v a t i o n , i t s H i l b e r t t r a n s f o r m D 3 x 3 A u x i l . m a t r i x i n s t a b i l i t y a n a l y s i s SOIQX Earthbound c o o r d i n a t e s c e n t e r e d a t E E E q u i l i b r i u m p o s i t i o n o f m i d s h i p p o i n t 0 PA Mass d e n s i t y o f a i r F 3 x 1 Force-couple v e c t o r (X,Y,N)''^ a E i g e n v a l u e i n s t a b i l i t y a n a l y s i s G 3 x 1 Wave d r i f t - f o r c e v e c t o r f u n c t i o n <'C,S,W D i r e c t i o n o f c u r r e n t , waves, w i n d H 3 x 1 Frequency-response v e c t o r f u n c t i o n Center f r e q u e n c y (u^+U2)/2

I I d e n t i t y m a t r i x o f s u i t a b l e dimension C i r c u l a r f r e q u e n c y o f wave component j Som D. Sharma, I n s t i t u t für S c h i f f b a u d e r U n i v e r s i t a t Hamburg, Lammersieth $0, 2000 Hamburg 60, FRG Tao J i a n g and Thomas E. S c h e l l i n , Germanischer L l o y d , V o r s e t z e n 32, 2000 Hamburg 1 1 , F. R. Germany

(2)

1 INTRODUCTION

I t has r e c e n t l y been f o u n d t h a t dynamic i n -s t a b i l i t y o f anchored, moored o r towed -ship-s can, under c e r t a i n r e a l i s t i c c o n d i t i o n s , l e a d not o n l y t o l a r g e - a m p l i t u d e s e l f - s u s t a i n e d os-c i l l a t i o n s b u t a l s o t o i n h e r e n t l y i r r e g u l a r mo-t i o n s , even i n mo-t h e absence o f random e x c i mo-t a mo-t i o n . This s o - c a l l e d d e t e r m i n i s t i c chaos can be endo-genous, i . e . o r i g i n a t e i n an autonomous system c o m p r i s i n g t h e moored s h i p and a steady c u r r e n t , o r i t can be f o r c e d by a simple p e r i o d i c e x c i t -a t i o n due t o -a r e g u l -a r h-armonic w-ave, f o r example. T h i s phenomenon i s , t h e r e f o r e , q u a l i t a t -i v e l y d -i f f e r e n t from t h e f a m -i l -i a r s t o c h a s t -i c response o f a s h i p t o s t o c h a s t i c e x c i t a t i o n i n i r r e g u l a r waves. The c o u n t e r i n t u i t i v e o c c u r rence o f c h a o t i c b e h a v i o r i n a f u l l y d e t e r m i n i s t i c mechanical system w i t h o u t any random i n put s t i l l evokes some s u r p r i s e and m i l d e x c i t e -ment , even though i t has a l r e a d y been demon-s t r a t e d i n a v a r i e t y o f comparable dynamic demon-sydemon-s- sys-tems, see f o r i n s t a n c e t h e a n t h o l o g y by Holden

(1986). I n t h i s paper we a t t e m p t a p a r a m e t r i c study o f t h e a s y m p t o t i c motions o f a t y p i c a l s u p e r t a n k e r when s i n g l e - p o i n t - m o o r e d (SPM) i n a u n i f o r m c u r r e n t , w i t h o r w i t h o u t a d d i t i o n a l ex-c i t a t i o n from ex-c o n s t a n t wind or r e g u l a r waves.

We focused on f i v e s e l e c t e d p a r a m e t e r s , namely c u r r e n t speed as t h e f o r e m o s t e n v i r o n -m e n t a l para-meter, f a i r l e a d l o c a t i o n and - moori n g l moori n e l e n g t h as p r moori n c moori p a l o p e r a t moori o n a l p a r a -m e t e r s , and p r o p e l l e r r a t e and r u d d e r angle s e t t i n g s as r e a d i l y a v a i l a b l e c o n t r o l p a r a m e t e r s . The e f f e c t s o f wind and waves were o n l y s p o t -checked, c h i e f l y i n search o f c h a o t i c m o t i o n s . The s h i p was t r e a t e d as a r i g i d body moving w i t h t h r e e degrees o f freedom: s u r g e , sway, and yaw. F i v e s e t s o f f o r c e s were c o n s i d e r e d : 1) q u a s i -steady n o n l i n e a r hydrodynamic response and con-t r o l f o r c e s , i n c l u d i n g h u l l - p r o p e l l e r - r u d d e r i n t e r a c t i o n s and c e r t a i n s c a l e e f f e c t s , 2) a d d i -t i o n a l l i n e a r hydrodynamic f o r c e s i n response t o t h e s h i p ' s motion h i s t o r y (memory e f f e c t ) , 3) r e s t o r i n g f o r c e g e n e r a t e d by t h e n o n l i n e a r l o a d - e l o n g a t i o n c h a r a c t e r i s t i c o f t h e mooring system, h) s t a n d a r d i z e d w i n d f o r c e s on above-water s h i p , and 5) s i m p l i f i e d f i r s t and second o r d e r f o r c e s due t o i n c i d e n t r e g u l a r waves. The r e q u i r e d dynamic a n a l y s i s was p e r f o r m e d by a j u d i c i o u s employment o f two complementary t e c h -n i q u e s : 1) g l o b a l -n o -n l i -n e a r s i m u l a t i o -n o f phase-space t r a j e c t o r i e s o r i g i n a t i n g f r o m a r b i t r a r y i n i t i a l c o n d i t i o n s and 2) l o c a l l y l i n e a r i z e d s t a b i l i t y analyses o f p o s s i b l e s t a t e s o f system e q u i l i b r i u m . R e s u l t s are s y s t e m a t i c a l l y p r e s e n t e d as s t a b i l i t y domains i n a f i v e - d i m e n s i o n a l para-meter space and supplemented by i l l u s t r a t i v e m o t i o n h i s t o r i e s and t r a j e c t o r i e s i n phase space. I n many ways t h i s paper i s an e x t e n s i o n o f our p r e v i o u s work, see J i a n g e t a l . (198?) and J i a n g and S c h e l l i n ( 1 9 8 8 ) , and we t a k e t h e o p p o r t u n i t y t o make two i m p o r t a n t c o r r e c t i o n s . Owing t o u n f o r t u n a t e programming e r r o r s , our e a r l i e r computed r e s u l t s d i s p l a y e d an a r t i f i c i a l e f f e c t o f memory on s t a b i l i t y and a s p u r i o u s h i g h e r frequency o s c i l l a t i o n i n t h e a s y m p t o t i c t r a j e c t o r i e s .

Beyond t h e t h e o r e t i c a l i n t e r e s t o u t l i n e d a¬ bove, motions o f an SPM s h i p possess, o f c o u r s e , p r a c t i c a l s i g n i f i c a n c e . Nowadays, s u p e r t a n k e r s are i n c r e a s i n g l y l o a d e d or d i s c h a r g e d a t u n p r o -t e c -t e d o f f s h o r e l o c a -t i o n s u s i n g SPM sys-tems. The moored s h i p i s i n t e n t i o n a l l y l e f t f r e e t o weathervane around t h e SPM t e r m i n a l . Hence, i n -s t a b i l i t y o f e q u i l i b r i u m a-s -such doe-s not con-t r a v e n e o p e r a b i l i con-t y . However, i m p e r c e p con-t i b l y slow s e l f - s u s t a i n e d h o r i z o n t a l o s c i l l a t i o n s o f t h e s h i p , e n t a i l i n g p o s s i b l y h i g h peak t e n s i o n s i n t h e m o o r i n g l i n e , c o n s t i t u t e a p o t e n t i a l h a z a r d t h a t needs t o be c a r e f u l l y m o n i t o r e d d u r i n g o p e r a t i o n o r , p r e f e r a b l y , c o n t r o l l e d by a c c u r a t e a n a l y s i s a t t h e design s t a g e . A c c o r d -i n g l y , a p l e t h o r a o f papers has been devoted t o t h i s problem i n r e c e n t y e a r s . For l a c k o f space, we c i t e o n l y two o u t s t a n d i n g monographs. F i r s t , t h e r e i s t h e d o c t o r a l d i s s e r t a t i o n o f P a p o u l i a s ( 1 9 8 7 ) , o b v i o u s l y c r o w n i n g an i m p r e s s i v e s e r i e s o f papers by B e r n i t s a s and h i s a s s o c i a t e s a t t h e U n i v e r s i t y o f M i c h i g a n . I t comprises a r i g -orous m a t h e m a t i c a l a n a l y s i s o f t h e dynamics o f mooring systems, w h i c h we f o u n d t r u l y i l l u m i -n a t i -n g . Seco-nd, t h e r e i s t h e v e r y r e c e -n t t h e s i s o f Vfichers ( I 9 8 8 ) , p u t t i n g t o g e t h e r numerous e x p e r i m e n t a l and t h e o r e t i c a l i n v e s t i g a t i o n s w h i l e f o c u s i n g on n o n l i n e a r wave e f f e c t s , i n -c l u d i n g i n t e r a -c t i o n between i n -c i d e n t waves and p r e v a i l i n g c u r r e n t . Moreover, t h e l o n g l i s t s o f r e f e r e n c e s c o n t a i n e d i n t h e s e two t h e s e s , t a k e n t o g e t h e r , make up a f a i r l y complete b i b -l i o g r a p h y on t h e s u b j e c t . 2 SIMULATIOM MODEL 2.1 C o o r d i n a t e s and K i n e m a t i c s

The f o u r c o o r d i n a t e systems used t o de-s c r i b e t h e m o t i o n de-s o f t h e moored de-s h i p are a l l i n d i c a t e d i n F i g . 1 . F i r s t , f o l l o w i n g s t a n d a r d c o n v e n t i o n , h o r i z o n t a l p o s i t i o n and o r i e n t a t i o n o f t h e s h i p a r e g i v e n by c o o r d i n a t e s x ^ j y ^ o f m i d s h i p p o i n t 0 and by heading angle i> i n an earthbound c o o r d i n a t e system, c o n v e n i e n t l y cen-t e r e d a cen-t cen-t h e e f f e c cen-t i v e mooring p o i n cen-t P and a l i g n e d t o some f i x e d g e o g r a p h i c a l d i r e c t i o n ( p r e f e r a b l y o p p o s i t e t o t h e p r e v a i l i n g c u r r e n t , waves or w i n d ) . I n t h i s system l e t t h e s t a t i c e q u i l i b r i u m c o o r d i n a t e s o f t h e s h i p (under t h e average a c t i o n o f c u r r e n t , waves and w i n d ) be

