• Nie Znaleziono Wyników

Numerical investigation of the scale effect of hydrodynamic performance of the hybrid CRP pod propulsion system

N/A
N/A
Protected

Academic year: 2021

Share "Numerical investigation of the scale effect of hydrodynamic performance of the hybrid CRP pod propulsion system"

Copied!
13
0
0

Pełen tekst

(1)

Applied Ocean Research 54 (2016) 26-38

E L S E V I E R

Contents lists available at ScienceDirect

Applied Ocean Research

journal homepage: www.elsevier.com/locate/apor

A P P L I E D O C E A N

RESEARCH

Numerical investigation of the scale effect of hydrodynamic

performance of the hybrid CRP pod propulsion system

Zhan-Zhi Wang*, Ying Xiong, Rui VVang, Chen-liua Zhong

Department of Naval Architecture, Naval University of Engineering, Wulian, China

CrossMark

A R T I C L E N F 0 A B S T R A C T

Article history:

Received 2 November 2014

Received in revised form 21 October 2015 Accepted 23 October 2015

Available online 7 December 2015

Keywords:

The hybrid CRP pod propulsion system Scale effect

Hydrodynamic performance RANS

The scale effect of hydrodynamic performance of the hybrid CRP pod propulsion system was investi-gated numerically using the RANS method combined w i t h SST li-a> turbulence model and m o v i n g mesh method. The pod resistance influence factor was introduced to represent the effect of wake field of CRP on the pod resistance. Results showed the pod resistance influence factor to be a function o f t h e Reynolds number and revolution ratio. Representative function expression can be obtained by regression analysis using multiplication of multinomial polynomials and linear function. The standard ITTC 1978 extrapo-lation procedure can be utilized to predict hydrodynamic performance of forward propeller because of the slightness of the influence of the pod unit on the f o r w a r d propeller. The thrust and torque coeffi-cient influence factors of aft propeller were introduced, and they were found to represent the effect of wake field of f o r w a r d propeller and blockage effect of the pod on the hydrodynamic performance o f aft propeller. It shows that thrust and torque coefficient influence factors are independent o f t h e Reynolds number and have a linear relationship w i t h the revolution ratio. On this basis, a method of estimating the hydrodynamic performance was proposed f o r f u l l scale propulsion system.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The h y b r i d CRP p o d p r o p u l s i o n s y s t e m is a n e w c o n t r a - r o t a t i n g p r o p u l s o r c o n s i s t i n g o f a f o r w a r d c o n v e n t i o n a l s h a f t p r o p e l l e r a n d a n a f t p o d d e d p r o p u l s o r . I n t h e b a c k g r o u n d o f "Green Ship", t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m has a b r i g h t f u t u r e d u e t o t h e h i g h p r o p u l s i v e e f f i c i e n c y , g o o d m a n e u v e r a b i l i t y , f l e x i b l e a r r a n g e m e n t , a n d l o w e x h a u s t e m i s s i o n r a t e . The h y b r i d CRP p o d p r o p u l s i o n s y s t e m has b e c o m e t h e f o c u s i n m a r i n e p r o p u l s i o n [ 1 - 8 ] . H o w e v e r , i t is n o t easy t o use i n p r a c t i c a l s i t u a t i o n d u e t o t h e lack o f a n y s a t i s f a c t o r y p r o c e d u r e f o r t h e p r e d i c t i o n o f h y d r o -d y n a m i c p e r f o r m a n c e at f u l l scale. The s t u d y o f t h e scale e f f e c t o f p r o p e l l e r ' s h y d r o d y n a m i c p e r f o r -m a n c e has b e c o -m e -m o r e a n d -m o r e i n t e n s i v e d u e t o t h e c o n t i n u o u s i n v e s t i g a t i o n t h a t has b e e n c o n d u c t e d o v e r t h e past several years, a n d s o m e c o r r e c t i o n p r o c e d u r e s h a v e b e e n p r o p o s e d . The m o s t r e p r e s e n t a t i v e m e t h o d is t h e s t a n d a r d ITTC 1978 e x t r a p o l a t i o n p r o c e d u r e [ 9 ] . I t uses t w o g l o b a l c o r r e c t i o n s , one f o r t h e t h r u s t c o e f f i c i e n t a n d t h e o t h e r f o r t h e t o r q u e c o e f f i c i e n t . These c o r r e c -t i o n s c o n s i d e r -t h e i n f l u e n c e o f -t h e R e y n o l d s n u m b e r , -t h e p r o f i l e t h i c l m e s s r a t i o , t h e p i t c h r a t i o , t h e blade's n u m b e r , a n d o t h e r f a c -t o r s . I n -t h i s w a y , -t h e s -t a n d a r d ITTC 1 9 7 8 e x -t r a p o l a -t i o n p r o c e d u r e c a n n o t e a s i l y be used t o c o n s i d e r t h e l o c a l flow c o n d i t i o n , so i t is

* Corresponding author. Tel.: +86 15807182543; fax: +86 02765461615. E-mail address: wzz200425@126.com (Z.-Z. Wang).

0141-1187/$ - see front matter ® 2015 Elsevier Ltd. All rights reserved. http://dx.doi.0rg/10.1016/j.apor.2015.10.006

n o t a p p r o p r i a t e f o r s o m e Idnds o f special p r o p e l l e r s , l i k e K a p p e l p r o p e l l e r o r CLT p r o p e l l e r .

The r a p i d d e v e l o p m e n t o f CFD has m a d e i t possible f o r t h e p r e d i c t i o n o f p r o p e l l e r s ' h y d r o d y n a m i c p e r f o r m a n c e at f u l l scale, a n d p r o v i d e s a n e w w a y t o s t u d y t h e scale e f f e c t o f p r o p e l l e r s . S t a n i e r [ 1 0 ] , Sanchez [ 1 1 ] , Li e t al. [ 1 2 ] , M u l l e r e t a l . [ 1 3 ] , a n d Krasilnil<ov et a l . [ 1 4 ] h a v e a n a l y z e d t h e scale e f f e c t o f p r o p e l l e r s ' h y d r o d y n a m i c p e r f o r m a n c e u s i n g t h e RANS m e t h o d , a n d t h e y find t h a t t h e viscous f o r c e is d e p e n d e n t o n Reynolds n u m b e r a n d has i n f l u e n c e s o n b o t h t h r u s t a n d t o r q u e . The p r o p e l l e r t h r u s t c o e f f i -c i e n t at f u l l s-cale is g r e a t e r t h a n at m o d e l s-cale, a n d t h i s d i f f e r e n -c e is a f f e c t e d b y p r o p e l l e r g e o m e t r y a n d l o a d i n g . Pressure f o r c e also has a p r o n o u n c e d scale e f f e c t . This c o n t r a d i c t s t h e c o n c l u s i o n d r a w n f r o m t r a d i t i o n a l a i r f o i l t e s t i n g w h i c h suggests t h a t t h e R e y n o l d s n u m b e r has l i t t l e e f f e c t o n t h e l i f t f o r c e c o e f f i c i e n t .

The scale e f f e c t o f p o d resistance is a m a i n p r o b l e m i n h y d r o -d y n a m i c p e r f o r m a n c e c o r r e c t i o n f o r f u l l scale p o -d -d e -d p r o p u l s o r s . The f o r c e a c t i n g o n t h e p o d h o u s i n g has v e r y d i f f e r e n t charac-t e r i s charac-t i c s f r o m charac-t h a charac-t u n d e r u n i f o r m flow c o n d i charac-t i o n due charac-t o charac-t h e flow a c c e l e r a t i o n , p r e s s u r e changes, a n d s w i r i i n g w a k e flow, w h i c h are c a u s e d b y t h e r o t a t i n g p r o p e l l e r . So far, C h i c h e r i n et a l . [ 1 5 ] a n d Park e t al. [ 1 6 ] h a v e i n v e s t i g a t e d t h e scale e f f e c t o f h y d r o d y n a m i c p e r f o r m a n c e o f p o d d e d p r o p u l s o r s n u m e r i c a l l y a n d e x p e r i m e n t a l l y a n d b o t h t e a m s h a v e d r a w n s o m e u s e f u l c o n c l u s i o n s . K r a s i l n i k o v et al. [ 1 7 ] have p r o p o s e d a f u l l scale p r e d i c t i o n m e t h o d f o r p o d -d e -d p r o p u l s o r s . The 2 5 t h ITTC Specialist C o m m i t t e e o n A z i m u t h i n g P o d d e d P r o p u l s i o n [ 1 8 ] has p r o p o s e d a n e x t r a p o l a t i o n m e t h o d f o r

(2)

Z.-Z. Wang et al./Applied Ocean Research 54 (2016) 26-38 27 Table 1 Pod parameters. Parameter Value Pod diameter/(mm) 90.9 Pod length/(mm) 278.65 Strut height/(mm) 209.1

Strut chord length/(mm) 145.46

Strut width/(mm) 45.35

Table 2

Parameters of forward and aft propellers.

Parameter Forward propeller Aft propeller

Diameter/(mm) 240 203.636

Propeller blade number 4 5

PO.7RID 1.1622 1.3027

Hub diameter ratio 0.227 0.216

Section camber and thickness NACA66mod/a = 0.8 NACA66mod/a = 0.8

Rotating direction Left Right

Table 3

Computational parameters of the hybrid CRP pod propulsion system at different scales.

k Hf (r/min) Re y Cell number

27.5 1200 1.146x10^ 150 3454994 16 600 1.693 X 150 5048756 8 420 4.742 X 10^^ 200 8797360 4 300 1.355x10' 250 17691716 2 210 3.793x10' 300 44677288 1 150 1.084 x 10^ 300 55038368 t h i s basis, a m e t h o d o f e s t i m a t i n g h y d r o d y n a m i c p e r f o r m a n c e o f p r o p u l s i o n s y s t e m at f u l l scale is here p r o p o s e d .

2. Numerical model

2.1. Govertiing equations

0

Fig. 1. Geometry ofthe hybrid CRP pod propulsion system.