XoE)yoE>"''E • Then p e r t u r b a t i o n s from e q u i l i b

-r i u m a-re mo-re e x p e d i e n t l y exp-ressed i n a sec-ond e a r t h b o u n d c o o r d i n a t e system E^QnoXj cen-t e r e d a cen-t e q u i l i b r i u m p o i n cen-t E and a l i g n e d cen-t o e q u i l i b r i u m heading i/ig. These two systems are connected by t h e t r a n s f o r m a t i o n r u l e s :

^o = ( ^ O - ^ O E 5 ' ^ ° S > I ' E (yo-yoE' =^i"'J'E

% = (yo-yoE^ °°='''E - (^o-^oE^ s i n i l i j j ( 2 )

X = - ( 3 )

T h i r d , a shipbound c o o r d i n a t e system Oxy i s em-p l o y e d as u s u a l t o s i m em-p l i f y t h e deem-pendence o f hydrodynamic c o n t r o l and response f o r c e s on s h i p m o t i o n s . The r e l a t i o n between h o r i z o n t a l v e l o c i t y components u,v and Xo,yo r e s o l v e d

(3)

a l o n g moving c o o r d i n a t e s x,y and s t a t i o n a r y co-o r d i n a t e s Xco-o,yco-o, r e s p e c t i v e l y , i s c co-o n t a i n e d i n t h e t r a j e c t o r y e q u a t i o n s :

XQ = u cos i|) - V s i n i> = y cos i|i + u s i n i(i

ih) (5) (6) w h i c h a l s o d e f i n e yaw r a t e r . Center o f g r a v i t y G o f t h e s h i p and attachment p o i n t A o f t h e mooring l i n e have, o f c o u r s e , f i x e d c o o r d i n a t e s

XQ,yQ and xx>yk' r e s p e c t i v e l y , i n t h e shipbound system Oxy. F o u r t h , i t i s sometimes advantageous t o r e p l a c e t h e c o o r d i n a t e s XQ,y|| w i t h an e q u i v -a l e n t p -a i r I't^i'i'A r e p r e s e n t i n g t h e h o r i z o n t a l l i n e l e n g t h and d i r e c t i o n , r e s p e c t i v e l y , u s i n g t h e r e l a t i o n s : ^o ^ "•'"A ~ ^A * ^A * ^o ^ *A " ^A 'J' ~ ^A (7) and t h e i r i n v e r s e . The k i n e m a t i c e f f e c t o f a steady u n i f o r m c u r r e n t o f magnitude VQ and d i r e c t i o n i>Q s i m p l y shows up i n t h e d i s t i n c t i o n between s h i p v e l o c -i t y components u,v over ground and u^g-i,Vpg]^ r e l a t i v e t o ambient w a t e r : ^ r e l = ^ - s i n ( i J ^ 2- 4 ' ) (9) (10) W i t h o u t l o s s o f g e n e r a l i t y , angle can be t a k e n t o be 180°.

A b s o l u t e wind speed and d i r e c t i o n are i n -d i c a t e -d by V^^ an-d iji^, r e s p e c t i v e l y ; d i r e c t i o n o f p r o p a g a t i o n o f i n c i d e n t waves i s denoted by a n g l e ^q, see F i g . 1.

2.2 Equations o f Motion

The s h i p was t r e a t e d as a t r a n s v e r s a l l y symmetric r i g i d body h a v i n g t h r e e degrees o f freedom: s u r g e , sway,andyaw. P o s s i b l e minor e f f e c t s o f heave, p i t c h , and r o l l on t h e h o r i -z o n t a l motions were n e g l e c t e d . The e q u a t i o n s o f motion can t h e n be w r i t t e n i n t h e f o l l o w i n g s t a n d a r d form: (Ü - v r - r^Xg)m = X { v + u r + r x p ) m = Y i-Izz + ( v + u r ) X ( , (11) ( 1 2 ) (13) where m i s s h i p mass and I^z i t s moment o f i n e r -t i a abou-t a v e r -t i c a l a x i s -t h r o u g h 0. The n e -t e x t e r n a l t i m e - v a r y i n g h o r i z o n t a l f o r c e compo-n e compo-n t s X,ï r e s o l v e d a l o compo-n g axes x,y acompo-nd t h e i r mo-ment N about 0 r e s u l t , i n g e n e r a l , f r o m a com-p l e x i n t e r a c t i o n o f v a r i o u s com-p h y s i c a l com-phenomena. We s i m p l y c o n s i d e r e d a l i n e a r s u p e r p o s i t i o n o f f i v e e f f e c t s :

F = F n + F „ + F . + F , , + Fo ( l i t ;

where F r e p r e s e n t s f o r c e - c o u p l e (X,Y,N) and s u b s c r i p t s Q,M,A,W,S s t a n d f o r q u a s i - s t e a d y , memory, mooring l i n e , w i n d , and waves, r e s p e c t -i v e l y ; s u p e r s c r -i p t T denotes t r a n s p o s e . 2.3 S p e c i f i c a t i o n o f Forces

2.3.1 Quasi-Steady Forces

The q u a s i - s t e a d y hydrodynamic response and c o n t r o l f o r c e - c o u p l e FQ was c a l c u l a t e d a c c o r d i n g t o t h e f o u r - q u a d r a n t model o f Sharma ( I 9 8 2 ) as f u l l y documented by Oltmann and Sharma ( l 9 8 1 t ) . B a s i c a l l y , t h e f o r c e - c o u p l e elements are syn-t h e s i z e d as f o l o w s : - X j j j + Xjjj^ = y HI ÏHL + % C + Yp ^ H Q = N HI + N HL % C ^ Np + Nj^ ( 1 5 ) (16) ( 1 7 ) where s u b s c r i p t s H,P,R s t a n d f o r system elements h u l l , p r o p e l l e r , rudder and I,L,C f o r p h y s i c a l mechanisms i d e a l f l u i d , l i f t i n g , c r o s s f l o w e f f e c t s , r e s p e c t i v e l y ; t h e odd t e r m s i m p l y denotes o r d i n a r y r e s i s t a n c e t o pure l o n g i t u d i -n a l m o t i o -n . T h i s f o r c e - c o u p l e depe-nds l i -n e a r l y on a c c e l e r a t i o n s Uj,g]_,Vj.g2!^ ^-f^d i n a h i g h l y n o n l i n e a r way on v e l o c i t i e s Uj.gjs'^rel»^ w e l l as on c o n t r o l v a r i a b l e s p r o p e l l e r r a t e n and r u d d e r angle 6. The e x p l i c i t f o r m u l a t i o n s , de-r i v e d fde-rom e x t e n s i v e c a p t i v e model t e s t s and v a l i d a t e d by comparison w i t h f r e e model t e s t s i n a t o w i n g t a n k , a r e t o o l e n g t h y t o be r e p r o -duced here. However, t h r e e f e a t u r e s are w o r t h m e n t i o n i n g . F i r s t , t h e f o u r - q u a d r a n t model, un-l i k e many o t h e r s i n common use, does n o t break down near speed r e v e r s a l s (u,n=0) and i s , t h e r e -f o r e , s p e c i a l l y s u i t a b l e -f o r s i m u l a t i n g slow s h i p m o t i o n s . Second, t h e appearance o f Equa-t i o n s (15-17) n o Equa-t w i Equa-t h s Equa-t a n d i n g , Equa-t h i s model p a i n s t a k i n g l y accounts f o r t h r e e way h u l l p r o p e l l e r r u d d e r i n t e r a c t i o n s . T h i r d , i t i n c o r -p o r a t e s sim-ple e m -p i r i c a l c o r r e c t i o n s f o r t h e main Reynolds-number a s s o c i a t e d s c a l e e f f e c t s on h u l l r e s i s t a n c e and wake w i t h i m p o r t a n t r a m i f i c a t i o n s f o r p r o p e l l e r and r u d d e r f o r c e s . 2.3. F o r c e s A s s o c i a t e d w i t h Memory A l i n e a r response f o r c e a s s o c i a t e d w i t h hydrodynamic memory was c a l c u l a t e d by means o f a f i n i t e s t a t e space model f u l l y d e s c r i b e d i n a p r e v i o u s paper, see J i a n g e t a l . ( 1 9 8 7 ) . F i n a l r e s u l t can be summarized as f o l l o w s : F M ( t ) = Ca(o) - a(<»)]v(t) + S o ( t ) ( 1 8 ) V k < ^ ) = V i - k ( * ) - V o( t ) - B j ^ v ( t ) w i t h k = 0,1,...,n and S j j ^ ^ ( t ) = 0 ( 1 9 ) .)T. Here V i s t h e v e l o c i t y v e c t o r (uj.gi,Vpg3^,r; v { t ) i s t h e a c c e l e r a t i o n v e c t o r (uj.gi,Vpg2,f i ' ^ , Sj^ a r e f o r m a l r e c u r s i v e 3 x 1 s t a t e v e c t o r s t h a t e f f e c t i v e l y s t o r e motion h i s t o r y d u r i n g t i m e domain s i m u l a t i o n ; Aj^jBj^ a r e 3 x 3 parameter ma-t r i c e s o f an n ma-t h - o r d e r s ma-t a ma-t e space a p p r o x i m a ma-t i o n .

(4)

i d e n t i f i e d by a l e a s t squares f i t t o t h e o r e t i -c a l l y -c a l -c u l a t e d 3 x 3 m a t r i x f u n -c t i o n s a ( u ) , b(w) c o m p r i s i n g frequency dependent hydrodynamic i n e r t i a and damping c o e f f i c i e n t s , r e s p e c t i v e l y , i n coupled surge, sway, and yaw.

Note t h a t t h i s f o r m u l a t i o n accounts f o r memory e f f e c t s due o n l y t o waves r a d i a t e d by an o s c i l l a t i n g h u l l w i t h o u t mean f o r w a r d speed, and even t h a t o n l y up t o f i r s t o r d e r . Other p o s s i b l y i m p o r t a n t memory e f f e c t s , such as those due t o v o r t e x shedding a t l o w f r e q u e n c i e s , were d i s r e g a r d e d .

2.3.3 Mooring L i n e Force

The h i g h l y n o n l i n e a r l o a d e l o n g a t i o n p r o -p e r t y o f t h e mooring system was a-p-proximated i n t h e range o f i n t e r e s t by t h e e m p i r i c a l f o r m u l a : F^ = | ( l + s g n A L j ^ ) C ^ i L ^ , ALj^ = L^ - L 'AU (20) w i t h c o e f f i c i e n t Cj^ = 0.0113 kNm"^. Here F^ i s h o r i z o n t a l component o f l i n e t e n s i o n , L;^ i s i n -stantaneous h o r i z o n t a l d i s t a n c e o f attachment p o i n t A from e f f e c t i v e mooring p o i n t P, and L^^y i t s r e f e r e n c e v a l u e c o r r e s p o n d i n g t o t h e un-s t r e t c h e d no-load c o n d i t i o n , un-see F i g . 1 . Note t h a t Fy^ r e p r e s e n t s t o t a l s t a t i c r e s t o r i n g f o r c e a r i s i n g f r o m t h e e l a s t i c i t y o f t h e mooring l i n e and t h e c a t e n a r y a c t i o n o f an anchored buoy o r t h e r i g h t i n g moment o f an a r t i c u l a t e d t o w e r , e t c . The i n e r t i a o f t h e mooring system was con-s i d e r e d t o be n e g l i g i b l y con-s m a l l compared t o t h a t o f t h e s h i p .

2.3.h Wind Forces

The wind-generated f o r c e - c o u p l e , due t o a steady wind a c t i n g on t h e above-water p a r t s o f t h e h u l l and s u p e r s t r u c t u r e , was c a l c u l a t e d as u s u a l by means o f t h e e m p i r i c a l f o r m u l a s :

% =

Y,., = ^

1

PA "^w % 2 PA % A L '^YW 2 PA VW A L V„ AT L C NW (21) (22) (23) where p;^ i s mass d e n s i t y o f a i r , V;^ i s mean e f -f e c t i v e wind speed ( a c c o u n t i n g i n s t a n d a r d i z e d ways f o r v e r t i c a l p r o f i l e and f o r t u r b u l e n c e l e v e l ) , Aj, and Acj a r e l o n g i t u d i n a l ( b r o a d s i d e ) and t r a n s v e r s e (head-on) p r o j e c t e d above-water areas, L i s s h i p l e n g t h between p e r p e n d i c u l a r s , and Cxy,CYy,Cuy a r e s h i p - t y p e dependent f o r c e and moment c o e f f i c i e n t s , o b t a i n e d from wind t u n n e l model t e s t s , as f x i n c t l o n s o f wind angle o f a t t a c k (IT - i>\] + ^). Required wind areas f o r s u b j e c t t a n k e r a r e g i v e n i n Table I ; a p p r o p r i -a t e n u m e r i c -a l v-alues o f f o r c e c o e f f i c i e n t s were t a k e n from OCIMF (1977, pp. 23-27). I n f l u e n c e o f s h i p motions u , v , r on w i n d f o r c e was i g n o r e d . 2.3.5 Wave Forces Wave f o r c e generated on t h e s h i p by t h e a c t i o n o f ambient sea waves was approximated as t h e sum:

where Fg(^) i s t h e u s u a l f i r s t - o r d e r f o r c e and Fg'^) a second-order s l o w l y v a r y i n g d r i f t f o r c e . The o n l y wave e x c i t a t i o n c o n s i d e r e d was t h e s u p e r p o s i t i o n o f two l o n g - c r e s t e d r e g u l a r waves o f e q u a l a m p l i t u d e A and s l i g h t l y d i f f e r e n t f r e -quencies p r o p a g a t i n g i n a g i v e n d i r e c t i o n ijig, t h e r e b y c r e a t i n g wave groups o f l o w f r e q u e n c y c l o s e t o a n a t u r a l frequency o f t h e moored s h i p . The f i r s t - o r d e r f o r c e was c o n s t r u c t e d by superimposing responses t o i n d i v i d u a l wave com-ponents :

2

FJI ) = Re I H(u)j,i(.s-i(.) A J—1

• exp - i k j ( x o cosifig + yo sini|is) + i njj t ( 2 5 ) where i s t h e wave number c o r r e s p o n d i n g t o frequency u j and H t h e h u l l - f o r m dependent com-p l e x frequency-rescom-ponse v e c t o r , here c a l c u l a t e d by means o f an a v a i l a b l e computer program based on 3-D p o t e n t i a l t h e o r y as d e s c r i b e d by D s t e r g a a r d et a l . ( 1 9 7 9 ) . F o l l o w i n g M a r t h i n s e n ( 1 9 8 3 ) , t h e second-o r d e r f second-o r c e was e s t i m a t e d as f second-o l l second-o w s . L e t C be wave e l e v a t i o n a t 0 and ri i t s H i l b e r t t r a n s f o r m , i . e . 2

C + iTi = J A e x p - i k j ( x o cosijis + y,-, sini^^g) J = l j t ] ( 2 6 ) Then t h e s l o w l y v a r y i n g d r i f t f o r c e i s p r o p o r -t i o n a l -t o l o c a l envelope-ampli-tude squared: F ( 2 ) ( C ^ + n^) G(U(,,ij)g-ij<) ( 2 7 ) where G i s t h e h u l l - f o r m dependent d r i f t - f o r c e c o e f f i c i e n t v e c t o r c a l c u l a t e d f o r a r e g u l a r wave o f frequency equal t o t h e c e n t e r f r e q u e n c y üJc=(u]^+ü)2)/2 o f t h e wave group. F o l l o w i n g Cox

( 1 9 8 2 ) , t h e dependence o f G on r e l a t i v e d i r e c -t i o n o f wave p r o p a g a -t i o n can be approxima-ted as

CXS PS'''2 c o s ^ { H i s - < p ) Cjs P g ' V sin3(i))3-i(,) CNS Pg'^'^ sin2(ii.g-i;)) (28) (1) (2) (21.) where p i s mass d e n s i t y o f w a t e r , g a c c e l e r -a t i o n due t o g r -a v i t y , -and V d i s p l -a c e d volume o f t h e s h i p . The nondimensional c o e f f i c i e n t s Cxg, CYg,Cug were here e s t i m a t e d by means o f a n o t h e r a v a i l a b l e computer program based on 3D p o t e n -t i a l -t h e o r y as documen-ted by Clauss e -t a l . ( 1 9 8 2 ) . Numerical v a l u e s f o r s u b j e c t t a n k e r a t 2ir/uc=10 s, f o r example, were found t o be Cxg = 0.25,

Cyg = 3.50, and Ciig = -1.25.

I n f l u e n c e o f s h i p motions u,v,r on wave f o r c e and i n t e r a c t i o n o f i n c i d e n t waves w i t h ambient c u r r e n t were i g n o r e d .

2.1) Canonized S i m u l a t i o n Equations

We expressed t o t a l system dynamics i n c a -n o -n i c a l form by a s e t o f 6 + 3 { -n + l ) f i r s t - o r d e r coupled n o n l i n e a r o r d i n a r y DE's c o n s i s t i n g o f t h r e e k i n e m a t i c t r a j e c t o r y Equations {h-6),

t h r e e dynamic e q u a t i o n s d e r i v e d by e x p l i c i t l y

(5)

s o l v i n g Equations (1113) f o r u,v,r t h a t o t h e r -wise occiir l i n e a r l y on b o t h s i d e s , and 3 ( n + l ) Equations ( 1 9 ) f o r r a t e s o f change o f n+1 s t a t e v e c t o r s S]^ o f dimension t h r e e . The l a s t 3 ( n + l ) e q u a t i o n s were dropped when memory e f f e c t s were o p t i o n a l l y d i s r e g a r d e d . For t h e s u b j e c t t a n k e r , n=3 t u r n e d o u t t o be a s a t i s f a c t o r y approxima-t i o n as demonsapproxima-traapproxima-ted i n our p r e v i o u s work. Hence, t h e system comprised e i t h e r 18 ( w i t h memory) o r 6 ( w i t h o u t memory) s i m u l a t i o n e q u a t i o n s t h a t were n u m e r i c a l l y i n t e g r a t e d w i t h c o n t r o l l e d a c -curacy u s i n g computer s u b r o u t i n e LSODA, s u p p l i e d by I n t e r n a t i o n a l M a t h e m a t i c a l and S t a t i s t i c a l L i b r a r i e s , I n c . , and s p e c i f i c a l l y recommended f o r s o - c a l l e d s t i f f systems.

For c h e c k i n g purposes, we d e r i v e d and p r o -grammed an a l t e r n a t i v e s e t o f s i m u l a t i o n equa-t i o n s u s i n g s equa-t a equa-t e v a r i a b l e s l'js^,i>j^,^ ,IjA'Ï'A'^ i n -s t e a d o f XQ,y|-,,i|i,u,v,r. There wa-s n o t h i n g unique about e i t h e r c h o i c e . I n p r i n c i p l e , an i n f i n i t e v a r i e t y o f a l t e r n a t i v e c o o r d i n a t e systems must l e a d t o e q u i v a l e n t t r a j e c t o r y s i m u l a t i o n s (and i d e n t i c a l s t a b i l i t y assessments). Indeed, t h i s e x e r c i s e h e l p e d us i n c a t c h i n g two s u b t l e p r o gramming e r r o r s t h a t had l o n g evaded our a t t e n -t i o n .

3 STABILITY ANALYSIS 3.1 E q u i l i b r i u m S t a t e s

For any g i v e n steady e x c i t a t i o n ( c u r r e n t , w i n d , and waves) and f i x e d c o n t r o l s e t t i n g s ( p r o -p e l l e r r a t e and r u d d e r a n g l e ) t h e moored s h i -p can be expected t o have one o r more e q u i l i b r i u m s t a t e s . We d e t e r m i n e d these s t a t e s f r o m Equat i o n s (911) by s u b s Equat i Equat u Equat i n g e x p l i c i Equat f o r m u l a -t i o n s f o r a l l f o r c e s and e n f o r c i n g -t h e zero motion c o n d i t i o n by s e t t i n g u , v , r , u , v , r = 0 (29) The r e s u l t i n g s e t o f t h r e e n o n l i n e a r a l g e b r a i c e q u a t i o n s was s o l v e d i t e r a t i v e l y t o y i e l d (some-t i m e s m u l (some-t i p l e ) e q u i l i b r i a p o s i (some-t i o n s o f (some-t h e s h i p i d e n t i f i e d by c o o r d i n a t e s XQg,yQE,i))g. Aux-i l Aux-i a r y e q u Aux-i l Aux-i b r Aux-i u m v a l u e s such as l Aux-i n e l e n g t h L;^, d i r e c t i o n ^j^, and t e n s i l e f o r c e F;^ t h e n f o l l o w e d f r o m Equations ( 7 , 8 , 2 0 ) . Note t h a t t h e memory dependent v e c t o r SQ i s a u t o m a t i c a l l y zero i n any e q u i l i b r i u m s t a t e .