The h y b r i d CRP p o d p r o p u l s i o n s y s t e m w a s a s s u m e d t o o p e r -ate u n d e r u n i f o r m f l o w c o n d i t i o n . The g o v e r n i n g e q u a t i o n s f o r t h e t u r b u l e n t f l o w f i e l d a r o u n d t h e p r o p u l s i o n s y s t e m w e r e t h e i n s t a n t a n e o u s c o n s e r v a t i o n o f mass ( c o n t i n u i t y e q u a t i o n ) a n d m o m e n t u m (Reynolds averaged Navier-Stol<es e q u a t i o n , RANS). These e q u a t i o n s can be expressed as f o l l o w s :

9. N

9 ,

dp 'dX: _9_ 2 dui „

9

' 9X; ^ 9Xj (1) (2) p o d d e d p r o p u l s o r . This m e t h o d s p l i t s t h e p o d u n i t i n t o the p o d d e d p r o p e l l e r a n d the p o d a n d t h e n c o r r e c t s b o t h o f t h e m . The s t a n d a r d ITTC 1978 e x t r a p o l a t i o n p r o c e d u r e is used f o r t h e c o r r e c t i o n f o r p o d d e d p r o p e l l e r , w h i l e t h e f o r m f a c t o r a p p r o a c h is used f o r t h e p o d h o u s i n g resistance. This m e t h o d is based o n e m p i r i c a l f o r m u l a a n d needs t o be v e r i f i e d b y m a n y p r o p e l l e r s at f u l l scale.

I n t h i s paper, h y d r o d y n a m i c p e r f o r m a n c e s o f a h y b r i d CRP p o d p r o p u l s i o n s y s t e m at d i f f e r e n t scales are c a l c u l a t e d u s i n g t h e RANS m e t h o d c o m b i n e d w i t h SST k - o ) t u r b u l e n c e m o d e l a n d m o v i n g m e s h m e t h o d . V a r i a t i o n s o f t h e l o c a l f l o w f i e l d a n d h y d r o d y n a m i c p e r f o r m a n c e w i t h R e y n o l d s n u m b e r are a n a l y z e d i n d e t a i l . O n

Here, a l l t h e v a r i a b l e s are t i m e - a v e r a g e d , u,, p, p, IXQJU ~pu\u'. are v e l o c i t y , f l u i d d e n s i t y , static pressure, f l u i d v i s c o s i t y , b o d y f o r c e p e r u n i t v o l u m e a n d Reynolds stress, r e s p e c t i v e l y . A n a d d i t i o n a l e q u a t i o n is n e e d e d i n o r d e r t o s o l v e t h e u n k n o w n R e y n o l d s stress. T u r b u l e n c e m o d e l is t h e c l o s u r e e q u a t i o n w h i c h c o m b i n e s t h e f l u c t u a t i n g a n d t i m e average. H e r e , SST iico t u r b u -lence m o d e l is selected. SST fc - w t u r b u l e n c e m o d e l w a s d e v e l o p e d b y M e n t e r [ 1 9 ] t o e f f e c t i v e l y b l e n d t h e r o b u s t a n d a c c u r a t e f o r m u -l a t i o n o f t h e s t a n d a r d fc - o) m o d e -l i n t h e n e a r - w a -l -l r e g i o n w i t h t h e f r e e - s t r e a m i n d e p e n d e n c e o f t h e s t a n d a r d fc-e m o d e l i n t h e f a r f i e l d .

(3)

23 Z.-Z. Wang et al./Applied Ocean Research 54 (2016) 26-38

(a) Forwai-d propeller

.-i-ijrr-rt-i-i-fi

(c) The pod

Fig. 3. Comparison of grid cut plane between model scale and full scale.

The t u r b u l e n c e k i n e t i c e n e r g y k a n d t h e s p e c i f i c d i s s i p a t i o n r a t e CO w e r e o b t a i n e d f r o m t h e f o l l o w i n g t r a n s p o r t e q u a t i o n s : 9"j o ,

3

d X j [ U.L + Okll) dxj ( 3 ) an | ( / ) c o ) + | - ( p . . u , ) ft) dUj o l d + 2 ( 1 - F , ) p 1 k "'J dx dk dco ill + o - „ / i ) dXj « f f i u 2 dXj dXj ( 4 ) w h e r e fc = 0 . 4 1 , Q' = F i a , + ( 1 - F i ) q ; 2 , i 3 = F i f t + ( 1 - F , cr;( = F i o - k i + ( l - F i ) c r f c 2 . ffa =FiCTa,!+(1 - F , ) c r f t , 2 , Fi = t a n h ( a r g 4 ) , o r g = m i n [ m a x ( v T < / 0 . 0 9 f t ) y , 500ii/pcoy^), {4k/iaaj2Dt>y'^))]. Dt = maxl[2pi\/a^2(^){dk/dxj){dca/dxj)), 1 0 - ' ° ] . cr^t = 1-176, o - „ i = 2 , ^ 1 = 0 . 0 7 5 , a : i = 0 . 3 1 , ;8* = 0.09, 0:2 = 0.4404, a „ 2 = 1.0, 0-0,2 = 1.168, a n d P2 = 0.0828. 2.2. Geometry T h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m w a s d e s i g n e d f o r a 4 0 0 0 T E U c o n t a i n e r s h i p b y N a v a l U n i v e r s i t y o f E n g i n e e r i n g . I t c o n -sists o f c o n v e n t i o n a l s h a f t p r o p e l l e r a n d a p o d d e d p r o p u l s o r . The p o d i n c l u d e s a p o d h o u s i n g a n d a s t r u t . The m a i n p a r a m e t e r s o f t h e p o d are l i s t e d i n Table 1 ; m a i n p a r a m e t e r s o f t h e f o r w a r d a n d a f t p r o p e l l e r s are l i s t e d i n Table 2, a n d t h e g e o m e t r y o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m is s h o w n i n Fig. 1. T h e a x i a l s p a c i n g d i s t a n c e b e t w e e n f o r w a r d a n d a f t p r o p e l l e r ' s d i s k is 0 . 4 5 4 5 D f , w h e r e Df is t h e d i a m e t e r o f t h e f o r w a r d p r o p e l l e r a n d H/i/np is the d e s i g n e d r e v o l u t i o n r a t i o o f t h e a f t p r o p e l l e r a n d f o r w a r d p r o p e l l e r , w h i c h is here 1.104.