3.2 L o c a l L i n e a r i z a t i o n

We chose t o express p e r t u r b a t i o n s from any e q u i l i b r i u m s t a t e E by a v e c t o r X, c o m p r i s i n g d i s p l a c e m e n t s Co,1o,X, and b y i t s t i m e d e r i v a -t i v e s X,5(. I -t was found -t h a -t -t o f i r s -t o r d e r = ( u , v , r ) T , ( u , v , r ) T ( 3 0 ) L o c a l l i n e a r i z a t i o n a t E w i t h r e s p e c t t o p e r t u r -b a t i o n s t h e n t r a n s f o r m e d motion Equations ( 1 1 ¬ 13) i n t o t h e f o l l o w i n g second-order v e c t o r DE: A x + B x + C x = So w i t h A = A J + A Q + A M , B = BQ+BM, C = CQ+CA+CW+CS (31)

Here c o e f f i c i e n t m a t r i c e s A,B,C comprise e i t h e r g l o b a l system parameters such as body i n e r t i a :

0, m , mx, 0, mXQ, I ^ and hydrodynamic i n e r t i a A^ = - 0 / 3 i , 3 / 3 v , 8 / 3 J ) ^ (XQ,YQ,NQ) Ca(o) - a(<»>)] (32) (33) (3lt) or l o c a l g r a d i e n t s o f f o r c e s w i t h r e s p e c t t o p e r t u r b a t i o n s c a l c u l a t e d anew a t each E: BT = - 0 / 8 u , 3 / 3 v , 3 / 3 r ) T ( X n , Y Q , N o ) 0 , 0 , { a i i ( 0 ) - a i i ( - ) } V c s i n ( ^ E - i ; - c ) 0,0,{a22(0)-a22(")}Vccos(i|'E-'J'c), L0,0,{a32(0)-a32(°)}Vccos('l'E->l'c)J ^A -(3/3C^,3/3no,3/3x)^(XQ,Yg,,NQ) -0/3C„,8/3^0,3/3x)'^(XA,Yji,NA) -(3/3f ,3/3n„,3/3x)'^(X„,Y - 0/ 3 ?O, 3 / 3T1O, 3 / 3X ) ^ W'^W'^w' (Xg,?s,5s) (35) (36) (37) (38) (39) (1*0) Note t h a t wave f o r c e s were reduced t o t h e i r time-averaged components i n o r d e r t o enable a h e u r i s t i c assessment o f t h e e f f e c t o f waves on s t a b i l i t y by d i s r e g a r d i n g t h e p u r e l y o s c i l l a t o r y components.

A l l d i f f e r e n t i a t i o n s necessary f o r o b t a i n -i n g t h e above J a c o b -i a n m a t r -i c e s were performed n m e r i c a l l y b y means o f t h e f i v e - p o i n t Lagrange f o r m u l a w i t h a s u i t a b l e s t e p s i z e and v a l i d a t e d , where p o s s i b l e , by comparison w i t h a n a l y t i c a l d e r i v a t i o n s . One sample s e t i s reproduced i n Table I I .

T o t a l system dynamics i s t h e n d e s c r i b e d by l i n e a r i z e d E q u a t i o n ( 3 1 ) a l o n g w i t h a l r e a d y l i n e a r Equations ( 1 9 ) . For f u r t h e r a n a l y s i s we found i t e x p e d i e n t t o combine them i n t o a s i n g l e set o f f i r s t - o r d e r DE's. For t h i s we i n t r o d u c e d ( r e c a l l n=3) an extended s t a t e v e c t o r : = [ j T ^ s T 3T 3T ,T ^ T ] and a composite c o e f f i c i e n t m a t r i x : (1*1) - A - 4 , A - 1 , 0 , 0 , 0 , - A- l C -B3 . -A3, I , 0 , 0 , -B3D p - -B2 , -A2, 0 , I , 0 , -B2D r — - B l , - A l , 0 , 0 . I , - B i D -BQ , -AQ, 0 , 0 , 0 , -BQD 1 , 0 , 0 , 0 , 0 , 0 (1+2) c o n t a i n i n g an a u x i l i a r y m a t r i x 0, 0, Vcsin(.)<E-'('c) 0, 0, Vccos{i^E-i|;c) LO, 0, 0 (lt3) The l i n e a r i z e d system i s t h e n d e s c r i b e d by a s i n g l e f i r s t - o r d e r v e c t o r DE o f dimension 6+3(n+1):

(6)

iUh)

These e q u a t i o n s s i m p l i f i e d s u b s t a n t i a l l y when memory was o p t i o n a l l y d i s r e g a r d e d . V e c t o r s Sj^ became d i s p e n s a b l e and m a t r i c e s A ^ j B f ^ dropped o u t o f E q u a t i o n ( 3 l ) . Consequently, Equations {kl,k2,hk) c o u l d be r e p l a c e d by Q i - ( A J + A Q ) - 1 B Q , - (A J + A Q ) - 1 C I , 0 (^5) ikG) ( l i 7 ) r e s p e c t i v e l y , t h u s r e d u c i n g system dynamics w i t h o u t memory t o a f i r s t - o r d e r v e c t o r DE o f dimension 6 ( i n s t e a d o f l 8 w i t h memory). I n p a s s i n g , we n o t e t h a t when t h e a l t e r -n a t i v e c o o r d i -n a t e system me-ntio-ned i -n S e c t i o -n

2.h was used, l o c a l l i n e a r i z a t i o n was done nu-m e r i c a l l y w i t h r e s p e c t t o p e r t u r b a t i o n s "('A-'f'AE.X i n s t e a d o f Co.flo.X above. 3.3 S t a b i l i t y Assessment

L o c a l s t a b i l i t y o f any examined e q u i l i b r i u m s t a t e was assessed i n t h e sense o f Lyapunov by s o l v i n g a c l a s s i c a l e i g e n v a l u e p r o b l e m , i . e .

IP

I I = 0 IQ - a l j = 0 ( i t 8 ) depending on whether memory was t o be r e t a i n e d o r n o t . E i t h e r l 8 ( w i t h memory) o r 6 ( w i t h o u t memory) e i g e n v a l u e s were o b t a i n e d .

Consider f i r s t t h e g e n e r i c case where a l l e i g n v a l u e s have nonzero r e a l p a r t s (sometimes c a l l e d h y p e r b o l i c c a s e ) . Then t h e i n t e r p r e t a -t i o n i s s -t r a i g h -t f o r w a r d . I f a l l r e a l p a r -t s a r e n e g a t i v e d e f i n i t e , t h e e q u i l i b r i u m s t a t e i s s t a b l e , and t h e autonomous system s h o u l d asymp-t o asymp-t i c a l l y r e asymp-t u r n asymp-t o i asymp-t a f asymp-t e r a s u f f i c i e n asymp-t l y s m a l l , a r b i t r a r y i n i t i a l d i s t u r b a n c e . I f one or more r e a l p a r t s are p o s i t i v e d e f i n i t e , t h e e q u i -l i b r i u m s t a t e i s u n s t a b -l e . Even when t h e i n i t i a -l d i s t u r b a n c e i s a r b i t r a r i l y s m a l l , t h e system w i l l almost never r e t u r n t o such an u n s t a b l e e q u i l i b r i u m . I t may a s y m p t o t i c a l l y wander away t o a n e i g h b o r i n g s t a b l e e q u i l i b r i u m , e n t e r a p e r i o d i c o r b i t ( l i m i t c y c l e ) , g e t t r a p p e d i n a q u a s i - p e r i o d i c o r b i t on a t o r u s , or execute c h a o t i c motions on a m a n i f o l d o f f r a c t a l d i -mension ( s t r a n g e a t t r a c t o r ) i n d e f i n i t e l y , see e.g. Holden and Muhamad ( I 9 8 6 ) .

I n t e r p r e t a t i o n o f t h e d e g e n e r a t e , nonhyp e r b o l i c case i s n o t so easy. The s i m nonhyp l e s t a b i l -i t y c r -i t e r -i o n j u s t s t a t e d f a -i l s . I n g e n e r a l , t h i s s i t u a t i o n can o n l y a r i s e when a c o n t i n u o u s v a r i a t i o n o f one or more system parameters i s c o n s i d e r e d . Then i t r e p r e s e n t s a c r i t i c a l p o i n t , where l o n g - t e r m system b e h a v i o r undergoes a q u a l i t a t i v e change ( b i f u r c a t i o n ) . Complete c l a s -s i f i c a t i o n o f b i f u r c a t i o n -s i n m u l t i p a r a m e t e r systems i s t o o complex t o be a t t e m p t e d h e r e . L e t us c o n c e n t r a t e on two t y p i c a l s i t u a t i o n s . I f a pure r e a l e i g e n v a l u e passes t h r o u g h z e r o , a s t a t i c (saddle-node o r p i t c h f o r k ) b i f u r c a t i o n o c c u r s , i m p l y i n g a t r a n s i t i o n between s i n g l e and m u l t i p l e e q u i l i b r i a . I f t h e r e a l p a r t o f a p a i r o f complex-conjugate e i g e n v a l u e s passes t h r o u g h z e r o , a dynamic ( H o p f ) b i f u r c a t i o n o c c u r s , i m p l y i n g a t r a n s i t i o n between s t a b l e e q u i l i b r i u m and l i m i t c y c l e . For f u r t h e r de-t a i l s , see e.g. Guokenheimer and Holmes ( 1 9 8 6 ) .

k RESULTS AHD DISCUSSION

h.1 Scope o f C a l c u l a t i o n s

C a l c u l a t i o n s were done f o r a f u l l y loaded 150 000 t o n deadweight s u p e r t a n k e r i n deep w a t e r I t s p r i n c i p a l p a r t i c u l a r s a r e reproduced i n Table I . T h i s exemplary s h i p was chosen m a i n l y because i t s complete s e t o f c o e f f i c i e n t s f o r q u a s i - s t e a d y hydrodynamic f o r c e s , based on ex-t e n s i v e ex-t e s ex-t s w i ex-t h a 1 : 35 s c a l e model a ex-t ex-t h e Hamburg Ship Model B a s i n , was a v a i l a b l e from Oltmann and Sharma (198I*, Table 3 ) . A d d i t i o n a l c o e f f i c i e n t s r e q u i r e d t o r e p r e s e n t hydrodynamic memory e f f e c t s were computed and documented by us i n a p r e v i o u s paper, c f . J i a n g e t a l . (1987, Table I I ) .

E q u i l i b r i u m s t a t e s were determined and c o r r e s p o n d i n g s t a b i l i t y analyses c a r r i e d out s y s t e m a t i c a l l y , i n t e n d i n g t o cover t h e e n t i r e p r a c t i c a l range o f t h e f i v e parameters i n t r o -duced i n S e c t i o n 1. To r e a s o n a b l y l i m i t t h e amount o f c o m p u t a t i o n , o n l y two parameters were v a r i e d a t a t i m e w h i l e k e e p i n g t h e o t h e r s con-s t a n t a t con-s e l e c t e d r e f e r e n c e v a l u e con-s acon-s l i con-s t e d i n Table I I I . T h i s generated e x c a c t l y t e n t w o d i -mensional s e c t i o n s t h r o u g h a f i v e - d i m e n s i o n a l parameter space. Two c l a r i f y i n g remarks a r e i n o r d e r . F i r s t , a l t h o u g h our a l g o r i t h m a l l o w s i n dependent v a r i a t i o n o f t h e two f a i r l e a d c o o r d i -nates x;^,y^, o n l y a o n e - d i m e n s i o n a l v a r i a t i o n n e a r l y f o l l o w i n g t h e r e l e v a n t deck c o n t o u r (see F i g . 2) was i n v e s t i g a t e d i n o r d e r t o r u l e o u t u n r e a l i s t i c mooring c o n f i g u r a t i o n s . Second, t h e r e f e r e n c e v a l u e o f p r o p e l l e r r a t e was not a f i x e d c o n s t a n t ( s a y , n=0) b u t v a r i e d somewhat from p o i n t t o p o i n t , always c o n f o r m i n g t o t h e p h y s i c a l c o n d i t i o n o f zero t o r q u e Q ( f r e e w h e e l -i n g p r o p e l l e r ) . We have shown elsewhere t h a t t h e a l t e r n a t i v e c h o i c e o f zero t u r n i n g r a t e ( p r o -p e l l e r l o c k e d or h e l d f i x e d by engine f r i c t i o n ) does n o t a p p r e c i a b l y a l t e r r e s u l t s .

E s s e n t i a l l y a l l s t a b i l i t y c a l c u l a t i o n s were conducted f o r each o f f o u r d i s t i n c t a l t e r -n a t i v e s : - model c o n d i t i o n w i t h memory e f f e c t - model c o n d i t i o n w i t h o u t memory e f f e c t - s h i p c o n d i t i o n w i t h memory e f f e c t - s h i p c o n d i t i o n w i t h o u t memory e f f e c t The t e r m "model c o n d i t i o n " i m p l i e s s i m p l y s c a l -i n g model hydrodynam-ics t o s h -i p s -i z e a c c o r d -i n g t o Froude's l a w , d i s r e g a r d i n g a l l v i s c o u s s c a l e e f f e c t s , and hence r e f l e c t s r e s u l t s as expected from 1 : 35 s c a l e model t e s t s i n a t a n k . By con-t r a s con-t , con-t h e l a b e l " s h i p c o n d i con-t i o n " i m p l i e s ITTC s t a n d a r d c o r r e c t i o n s t o s h i p r e s i s t a n c e and wake, a c c o u n t i n g f o r t h e d i f f e r e n c e i n Reynolds number between model and f u l l s c a l e , w i t h s u b s t a n t i a l consequences n o t a b l y f o r p r o p e l l e r and r u d d e r a c t i o n . The concepts " w i t h and w i t h o u t memory" have been d e f i n e d e a r l i e r i n S e c t i o n 2.3.2.

Numerous t r a j e c t o r y s i m u l a t i o n s were p e r -form.ed f o r s e l e c t e d s e t s o f parameter v a l u e s .

(7)

m a i n l y t o i l l u s t r a t e t h e d i f f e r e n c e i n system b e h a v i o r i n t h e v i c i n i t y o f s t a b l e and u n s t a b l e e q u i l i b r i a . Except f o r a few t e s t cases, these t i m e consuming computations were p e r f o r m e d o n l y f o r t h e s h i p c o n d i t i o n w i t h o u t memory. S e v e r a l values o f wind and waves ( t a k e n a g a i n s t t h e c u r r e n t ) were a l s o t r i e d i n search o f more i n t e r -e s t i n g t r a j -e c t o r i -e s , s p -e c i a l l y t h o s -e l -e a d i n g t o chaos ( s t r a n g e a t t r a c t o r s ) .

k.2 S t a b i l i t y Domains

We have v i s u a l i z e d r e s u l t s o f our s t a b i l i t y a n a l y s i s i n F i g . 3 by t a k i n g t e n plane s e c t i o n s t h r o u g h t h e parameter space i n such a way t h a t each p o s s i b l e p a i r o f t h e f i v e chosen parameters ^C'yA'l'AU''^»'^ occurs e x a c t l y once. The curves shown i n each graph r e p r e s e n t s t a b i l i t y bound-a r i e s , s e p bound-a r bound-a t i n g t h e s e t o f pbound-arbound-ameter p o i n t s p o s s e s s i n g a t l e a s t one s t a b l e e q u i l i b r i u m s t a t e

( s t a b l e domain) from t h e r e s t ( u n s t a b l e domain). Before d i s c u s s i n g d e t a i l s o f i n d i v i d u a l graphs, t h r e e g e n e r a l remarks are i n o r d e r .

F i r s t , note t h a t o n l y two d i s t i n c t curves are v i s i b l e i n each graph a l t h o u g h f o u r d i f f e r e n t analyses were c a r r i e d out as d e s c r i b e d i n Sec-t i o n h.1. The reason i s t h a t i n c l u d i n g memorya s s o c i memorya t e d f o r c e s f memorya i l e d t o produce memoryany n o t i c e a b l e d i f f e r e n c e ! T h i s i s i n c o n t r a s t t o our f o r -mer f i n d i n g s r e p o r t e d i n J i a n g e t a l . (1987, c f . F i g . h). As s t a t e d i n t h e I n t r o d u c t i o n , an un-f o r t u n a t e programming e r r o r was r e s p o n s i b l e un-f o r g e n e r a t i n g a s p u r i o u s and r a t h e r i n c r e d i b l e memo r y e f f e c t i n memour e a r l i e r c a l c u l a t i memo n s . The r e -v i s e d r e s u l t s a r e , i n f a c t , much l e s s s u r p r i s i n g , because autonomous motions o f t h e moored t a n k e r occur a t e x t r e m e l y low f r e q u e n c i e s , w e l l below t h e appearance o f memory e f f e c t s i n t h e c a l c u -l a t e d requency response, c f . F i g . 2 i n t h e pa-per j u s t c i t e d .

Second, t h e d i f f e r e n c e between s t a b i l i t y b o u n d a r i e s f o r model c o n d i t i o n and s h i p c o n d i t i o n i s not as s i m p l e and s t r a i g h t f o r w a r d as r e -p o r t e d , e.g. by L a t o r r e ( 1 9 8 7 ) . The reason i s t h a t our s c a l e e f f e c t s comprised p a r t i a l l y count e r a c count i n g componencounts. On count h e one hand, l o w e r r e -s i -s t a n c e c o e f f i c i e n t i n -s h i p c o n d i t i o n e n t a i l e d l o w e r mean l i n e t e n s i o n , which i s b a s i c a l l y de-s t a b i l i z i n g . On t h e o t h e r hand, l o w e r v i de-s c o u de-s wake f r a c t i o n i n s h i p c o n d i t i o n I m p l i e d h i g h e r r u d d e r f o r c e s as w e l l as h i g h e r p r o p e l l e r p u l l (and s i d e f o r c e ) a t n e g a t i v e p r o p e l l e r r a t e s , a l l o f which are m o s t l y s t a b i l i z i n g . The o v e r -a l l e f f e c t i s , t h e r e f o r e , -a m b i v -a l e n t -and p -a r t l y c o u n t e r i n t u i t i v e . We t a k e t h i s o p p o r t u n i t y t o d e c l a r e t h a t r e s u l t s r e p o r t e d i n our two p r e v i -ous p a p e r s , a l r e a d y c i t e d , concern o n l y t h e model c o n d i t i o n .

T h i r d , i t might seem s u r p r i s i n g t h a t our s t a b i l i t y domains are not p e r f e c t l y symmetric about yA=0 and 6=0, d e s p i t e t h e u s u a l p o r t s t a r -board symmetry o f t h e t a n k e r h u l l and r u d d e r . The reason i s t h a t t h e i n h e r e n t hydrodynamic asymmetry o f our r i g h t h a n d e d s i n g l e screw was p r o p e r l y i n c l u d e d i n t h e f o u r - q u a d r a n t f o r c e f o r m u l a t i o n s . For i n s t a n c e , w h i l e f i x e d or f r e e -w h e e l i n g , t h e p r o p e l l e r g e n e r a t e d enough s i d e f o r c e t o r e q u i r e a n e u t r a l r u d d e r angle 6-3° a t Vc=2 m/s. T u r n i n g now t o t h e p r i m a r y e f f e c t s o f i n -d i v i -d u a l parameters w i t h i n t h e i r p r a c t i c a l ranges, we see from graphs a,b,c,d t h a t i n c r e a s -i n g c u r r e n t speed VQ -i s d e s t a b -i l -i z -i n g , from graphs a , e , g , i t h a t i n c r e a s i n g r e v e r s e p r o p e l -l e r r a t e -n i s s t a b i -l i z i n g , from graphs b , e , f , j t h a t i n c r e a s i n g r u d d e r d e f l e c t i o n |6| i s s t a -b i l i z i n g , from graphs c , h , i , j t h a t i n c r e a s i n g f a i r l e a d asymmetry |yj^| i s s t a b i l i z i n g , and f r o m graphs d,f,g,h t h a t i n c r e a s i n g mooring l i n e l e n g t h Lj^u i s d e s t a b i l i z i n g . A l l t h e s e e f f e c t s can be u n d e r s t o o d q u a l i t a t i v e l y i n terms o f an i n t e r p l a y o f the s t a b i l i z i n g a c t i o n o f mean l i n e t e n s i o n and t h e d e s t a b i l i z i n g a c t i o n o f hydrodynamic Munk moment i n c o n j u n c t i o n w i t h t h e dominant r o l e o f e q u i l i b r i u m asymmetry.

V/hen any two parameters s i m u l t a n e o u s l y dep a r t from t h e i r r e f e r e n c e v a l u e s , t h e i r i n d i -v i d u a l e f f e c t s are g e n e r a l l y c u m u l a t i -v e , as seen i n graphs a , b , c , d , f , g , h , i . However, p a i r s n,6 and yA,5 d i s p l a y a more complex i n t e r a c t i o n . F i r s t , the s t r a n g e shape o f s t a b i l i t y domains i n graph e r e s u l t s f r o m a s t r o n g hydrodynamic e f -f e c t o -f p r o p e l l e r l o a d i n g on r u d d e r o p e r a t i n g i n t h e s l i p s t r e a m . Rudder e f f e c t i v e n e s s s t e a d i l y i n c r e a s e s w i t h i n c r e a s i n g p o s i t i v e p r o p e l l e r r a t e ( t h e r e b y n a r r o w i n g t h e regime o f i n s t a b i l -i t y ) and d r a m a t -i c a l l y decreases w -i t h -i n c r e a s -i n g n e g a t i v e p r o p e l l e r r a t e i i n t i l t h e r u d d e r i s v i l -t i m a -t e l y s -t u c k i n deadwa-ter beyond n:-5 RPM ( t h e r e b y b l o w i n g up t h e regime o f i n s t a b i l i t y ) . However, f o r s u f f i c i e n t l y l a r g e n e g a t i v e p r o p e l l e r r a t e s , s t a b i l i t y i s r e g a i n e d due t o p r o p e l l e r p u l l a l o n e , i r r e s p e c t i v e o f r u d d e r s e t -t i n g . Nex-t, s -t a b i l i -t y domains i n graph j owe t h e i r l e n t i c u l a r shape t o t h e s i m p l e f a c t t h a t e q u i l i b r i u m asymmetries provoked by f a i r l e a d l o c a t i o n and rudder anlge are a d d i t i v e i n quad-r a n t s one and t h quad-r e e but s u b t quad-r a c t i v e i n quadquad-rants two and f o u r .