2.3. Grid systeirt and boundary condition

The c o m p u t a t i o n a l d o m a i n is s h o w n i n Fig. 2 . I t is a c u b o i d o f l e n g t h 15 Lpod w i t h t h e i n l e t b o u n d a r y l o c a t e d 5 Lpoj u p s t r e a m o f a f t p r o p e l l e r ' s dislc, t h e o u t l e t b o u n d a r y 10 Lpod d o w n s t r e a m o f a f t

(4)

Z.-Z, Wangetal./Applied Ocean Research 54 (2016)26-38 29

Fig. 4. Pod dynamometer system, HlOl.

p r o p e l l e r ' s disk, a n d t h e t o p , b o t t o m , r i g h t a n d l e f t b o u n d a r i e s are a l l 5 Lpod a w a y f r o m t h e axis o f p o d bossing, a n d Lpod is t h e l e n g t h o f t h e p o d . The t w o r o t a t i n g d o m a i n s e n c l o s i n g t h e f o r w a r d a n d a f t p r o p e l l e r s are t w o c y l i n d e r s w i t h t h e d i a m e t e r o f 1.2Df. The m u l t i -b l o c k s t r u c t u r e d m e s h w a s g e n e r a t e d t o d i s c r e t i z e t h e f l o w d o m a i n . The g r i d s , o f H - 0 t o p o l o g y w e r e r e f i n e d near t h e p r o p e l l e r blade, h u b a n d p o d . G r i d t o p o l o g i e s at d i f f e r e n t scales w e r e f o u n d t o be e x a c t l y t h e same, except i n t h e a b s o l u t e n e a r - w a l l s p a c i n g w h e r e t h e w a l l f u n c t i o n can be used. The g r i d s w e r e also r e f i n e d i n t h r e e d i r e c t i o n s a c c o r d i n g t o t h e increase o f scale, e n s u r i n g t h a t aspect r a t i o s o f n u m e r i c a l cells w o u l d be s m a l l e r t h a n 5 0 o n p r o p e l l e r s a n d t h e p o d . N u m e r i c a l s i m u l a t i o n p a r a m e t e r s i n d i f f e r e n t scales are l i s t e d i n Table 3, w h e r e Re is t h e R e y n o l d s n u m b e r , Re = ( n f 0 ^ ) / ^ , Up is t h e r e v o l u t i o n o f t h e f o r w a r d p r o p e l l e r , D f is t h e d i a m e t e r o f t h e f o r w a r d p r o p e l l e r , v is t h e k i n e m a t i c v i s c o s i t y , y * is t h e n o n d i m e n s i o n a l s p a c i n g near t h e w a l l , a n d X is t h e scale f a c t o r . A c o m p a r i s o n o f t h e g r i d c u t p l a n e at m o d e l scale a n d f u l l scale is s h o w n i n Fig. 3. The m e d i u m w a s set as w a t e r w i t h a d e n s i t y o f 998.2 l < g m - 3 a n d f l u i d v i s c o s i t y o f 0 . 0 0 1 0 0 3 k g m " ' s - ' . T h e i n l e t b o u n d a r y w a s set as t h e v e l o c i t y i n l e t . The t u r b u l e n t i n t e n s i t y w a s 1%, a n d t h e t u r b u l e n t v i s c o s i t y r a t i o is 1. T h e v e l o c i t y v a r i e d a c c o r d i n g t o t h e a d v a n c e v e l o c i t y c o e f f i c i e n t , t h e o u t l e t b o u n d a r y was set as o u t -flow, a n d t h e f a r f i e l d b o u n d a r y w a s set as s y m m e t r y . The p r o p e l l e r b l a d e , h u b , a n d t h e p o d w e r e set as t h e n o - s l i p w a l l . The g o v e r n i n g e q u a t i o n s a n d t u r b u l e n c e m o d e l w e r e d i s c r e t i z e d u s i n g t h e finite v o l u m e m e t h o d w i t h a second o r d e r u p w i n d s p a t i a l d i s c r e t i z a t i o n a n d t h e p r e s s u r e - v e l o c i t y c o u p l i n g w a s d e t e r m i n e d u s i n g SIMPLEC

Fig. 6. Open water test of the hybrid CRP pod propulsion system.

m e t h o d . The t i m e step size is c o r r e s p o n d e d t o t h e r o t a t i o n a l angle 1° f o r t h e f o r w a r d p r o p e l l e r . N u m e r i c a l s i m u l a r i o n s w e r e r e a l i z e d u s i n g ANSYS FLUENT14.0 code, a n d f u l l scale c o m p u t a t i o n w a s p e r -f o r m e d u s i n g p a r a l l e l p r o c e s s i n g i n 64 cores ( I n t e l X e o n E5-2670, 2.6 G H z ) o f D a w n i n g TC4600 h i g h - p e r f o r m a n c e c o m p u t e r .