F i n a l l y , two minor anomalies deserve c l a r i f i c a t i o n . F i r s t , t h e r e are noseshaped p r o t u b e r -ances o f u n s t a b l e regimes i n graphs a , e , g , i t h a t r e s u l t from t h e sudden breakdown o f r u d d e r e f -f e c t i v e n e s s near i t s s t a l l a n g l e , see Oltmann and Sharma (1984, F i g . 1 0 ) . Second, t h e r e are p e c u l i a r i n d e n t a t i o n s i n t o t h e u n s t a b l e regimes i n t h e f i r s t quadrant o f graph i t h a t a r i s e from non-monotonic v a r i a t i o n o f e q u i l i b r i u m asymmetry under j o i n t a c t i o n o f f a i r l e a d l o c a t i o n and p r o -p e l l e r s i d e f o r c e , t h e l a t t e r r e v e r s i n g i t s s i g n a t t h e zero t h r u s t p o i n t ( h e r e n=8 RPM f o r model c o n d i t i o n and n = l l RPM f o r s h i p c o n d i t i o n ) . h.3 B i f u r c a t i o n L o c i I n S e c t i o n 3.3 we s t a t e d t h a t s t a b i l i t y boundaries i n parameter space are a s s o c i a t e d w i t h q u a l i t a t i v e changes ( s o - c a l l e d b i f u r c a t i o n s ) i n system b e h a v i o r . I t t u r n e d out t h a t a l l bound-a r i e s seen i n F i g . 3 were Hopf b i f u r c bound-a t i o n s . Howe v Howe r , whHowen t h Howe rangHowe o f i n v Howe s t i g a t i o n o f p a r a -meters was s u f f i c i e n t l y extended, saddle-node b i f u r c a t i o n s l e a d i n g t o m u l t i p l e e q u i l i b r i a were a l s o encountered; b u t no p i t c h f o r k s , s i n c e our s h i p i s h y d r o d y n a m i c a l l y asymmetric by v i r t u e o f i t s s i n g l e screw. We demonstrate t h e s e phe-nomena w i t h two sample diagrams: F i g . 1* f o r model c o n d i t i o n and F i g . 5 f o r s h i p c o n d i t i o n .

(8)

F i r s t , c o n s i d e r F i g s , l+b and Sb. B a s i c a l l y , t h e y are e n l a r g e d , extended, and separated v e r -s i o n -s o f t h e two -s t a b i l i t y domain-s' a l r e a d y -shown i n F i g . 3 J . But note t h a t f a i r l e a d l o c a t i o n i s now r e p r e s e n t e d on t h e o r d i n a t e by (a l i n e a r s c a l e o f ) l o n g i t u d i n a l c o o r d i n a t e x;^ r a t h e r t h a n t r a n s v e r s e c o o r d i n a t e y^ i n o r d e r t o m a g n i f y t h e r e g i o n s o f i n t e r e s t : 2 0 m <.|y^|<. 23.75 m, compare a l s o F i g . 2 . Moreover, f o r ease o f i n t e r p r e t a t i o n , l o c i o f Hopf b i f u r c a t i o n s ( l o n g -dashed l i n e s ) a r e shown a g a i n s t a backdrop o f t h e a s s o c i a t e d e q u i l i b r i u m m a n i f o l d , i . e . t h e set o f e q u i l i b r i u m s t a t e s XQEyoE'^'E c o r r e s p o n d -i n g t o each p o -i n t -i n parameter p l a n e x^ó. T h -i s i s achieved by p r o j e c t i n g i s o l i n e s o f y^g i n F i g . l)b and, f o r sake o f change, i s o l i n e s o f ipg i n F i g . 5b. I n each graph, observe two c u s p o i d shapes b i t i n g i n t o quadrants two and f o u r ; t h e y enclose r e g i o n s o f t r i p l e e q u i l i b r i a demarcated by saddle-node b i f u r c a t i o n s ( s h o r t - d a s h e d l i n e s ) . A c c o r d i n g l y , t h r e e competing i s o l i n e s o f yQj; ( o r ijfg) e x i s t a t each p o i n t w i t h i n t h e s e i n d e n -t a -t i o n s ; whereas a -t each p o i n -t o u -t s i d e , -t h e e q u i l i b r i u m s t a t e i s unique.

Now, c o n s i d e r F i g s . ka. and 5a. They a r e i n t e n d e d t o r e n d e r t h e s a i d phenomena more p e r -spicuous by r e p l o t t i n g t h e same r e s u l t s i n mixed phase-parameter planes YQE^ ( F i g . ha.) and ii-g^S

( F i g . 5 a ) . P u r s u i n g , from l e f t t o r i g h t , i s o -l i n e s o f t h e r e m a i n i n g parameter xp^, we can c l e a r l y i d e n t i f y t r a n s i t i o n s between s i n g l e and t r i p l e e q u i l i b r i a a t s o - c a l l e d r e v e r s a l p o i n t s . A g a i n , t h e longdashed l i n e s i n d i c a t e Hopf b i -f u r c a t i o n s , here on i s o l i n e s o -f x;^. Moreover, because t h e s u r f a c e r e p r e s e n t i n g t h e e q u i l i b r i u m set i s f o l d e d , we i d e n t i f i e d t h e domain o f Hopf i n s t a b i l i t y by d o t t i n g t h e i s o l i n e s concerned. Observe t h a t each branch o f an i s o l i n e between two r e v e r s a l p o i n t s r e p r e s e n t s a domain o f ( a t l e a s t ) s t a t i c i n s t a b i l i t y , and o f a d d i t i o n a l dy-namic i n s t a b i l i t y when d o t t e d ! A s a l i e n t f e a t u r e h i g h l i g h t e d by F i g s . 1» and 5 i s t h e c l o s e c o r r e l a t i o n between s t a b i l i t y and e q u i l i b r i u m asymmetry, s p e c i a l l y as r e f l e c t e d by h e a d i n g a n g l e : s t a b i l i t y boundaries seem t o hug t h e i s o l i n e s \J)j; = ± 2 ° . F i n a l l y , a p r a c t i c a l l e s s o n t o be l e a r n t from t h e s e graphs i s t h a t , i f s t a b i l i t y i s t o be ensured by a c o m b i n a t i o n o f f a i r l e a d asyrometry and r u d d e r d e f l e c t i o n , t h e most e f f e c t i v e mix i s p o r t f a i r l e a d w i t h s t a r -board r u d d e r ( f o r a r i g h t h a n d e d s i n g l e s c r e w ) . h.h T r a j e c t o r y S i m u l a t i o n s Fourteen l o n g - t e r m t r a j e c t o r y s i m u l a t i o n s , chosen f o r m i s c e l l a n e o u s r e a s o n s , are p r e s e n t e d i n F i g s . 6 t o l i t . F i r s t , c o n s i d e r t h e q u a r t e t o f F i g s . 6 t o 9. Each f i g u r e shows, f o r a p a i r o f cases s e l e c t e d t o i l l u s t r a t e a p a r t i c u l a r p o i n t , t h e f o l l o w i n g i n f o r m a t i o n : l ) t i m e h i s t o r i e s o f c o o r d i n a t e s

^o'yo'^ °^ l i n e t e n s i o n s F^^ over a span o f

1 2 0 m i n , 2 ) t r a j e c t o r i e s o f m i d s h i p p o i n t 0 i n h o r i z o n t a l p l a n e X^YQ over t h e same t i m e span, w i t h schematic deck c o n t o u r s superimposed a t 3 0 min i n t e r v a l s , and 3 ) t a b l e s o f parameter v a l u e s , e q u i l i b r i u m s t a t e s , and e i g e n v a l u e s . F i g s . 6 and 7 ( b o t h f o r model c o n d i t i o n ) a r e r e v i s e d v e r s i o n s o f F i g s . 5 and 7, r e s p e c t i v e l y , o f our

p r e v i o u s paper, c f . J i a n g e t a l . ( 1 9 8 7 ) ; t h e y are i n c l u d e d here t o i l l u s t r a t e t h e two c o r r e c -t i o n s men-tioned a -t -t h e o u -t s e -t . F i g . 6 demon-s t r a t e demon-s t h e i r r e l e v a n c e o f memory e f f e c t demon-s i n n o n l i n e a r motion s i m u l a t i o n s , c o r r o b o r a t i n g and supplementing r e s u l t s o f l i n e a r s t a b i l i t y ana-l y s i s , c f . S e c t i o n h.2. F i g . 7 shows t h a t a s p u r i o u s h i g h f r e q u e n c y o s c i l l a t i o n , p r e v i o u s l y p e r s i s t i n g i n our s i m u l a t i o n s ( i n c o n t r a d i c t i o n t o t h e n e g a t i v e r e a l p a r t o f t h e c o r r e s p o n d i n g e i g e n v a l u e ) , has now d i s a p p e a r e d . I n p a s s i n g , l e t us r e c a l l t h a t t h e o r i g i n a l purpose o f F i g . 7 was t o e x e m p l i f y t h e s t r o n g l y s t a b i l i z i n g e f f e c t o f rudder a p p l i c a t i o n ! F i g s . 8 and 9 r e -p r e s e n t two b o r d e r l i n e cases, i n s -p i r e d by F i g . 3b, f o r purpose o f v a l i d a t i n g t h e a m b i v a l e n t e f f e c t o f s c a l e on s t a b i l i t y ; t r a j e c t o r y simu-l a t i o n s c o n f i r m t h a t , a t S^^, t h e modesimu-l i s s t a b simu-l e and t h e s h i p u n s t a b l e w h i l e , a t Sg, t h e o p p o s i t e h o l d s , as p r e d i c t e d by s t a b i l i t y a n a l y s i s . The p h y s i c a l reason i s t h a t , a t S i , t h e s t a b i l i z i n g e f f e c t o f h i g h e r model r e s i s t a n c e c o e f f i c i e n t p r e v a i l s w h i l e , a t S2, t h e s t a b i l i z i n g e f f e c t of h i g h e r s h i p r u d d e r e f f e c t i v e n e s s p r e v a i l s . N e x t , c o n s i d e r t h e s e t o f F i g s . 10 t o 1 3 . These cases, i n v o l v i n g wind and waves, were s e l e c t e d by t r i a l and e r r o r i n search o f i n t e r -e s t i n g t r a j -e c t o r i -e s . Each s i m u l a t i o n , spanning a p e r i o d o f 15OO m i n , shows: l ) t i m e h i s t o r i e s o f c o o r d i n a t e s XQ,yQ,iii,i)/j^ and o f l i n e t e n s i o n F;^, 2) h o r i z o n t a l t r a c k s o f m i d s h i p p o i n t 0 and o f f a i r l e a d A, and 3) a l t e r n a t i v e t r a j e c t o r i e s i n angle-plane IJ^J^A- U n d e r l y i n g system parameters are documented i n t h e c a p t i o n s . F i g . 10 shows t h e s h i p swaying a p e r i o d i c a l l y between two e q u i -l i b r i a , accompanied by h i g h t e n s i o n peaks i n t h e mooring l i n e , w h i l e F i g . 1 1 shows t h e model ex-e c u t i n g an a p p a r ex-e n t l y p ex-e r i o d i c l i m i t c y c l ex-e undex-er o t h e r w i s e i d e n t i c a l e x t e r n a l c o n d i t i o n s . F i g . 12, a case w i t h s h o r t e n e d mooring l i n e , e x h i b i t s a more e r r a t i c b i s t a b l e w a n d e r i n g , a l s o e n t a i l -i n g h -i g h l -i n e - t e n s -i o n peaks; u n f o r t u n a t e l y , -i t i n v o l v e s o v e r r u n n i n g o f t h e buoy by t h e s h i p . F i g . 1 3 shows t h e s h i p p e r f o r m i n g o b v i o u s l y i r -r e g u l a -r motions w i t h even h i g h e -r peak t e n s i o n s i n " r e g u l a r " waves. We b e l i e v e t h a t , f o r a l l p r a c t i c a l purposes, t h e cases shown i n F i g s . 12 and 13 r e p r e s e n t autonomous and f o r c e d chaos, r e s p e c t i v e l y , a l t h o u g h we have n o t y e t r i g o r -o u s l y pr-oven t h i s u s i n g any -o f t h e c-omputensive t e c h n i q u e s recommended i n t h e l i t e r a t u r e , c f . e.g. Kunick and Steeb ( I 9 8 7 ) .

F i n a l l y , i n F i g . ih a r e j u x t a p o s e d perspec-t i v e views o f f o u r s i m u l a perspec-t e d perspec-t r a j e c perspec-t o r i e s i n t h r e e - d i m e n s i o n a l s t a t e space; t h e y m a n i f e s t s t r i k i n g l y d i f f e r e n t ways an SPM s h i p can behave under r e a l i s t i c c o n d i t i o n s . Graphs a and b ex-e m p l i f y c l a s s i c a l m o t i o n s o f an autonomous sys-tem i n p r o x i m i t y o f a s t a b l e and an u n s t a b l e e q u i l i b r i u m , r e s p e c t i v e l y ; t h e y compare w i t h F i g . 7, except t h a t s h i p c o n d i t i o n r a t h e r t h a n model c o n d i t i o n was s i m u l a t e d . Graphs c and d demonstrate d e t e r m i n i s t i c chaos even more con-v i n c i n g l y than c o r r e s p o n d i n g F i g s . 12 and 13. Paraphrasing a famous quote f r o m t h e B i b l e ( P r o -verbs 30: 1 8 - 1 9 ) , f o n d l y i n v o k e d by s c h o l a r s of seakeeping, we propose t h a t t h e way o f a s h i p can be t o o w o n d e r f u l even i n t h e absence o f a random sea!

(9)

6 ACKMOWIEDGMENTS

T h i s work was p a r t i a l l y supported by t h e M i n i s t r y o f Research and Technology (BMFT) o f t h e F e d e r a l Republic o f Germany. We are g r a t e f u l t o Ms. Ingeborg Jurschek f o r her d e d i c a t e d a s s i s t -ance i n p r e p a r i n g t h e m a n u s c r i p t .

7 REFERENCES

Clauss, G., Sükan, M., and S c h e l l i n , T.E. (1982): " D r i f t Forces on Compact O f f s h o r e S t r u c -t u r e s i n Regular and I r r e g u l a r Waves," J o u r n a l o f A p p l i e d Ocean Research, V o l . It, No. k,

pp. 208-218.

Cox, J.V. (1982): "Statmoor - a S i n g l e P o i n t Mooring S t a t i c A n a l y s i s Program," Naval C i v i l E n g i n e e r i n g L a b o r a t o r y , San D i e g o , C a l i -f o r n i a , ' Report No. AD - A 119 979.

Guckenheimer, J . and Holmes, P. { 1 9 8 6 ) : N o n l i n e a r O s c i l l a t i o n s , Dynamical Systems, and B i f u r c a t i o n s o f Vector F i e l d s , A p p l i e d Mathema-t i c a l Sciences, V o l . h2, S p r i n g e r - V e r l a g , New York, B e r l i n , H e i d e l b e r g , Tokyo.

Holden, A.V., ed. (1986): Chaos, P r i n c e t o n U n i v e r s i t y P r e s s , P r i n c e t o n , New J e r s e y .

Holden, A.V. and Muhamad, M.A. ( 1 9 8 6 ) : "A G r a p h i c a l Zoo o f Strange and P e c u l i a r A t t r a c t o r s , " Chaos, P r i n c e t o n U n i v e r s i t y Press, P r i n c e t o n , New J e r s e y , pp.

15-35-J i a n g , T. and S c h e l l i n , T.E. ( 1 9 8 8 ) : "Mo-t i o n P r e d i c "Mo-t i o n o f a S i n g l e P o i n "Mo-t Moored Tanker S u b j e c t e d t o C u r r e n t , Wind and Waves," Proceedi n g s o f t h e 7 t h I n t . O f f s h o r e MechanProceedics and A r c -t i c E n g i n e e r i n g Symp., American S o c i e -t y o f Mech-a n i c Mech-a l Eng., New York, V o l . 2, pp. 317-326.

J i a n g , T., S c h e l l i n , T.E., and Sharma, S.D. ( 1 9 8 7 ) : "Maneuvering S i m u l a t i o n o f a Tanker Moored i n a Steady Current I n c l u d i n g Hydrody-namic Memory E f f e c t s and S t a b i l i t y A n a l y s i s , " Proceedings o f t h e I n t . Conf. on S h i p Manoeuvr-a b i l i t y , RoyManoeuvr-al I n s t i t u t i o n o f NManoeuvr-avManoeuvr-al A r c h i t e c t s , London, V o l . 1 , Paper No. 25.

Kunick, A. and Steeb, W.H. ( 1 9 8 7 ) : Chaos i n Dynamic Systems, W i s s e n s c h a f t s v e r l a g , Mannheim, Wien, Zürich ( i n German).

L a t o r r e , R. (1987): "Scale E f f e c t i n Towed Barge Course S t a b i l i t y T e s t s , " Proceedings o f t h e I n t . Conf. on Ship M a n o e u v r a b i l i t y , Royal I n s t i t u t i o n o f Naval A r c h i t e c t s , London, V o l . 1 , Paper No. 23.

M a r t h i n s e n , T. ( I 9 8 3 ) : " C a l c u l a t i o n o f S l o w l y V a r y i n g D r i f t Forces," J o u r n a l o f A p p l i e d Ocean Research, V o l . 5, No, 3, pp. ikl-lkk.

OCIMF (1977): P r e d i c t i o n o f Wind and C u r r e n t Loads on VLCCs, O i l Companies I n t . Marine Forum, London.

östergaard, C , S c h e l l i n , T.E., and Sükan, M. ( 1 9 7 9 ) : "On S a f e t y o f O f f s h o r e S t r u c t u r e s : Hydrodynamic C a l c u l a t i o n f o r Compact S t r u c t u r e s , " S c h i f f und Hafen, Hamburg, V o l . 3 1 , No. 1 , pp. 71-76 ( i n German).

Oltmann, P. and Sharma, S.D. (198I)): " S i -m u l a t i o n o f Co-mbined Engine and Rudder Maneuvers Using an Improved Model o f H u l l - P r o p e l l e r - R u d d e r I n t e r a c t i o n s , " Proceedings o f t h e 1 5 t h Symp. on Naval Hydrodynamics, N a t i o n a l Academy P r e s s , Washington, D.C, pp. 83-108.

P a p o u l i a s , F.A. (1987): "Dynamic A n a l y s i s

o f Mooring Systems," Ph.D. D i s s e r t a t i o n , Dept. of Naval A r c h i t e c t u r e and Marine Eng., U n i v e r -s i t y o f M i c h i g a n , Ann A r b o r , M i c h i g a n .

Sharma, S.D. ( I 9 8 2 ) : " D r i f t Angle and Yaw Rate Towing Tests i n Four Quadrants - P a r t 2," S c h i f f und Hafen, V o l . 3^+, pp. 219-222 ( i n German)

Wichers, J.E.W: ( 1 9 8 8 ) : "A S i m u l a t i o n Model f o r a S i n g l e P o i n t Moored Tanker," P u b l i c a t i o n No. 797, M a r i t i m e Research I n s t i t u t e Nether-l a n d s , Wageningen. 8 TABLES Table I P r i n c i p a l p a r t i c u l a r s o f s u b j e c t t a n k e r Length between p e r p e n d i c u l a r s 290.000 m Length c f w a t e r l i n e 296.1tl;6 m Beam 1)7.500 m D r a f t f o r w a r d 16.196 m D r a f t a f t 15.961) m Block c o e f f i c i e n t 0.805 LCB fwd o f m i d s h i p s e c t i o n 7.2lt3 m Radius o f g y r a t i o n ( z - a x i s ) 66.360 m L o n g i t u d i n a l wind a t t a c k area 2 770.0 m2 Transverse wind a t t a c k a r e a 1161.0 m2 P r o p e l l e r diameter 7.910 m P i t c h r a t i o 0.7lt5 Number o f blades 5 Screw sense r i g h t h a n d e d Rudder a r e a 73.500 m^ Rated t u r b i n e power 20 608.0 kW Rated t u r b i n e speed 95.0 RPM Table I I Sample g r a d i e n t s f o r s t a b i l i t y a n a l y s i s Parameters: V(i=2m/s L;;u=75m y;^,6,Q=0