3. Results and discussion

3.1. Definitions of liydrodynamic performance of tfie liybrid CRP pod propulsion system

D e f i n i t i o n s o f advance c o e f f i c i e n t J, t h r u s t c o e f f i c i e n t o f t h e f o r -w a r d p r o p e l l e r , t o r q u e c o e f f i c i e n t o f t h e f o r -w a r d p r o p e l l e r t h r u s t c o e f f i c i e n t o f t h e a f t p r o p e l l e r KJA , t o r q u e c o e f f i c i e n t o f t h e a f t p r o p e l l e r t h r u s t c o e f f i c i e n t o f t h e p o d u n i t Kju, P o d resistance c o e f f i c i e n t % p o d . t h r u s t c o e f f i c i e n t o f t h e h y b r i d CRP p o d p r o p u l -s i o n -s y -s t e m Kj, t o r q u e c o e f f i c i e n t o f t h e h y b r i d CRP p o d p r o p u l -s i o n s y s t e m a n d o p e n e f f i c i e n c y o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m )/o are as f o l l o w s : !<TA = VA npDf' TA

I<T = Tf + TA+ Rpod

pnjDj QA KTU OF pnjDj TA + Rpod •pod pnpl {TF + TU)VA IniupOF + UAQA) (5)

h e r e p, VA, up, n^, Dp, D^, Qf, Q4, Tf, TA a n d Rpod r e p r e s e n t t h e d e n -s i t y o f t h e fluid, i n f l o w v e l o c i t y , r e v o l u t i o n o f t h e f o r w a r d p r o p e l l e r , r e v o l u t i o n o f t h e a f t p r o p e l l e r , d i a m e t e r o f t h e f o r w a r d p r o p e l l e r , d i a m e t e r o f t h e a f t p r o p e l l e r , t o r q u e o f t h e f o r w a r d p r o p e l l e r , t o r q u e o f t h e a f t p r o p e l l e r , t h r u s t o f t h e f o r w a r d p r o p e l l e r , t h r u s t o f t h e a f t p r o p e l l e r , a n d resistance o f t h e p o d i n p r o p u l s i o n s y s t e m , r e s p e c t i v e l y .

(5)

30 Z,-Z. Wang et al. /Applied Ocean Research 54 (2016) 26-38

•• • -«„(RANS) 0.65 r

J

(c) The hybrid CRP pod propulsion system

Fig. 7. Comparisons of hydrodynamic performances of tlie hybrid CRP pod propulsion system between numerical results and experimental data at n/i/nf = 1.104.

Table 4

Calculated results for three grids at n.4/iiF = 1.104.

Grid KTT 1 0 % KTA Km 1 0 % A = 2 7 . 5 Coarse 0 . 1 8 1 5 0 . 3 4 3 7 0 . 2 0 9 9 0 . 1 8 1 6 0 . 4 8 6 4 Medium 0 . 1 8 2 2 0 . 3 4 2 8 0 . 2 1 0 7 0 . 1 8 2 8 0 . 4 8 5 5 Fine 0 . 1 8 2 6 0 . 3 4 2 2 0 . 2 1 1 2 0 . 1 8 3 6 0 . 4 8 4 7 A = 8 Coarse 0 . 1 8 6 8 0 . 3 4 1 4 0 . 2 1 0 8 0.18S5 0 . 4 6 7 7 IWedium 0 . 1 8 7 5 0 . 3 4 0 6 0 . 2 1 1 6 0 . 1 8 9 6 0 . 4 6 6 8 Fine 0 . 1 8 7 8 0 . 3 4 0 1 0 . 2 1 2 0 0 . 1 9 0 4 0 . 4 6 6 1 X = 2 Coarse 0 . 1 9 1 9 0 . 3 4 0 6 0 . 2 1 4 7 0 . 1 9 6 4 0 . 4 6 1 4 Medium 0 . 1 9 2 5 0 . 3 3 9 9 0 . 2 1 5 4 0 . 1 9 7 4 0 . 4 6 0 6 Fine 0 . 1 9 2 8 0 . 3 3 9 4 0 . 2 1 5 8 0 . 1 9 8 1 0 . 4 6 0 0 Table 5

Parametets of the uncertainty verification.

(RG) (Pc) 27.5 /CTT 0 . 5 7 1 4 1.5347 0 . 0 0 3 4 IO/CQF 0 . 6 6 6 7 1.1120 0 . 0 0 2 5 I<TA 0 . 6 2 5 0 1.2889 0.0033 Km 0 . 6 6 6 7 1.1120 0 . 0 0 3 4 0 . 7 8 9 5 0.6483 0.0033 S KjT 0 . 5 1 4 7 1 . 8 2 1 4 0.0035 WI<Qf 0 . 6 8 7 5 1.0276 0 . 0 0 1 5 l<TA 0 . 5 7 6 9 1.5085 0 . 0 0 3 8 Kw 0 . 6 9 0 9 1.0140 0 . 0 0 1 9 IOKQA 0 . 7 9 5 5 0 . 6 2 7 6 0 . 0 0 3 2 2 KTF 0 . 5 0 0 0 1.9009 0 . 0 0 3 0 i o ; % 0 . 6 6 2 2 1.1305 0 . 0 0 2 2 KTA 0 . 5 4 9 3 1.6430 0 . 0 0 3 6 Kw 0 . 6 9 6 1 0 . 9 9 3 6 0 . 0 0 1 6 0 . 8 0 7 7 0 . 5 8 5 7 0 . 0 0 3 2 Table 6

Hydrodynamic performance of the hybrid CRP pod propulsion system at n//nf = 1.0546. I Re KTF 1 0 % KTA Km 1 0 % KT-pod 27.5 1.146x10^ 0.1840 0.3457 0.1842 0.1564 0.4466 0.0277 16 1.693x10^ 0.1846 0.3452 0.1844 0.1586 0.4384 0.0258 8 4.742 X 10^ 0.1886 0.3440 0.1852 0.1633 0.4272 0.0219 4 1.355x10' 0.1915 0.3436 0.1868 0.1678 0.4231 0.0190 2 3.793 x 10' 0.1932 0.3433 0.1890 0.1718 0.4208 0.0172 1 1.084 xlO^ 0.1952 0.3431 0.1898 0.1741 0.4190 0.0157 Table 7

Hydrodynamic performance of the hybrid CRP pod propulsion system at n^/np» 1.075. k Re KTF 1 0 % KTA Km 1 0 % 27.5 1.146 X 10" 0.1829 0.3449 0.1951 0.1672 0.4636 0.0280 16 1.693x10" 0.1838 0.3442 0.1954 0.1696 0.4554 0.0259 8 4.742 X 10" 0.1878 0.3430 0.1962 0.1741 0.4445 0.0221 4 1.355x10' 0.1910 0.3425 0.1974 0.1781 0.4389 0.0194 2 3.793x10' 0.1926 0.3423 0.1999 0.1823 0.4375 0.0176 1 1.084 xlO^ 0.1944 0.3420 0.2009 0.1847 0.4368 0.0162 Table 8

Hydrodynamic performance of the hybrid CRP pod propulsion system at n/i/nF = 1.104. A Re KTF 1 0 % KTA Km 1 0 % KT-pod 27.5 1.146 X 10" 0.1815 0.3437 0.2099 0.1816 0.4864 0.0283 16 1.693x10" 0.1827 0.3429 0.2101 0.1841 0.4784 0.0260 8 4.742 X 10" 0.1868 0.3414 0.2108 0.1885 0.4677 0.0223 4 1.355x10' 0.1899 0.3410 0.2125 0.1926 0.4631 0.0199 2 3.793 X 10' 0.1919 0.3406 0.2147 0.1964 0.4614 0.0183 1 1.084 X 10* 0.1934 0.3404 0.2154 0.1985 0.4602 0.0169

(6)

Z.-Z. Wang et al./Applied Ocean Researcli 54 (2016) 26-38 31

Table 9

Hydrodynamic performance of the hybrid CRP pod propulsion system at n/i/nf = 1.125. Re 10/% K „ Kw 1 0 % Kj-pod 27.5 1.146x10" 0.1802 0.3429 0.2198 0.1913 0.5021 0.0285 16 1.693x10" 0.1819 0.3420 0.2202 0.1940 0.4946 0.0261 8 4.742x10" 0.1860 0.3404 0.2213 0.1988 0.4836 0.0224 4 1.355x 10' 0.1889 0.3396 0.2231 0.2029 0.4797 0.0202 2 3.793x10' 0.1914 0.3395 0.2250 0.2064 0.4778 0.0187 1 1.084 xlO* 0.1926 0.3393 0.2261 0.2087 0.4763 0.0174 Table 10

Hydrodynamic performance ofthe hybrid CRP pod propulsion system at nA/ni:=1.15.

Re KTT 1 0 % KTA Kw 1 0 % KT-pad 27.5 1.146 xlQi^ 0.1788 0.3418 0.2320 0.2032 0.5198 0.0288 16 1.693x10" 0.1809 0.3411 0.2323 0.2060 0.5125 0.0263 8 4.742x10" 0.1853 0.3395 0.2331 0.2106 0.5018 0.0226 4 1.355x 10' 0.1891 0.3390 0.2348 0.2142 0.4979 0.0206 2 3.793x 10' 0.1908 0.3383 0.2370 0.2178 0.4963 0.0192 1 1.084 xlO» 0.1919 0.3381 0.2380 0.2201 0.4944 0.0179

3.2. Comparisons of numerical results a n d experimental data

A n e x p e r i m e n t a l i n v e s t i g a t i o n w a s p e r f o r m e d at m o d e l scale ( 1 = 2 7 . 5 ) t o v a l i d a t e n u m e r i c a l results. The e x p e r i m e n t w a s c o n d u c t e d i n t h e c a v i t a t i o n t u n n e l at N a v a l U n i v e r s i t y o f E n g i -n e e r i -n g . T h e w o r k i -n g s e c t i o -n w a s a r e c t a -n g u l a r c r o s s - s e c t i o -n o f 0.6 m X 0.6 m X 2.6 m . T h e d i f f e r e n c e i n h e i g h t b e t w e e n t h e c e n t e r l i n e s o f u p p e r a n d l o w e r h o r i z o n t a l s e g m e n t w a s a b o u t 10 m . The d i s t a n c e b e t w e e n t h e c e n t e r l i n e s o f t w o v e r t i c a l seg-m e n t s w a s 18 seg-m . T h e p o d d y n a seg-m o seg-m e t e r s y s t e seg-m , H l O l , s h o w n i n Fig. 4, is a n e w l y d e v e l o p e d a d v a n c e d t e s t e q u i p m e n t s p e c i f i c a l l y d e s i g n e d b y Cussons C o m p a n y f o r h y d r o d y n a m i c p e r f o r m a n c e test o f p o d d e d p r o p u l s o r s . I t c a n m e a s u r e p r o p e l l e r ' s t h r u s t , t o r q u e , s i n g l e - c o m p o n e n t f o r c e o f t h e p o d u n i t u n d e r s t e e r i n g c o n d i t i o n s , and p o d resistance i n t h e flow d i r e c t i o n . T h e l o n g axis p r o p e l l e r d y n a m o m e t e r , s h o w n i n Fig. 5, is a s e l f - d e v e l o p e d test e q u i p m e n t d e s i g n e d b y H u a z h o n g U n i v e r s i t y o f Science a n d T e c h n o l o g y f o r o p e n w a t e r test o f t r a d i t i o n a l p r o p e l l e r s , w h i c h c a n m e a s u r e the p r o p e l l e r ' s t h r u s t a n d t o r q u e .

The f o r w a r d p r o p e l l e r is i n s t a l l e d i n reverse at t h e l o n g axis p r o -p e l l e r d y n a m o m e t e r ; t h e -p o d a n d a f t -p r o -p e l l e r are i n s t a l l e d o n t h e p o d d y n a m o m e t e r s y s t e m . The a r r a n g e m e n t o f o p e n w a t e r test is s h o w n i n Fig. 6. D u r i n g the test, t h e t w o d y n a m o m e t e r s w e r e a d j u s t e d u n t i l the r e v o l u t i o n r a t i o r e a c h e d 1.104. The tests w e r e r e p e a t e d t h r e e t i m e s , a n d t h e m e a n v a l u e s o f t e s t results served as t h e o p e n w a t e r p e r f o r m a n c e o f t h e h y b r i d CRP p o d p r o p u l s i o n . Reynolds n u m b e r s at r/R = 0.7 o f t w o p r o p e l l e r s w e r e o v e r 3 x 10^.

C o m p a r i s o n s o f h y d r o d y n a m i c p e r f o r m a n c e s o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m at n/i/nF= 1.104 b e t w e e n n u m e r i c a l results a n d e x p e r i m e n t a l data are s h o w n i n Fig. 7. I n t h e figure, s o l i d p o i n t s are e x p e r i m e n t a l data, a n d o p e n p o i n t s are n u m e r i c a l r e s u l t s .

It can be seen f r o m Fig. 7 t h a t n u m e r i c a l r e s u l t s w e r e closely c o n s i s t e n t w i t h e x p e r i m e n t a l data a n d t h e o v e r a l l t r e n d w a s consis-t e n consis-t . For f o r w a r d p r o p e l l e r , consis-t h e m a x i m u m e r r o r o f consis-t h r u s consis-t a n d consis-t o r q u e c o e f f i c i e n t s w e r e b e l o w 2.5%. For t h e p o d u n i t , t h e e r r o r s w e r e r e l -a t i v e l y l-arge, especi-ally i n t h e -a d v -a n c e c o e f f i c i e n t s f -a r f r o m d e s i g n c o n d i t i o n , the m a x i m u m e r r o r o f t h r u s t a n d t o r q u e c o e f f i c i e n t s w e r e b e l o w 5%. T h e g r i d t o p o l o g y a n d n u m e r i c a l m e t h o d w e r e f o u n d t o be a p p r o p r i a t e f o r s t u d y o f t h e scale e f f e c t o f h y d r o -d y n a m i c p e r f o r m a n c e s o f t h e h y b r i -d CRP p o -d p r o p u l s i o n s y s t e m .

3.3. Uncertainty analysis and numerical results

U n c e r t a i n t y analysis is u s e d f o r t h r u s t a n d t o r q u e c o e f f i c i e n t s at scale f a c t o r X = 27.5, 8, 2. A c c o r d i n g t o f a c t o r s o f s a f e t y m e t h o d f o r

R i c h a r d e x t r a p o l a t i o n , X i n g et al. [ 2 0 ] , t h r e e sets o f c o m p u t a t i o n a l g r i d s (i.e., fine, m e d i u m , a n d coarse g r i d s ) are b u i l t f o r t h e n u m e r i c a l s i m u l a t i o n . The r e f i n e m e n t r a t i o , r, w a s 1.2 i n each d i r e c t i o n o f t h e c o o r d i n a t e . Table 4 s h o w s t h e c a l c u l a t e d t h r u s t a n d t o r q u e c o e f f i c i e n t s o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m f o r t h r e e g r i d s , a n d t h e n u m e r -ical u n c e r t a i n t y analysis p r o c e d u r e is i l l u s t r a t e d b e l o w . The v a l u e s c a l c u l a t e d b y coarse g r i d s , m e d i u m g r i d s a n d fine g r i d s are n o t e d as Sec, SCM. a n d Sep, r e s p e c t i v e l y . T h e g r i d changes e f o r c o a r s e - m e d i u m a n d m e d i u m - f i n e g r i d s are d e f i n e d as f o l l o w s : SGMC = SCM - Sec ecfjw = ScF - SCM {Rc) The g r i d c o n v e r g e r a t i o {RQ) w a s c a l c u l a t e d as f o l l o w s : \£GFM\ ISCMcl (6) (7) (8)

The e s t i m a t e d o r d e r o f accuracy {PC)RE w a s c a l c u l a t e d as f o l -l o w s : {Pc) RE ln(|£cMcl/|gCFMl) I n ( r ) (9) The d i s t a n c e m e t r i c to t h e a s y m p t o t i c r a n g e (Pc> w a s d e f i n e d as f o l l o w s : (PG) {PG)R (Pc)t: ( 1 0 ) h e r e (Pc)t;i w a s t h e t h e o r e t i c a l o r d e r o f accuracy. The g r i d u n c e r t a i n t y (Uc) w a s c a l c u l a t e d as f o l l o w s : m = ( 2 . 4 5 - 0 . 8 5 ( P c ) ) ( 1 6 . 4 ( P G > - 1 4 . 8 ) SCFM r(Pc)RE - 1 Êcfivr rCcliïE _ 1 O < {Pc) < 1 {Pc) > 1 (11) Table 5 s u m m a r i z e s t h e n u m e r i c a l u n c e r t a i n t y assessment r e s u l t s a b o u t t h r u s t and t o r q u e c o e f f i c i e n t s o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m at scale f a c t o r A = 2 7 . 5 , 8 , 2 . O v e r a l l , t h e s o l u t i o n s s h o w e d g o o d m e s h c o n v e r g e n c e b e h a v i o r w i t h v e r y s m a l l e r r o r s . G r i d s t u d y i n d i c a t e s t h a t Kj a n d /Cq v a l u e s are g e n e r a l l y n o t t o o s e n s i t i v e f o r g r i d r e f i n e m e n t , so t h e coarse g r i d w a s u s e d i n t h e f o l -l o w i n g n u m e r i c a -l s i m u -l a t i o n s . H y d r o d y n a m i c p e r f o r m a n c e s o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m i n d i f f e r e n t scales a n d r e v o l u t i o n r a t i o s are l i s t e d f r o m Tables 6 - 1 0 . As s h o w n i n Tables 6 1 0 , v a r i a t i o n o f h y d r o d y n a m i c p e r f o r -m a n c e o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e -m w a s s i -m i l a r f o r all r e v o l u t i o n r a t i o s , a n d t h e t h r u s t c o e f f i c i e n t s o f t h e f o r w a r d a n d a f t p r o p e l l e r s i n c r e a s e d as t h e Reynolds n u m b e r i n c r e a s e d , b u t t o r q u e c o e f f i c i e n t s decreased as t h e R e y n o l d s n u m b e r increased, t h e y w e r e c o n s i s t e n t w i t h t r a d i d o n a l s h a f t p r o p e l l e r s . A t t h e same time, t h e p o d resistance c o e f f i c i e n t decreased a n d t h r u s t c o e f f i c i e n t o f t h e p o d u n i t i n c r e a s e d . T h e t h r u s t c o e f f i c i e n t o f t h e p o d u n i t at f u l l scale w a s 9.32% h i g h e r t h a n t h a t a t m o d e l scale, n^ln^ = 1.0546. W h e n r e v o l u t i o n r a t i o is 1.104, c o m p a r i s o n s o f n o n d i m e n -s i o n a l a x i a l v e l o c i t y c o n t o u r -s at xlLpod =-0.2S947, y/Ipod = 0, a n d z/ipod = 0-5 b e t w e e n m o d e l scale (A = 2 7 . 5 ) a n d f u l l scale are s h o w n i n Figs. 8 - 1 0 , r e s p e c t i v e l y .

As s h o w n i n Figs. 8 - 1 0 , t h e b o u n d a r y l a y e r w a s t h i c k e r at m o d e l scale, e s p e c i a l l y i n t h e rear o f t h e s t r u t . The l o c a l flow field a r o u n d t h e p o d at f u l l scale w a s v e r y d i f f e r e n t f r o m t h a t a t m o d e l scale, e s p e c i a l l y i n t h e rear o f t h e s t r u t a n d p o d b o s s i n g , t h e flow v e l o c i t y a r o u n d t h e p o d at f u l l scale w a s r e l a t i v e l y h i g h e r t h a n t h a t at m o d e l scale, a n d t h e area o f h i g h v e l o c i t y w a s l a r g e r .

C o m p a r i s o n s o f pressure c o e f f i c i e n t s o f f o r w a r d a n d a f t p r o p e l l e r s b e t w e e n m o d e l scale a n d f u l l scale are s h o w n i n

(7)

32 Z.-Z. Wang et ai/Applied Ocean Research 54 (2016) 26-38

Fig. 8. Nondimensional axial velocity contours on the plane x/Lp„d