3XQ+A CkN] 3YQ+A CkN] 3NQ+A CkNm]

[ms-2] -.13l)E+5 .OOOE+0 .OOOE+0 8v Cms-2] .OOOE+0 -.139E+6 -.252E+7 Sr [ s - 2 ] .OOOE+0 -.I85E+7 -.59IE+9 3u [ms-1] -.175E+3 .132E+2 .270E+lt 3v [ms-1] -.9l)0E+l -.13l)E+l) -.ll)7E+6 3r Cs-1] -.l62E+lt .l)09E+6 -.116E+8 H o Cm] -.7l)6E+2 .llOE+2 .159E+1) 3no Cm] .976E+I -.i409E+l -.593E+3 3X C l ] .157E+1) .l8i)E+4 .172E+6

Table I I I V a r i a t i o n o f system parameters f o r s t a b i l i t y and b i f u r c a t i o n a n a l y s i s Parameter Reference Examined

v a l u e range

\

Cms-1] 2.0 0 t o 1).0 ^A Cm] 1^5 90 P o r t t o 90 Stbd Cm] 0 -23.75 t o +23.75 ^AU Cm] 75 0 t o 1600 n CRPM] (Q=0) -20 t o +20 6 C°] 0 -30 t o +30

(10)

-30 i 1 1 1 J _ 1 0 l I 1 I 1 0 1 2 [m/s] 1» 0 1 2 [m/s] 1* ( a ) S e c t i o n a t 5 = 0, = 0, L^y = 75 m ( b ) S e c t i o n a t Q = 0, y^ = 0, L^^j = 75 m

23.75

( c ) S e c t i o n a t 6 = 0, Q = 0, L^y = 75 m ( d ) S e c t i o n a t S = 0, Q = 0, y ^ = 0

F i g . 3 S t a b i l i t y domains i n parameter space f o r model c o n d i t i o n ( ) and s h i p c o n d i t i o n ( )

(11)

-20 -10 O n [RPM] 20 (e) S e c t i o n a t VQ = 2m/s, yj^=0, L^y = 75 m

[m] 100 50 O

j

1 J 1 1 1 UNSTABLE 11\ «

\

V -

V . • s STABLE 1 1 t 1 r 1 -20 -10 O n [RPM] 20 (g) S e c t i o n a t V^ = 2m/s, 6-0, yj^ = O 20 ^A [m] 10 -10 -20 1 1

( j

\ /

\ 1 \ l ' \ y ' / / /

\y

UNSTABLE STABLE 1 1 1 1 1 1 120 ^A [m] J l l * 0 11*5 lltO 130 120 -20 -10 O n [RPM] 20 ( i ) S e c t i o n a t V(, = 2m/s, 6 = 0 , Ly^y = 75 m 20 6 [°] _ 1 1 i 1 -L^U [m] l 6 0 0 O 1*00 800 ( f ) S e c t i o n a t VQ = 2 n i / s , Q = 0, y^ = O ^AU [m] 100 50 O ( ' 1 r • 1 I j 1 1 l UNSTABLE | \ 1 \ 1 _ \ / l \

'

\ \

/ \ \ / \ \ / / \ \ / / y / ,y 1 STABLE 1 1 I I I I -10 O 10 y^ [ m ] 25 (h) S e c t i o n a t Vp = 2m/s, 6 = 0 , Q = 0 -20 -10 O 6 [O] 20 ( j ) S e c t i o n a t V(. = 2m/s, Q = 0 , L^y = 75 m

(12)

100 I 1 1 1 1 1 \ 1 1 1 1 r

(a) I s o l i n e s o f parameter v i s u a l i z e d i n phase-parameter p l a n e y^gö

(b) I s o l i n e s o f s t a t e v a r i a b l e y^g v i s u a l i z e d i n parameter p l a n e Xp&

F i g . k Two sample s e c t i o n s t h r o u g h e q u i l i b r i u m m a n i f o l d i n phase-parameter space, showing l o c i o f Hopf ( ) and saddle node ( ) b i f u r c a t i o n s

( F i x e d parameters: Vc = 2 m/s, Q = 0, L^u = 75 m; model c o n d i t i o n )

(13)

-20 -10 O 10 20 6 [ O ] 30 (a) I s o l i n e s o f parameter v i s u a l i z e d i n phase-parameter p l a n e fji^S

23.75

P o r t

-30 -20 -10 O 10 20 6 [O] 30 (b) I s o l i n e s o f s t a t e v a r i a b l e ijij, v i s u a l i z e d i n parameter p l a n e x^6

F i g . 5 Two sample s e c t i o n s t h r o u g h e q u i l i b r i u m m a n i f o l d i n phase-parameter space, showing l o c i o f Hopf ( ) and s a d d l e node ( ) b i f u r c a t i o n s

( F i x e d parameters: = 2 m/s, Q = 0, L^U = 75 m; s h i p c o n d i t i o n )

(14)

V 800 [ k N ] lao 16» 140 120-100 DO 00-40 20 0 O [m] O -50 -100¬ -150¬ -200 -250¬ -300-100 120 t [ m i n ] O [m] COORDINATES OF FAIRLEAD; XA-145.0 M . YA-0.0 M UNSTRETCHED L I N E LENGTH: 75.0 M CURRENT VELOCITY: 1.5 M/S RUDDER ANGLE: 0.0 DEG PROPELLER RATE AT 0-0: 1.1 RPM EQUILIBRIUM POSITION:

X O E — 2 3 0 . 1 M.YOE-7.7 M,PSIE-0.9 DEG MEAN L I N E TENSION: 146 .1 KN

EIGENVALUES

REAL PART IMAG. PART WITHOUT MEMORY 1 -0.1009D-01 O.OOOOD+00 2 -0.9576D-03 O.OOOOD+00 3 -0.4097D-03 0.17210-01 4 -0.4097D-03 -0.17210-01 5 0.4807D-04 0.46510-02 6 0.4B07D-04 -O.4651D-02 WITH MEMORY 1 -0 .40080+00 0 .96950+00 2 -0 ,4008D+00 -0 .96950+00 3 - 0 4253D+00 0 . 8272D+00 4 -0 .42530+00 -0 .82720+00 5 -0 .39800+00 0 .82840+00 6 -0 39800+00 -0 .82840+00 7 -0. 17370+00 0 .48100+00 8 -0 17370+00 -0 4810D+O0 9 -0, 14470+00 0 29850+00 10 -0. 1447D+00 - 0 . 2985D+00 11 -0. 20450+00 0. 36900+00 12 - 0 . Z045D+00 - 0 . 36900+00 13 - 0 . 10080-01 0. OOOOD+00 14 - 0 . 95890-03 0. OOOOD+00 15 - 0 . 40930-03 0. 1721D-01 16 -0. 40930-03 - 0 . 17210-01 17 0. 49530-04 0. 4650D-02 18 0. 4953D-04 - 0 . 46500-02

F i g . Motion s i m u l a t i o n s w i t h •) and w i t h o u t ( ) memory; model c o n d i t i o n

[ k N ] o [m]

[°]

100 t 120 [ m i n ] *• 2' - 2 -4 -6^ -8 •'O [m] [m] -200-150-100 - 5 0 O 50 100 150 200 O [m] .'40 : ;'80 \ .'BO ', .100 \ J20 - .

/

\

/'

/ \ :

0 ' \ 'ejo 1 I'ojb '; 120 COORDINATES OF FAIRLEAD: XA-145.0 M , YA-0.0 M UNSTRETCHED L I N E LENGTH: 75.0 M CURRENT VELOCITY: 2.0 M/S RUDDER ANGLE: 0.0 DEG

PROPELLER RATE AT 0-0: 1.4 RPM EQUILIBRIUM POSITION:

X O E — 2 3 1 . 1 M,Y0E-9.5 M.PSIE-0.9 DEG »CAN L I N E TENSION: 226.4 KN

EIGENVALUES, WITHOUT kCMORY

COORDINATES Of FAIRLEAD: XA-145.0 M , YA-0.0 M

UNSTRETCHED L I N E LENGTH: 75.0 M CURRENT VELOCITY: 2.0 M/S RUDDER ANGLE: -35.0 DEG PROPELLER RATE AT 0=0: 1.4 RPM EQUILIBRIUM POSITION:

X O E — 2 0 9 . 1 M,Y0£-44.2 M.PSIE-5.2 DEG MEAN L I N E TENSION: 356.9 KN

EIGENVALUES. WITHOUT MEMORY

F i g , 7 M o t i o n s i m u l a t i o n s w i t h (•

REAL PART IMAG. PART REAL PART IMAG. PART

1 -0.1374D-01 0.00000+00 1 -0.1194D-01 0.00000+00

2 -0.1258D-O2 O.OOOOO+OO 2 -0.32300-02 O.OOOOD+00

3 -0.5134D-03 0.2037D-01 3 -0.28340-02 0.34460-01 4 -0.5134D-03 -0.20370-01 4 -0.28340-02 -0.34460-01 6 0,2070D-O3 0.56980-02 5 -0.40250-03 0.5174D-02 6 0.20700-03 -0.56980-02 6 -0.4025D-03 -0.5174D-02 - ) and w i t h o u t ( ) r u d d e r a p p l i c a t i o n ; model c o n d i t i o n 5 5 6

Cytaty

Powiązane dokumenty

We find no m ention in the Lithuanian Piarists re­ commended reading list of works from modern philosophy, general geography and politics, general and Polish

Optymalną ścieżką dojścia do uzyskania koncesji na wydobywanie węgla brunatnego metodą odkrywkową, zdaniem autorów jest – procedura wprowadzenia do mpzp gminy

Ponad czterdziestoletnia działalnos´c´ naukowo-dydaktyczna Ksie˛dza Profe- sora, poczynaj ˛ ac od okresu studiów poprzez kolejne stopnie az˙ do tytułu profe- sora, zwi ˛ azana

nia jeszcze odmienność religijną, aksjologiczną, organizacji społecznej, trybu życia.. Ponadto stwierdzenie, że jedzenie gołąbków na śniadanie to typowo boś- niacki zwyczaj

Daarnaast worden twee parameters gegeven die naast de referentiewaarde ook op de limietwaarde voor de betreffende waarde zijn gebaseerd, de relatieve reststericte en de

Examining the influence of regular exercises on the strength of muscles and endurance, Laforest et all 8 proved that people, who systematically do physical

autor stawia wiec pytanie, czy rzymianie dostrzegali nadużycie prawa jako problem i czy w ich prawie prywatnym znajdują się przejawy sprze- ciwu wobec nadużywania przez kogoś

spalania, stąd duże zainteresowanie możliwością optymalizacji pracy poprzez lepsze poznanie wpływu procesu mieszania na inne parametry technologiczno-eksploatacyjne jak: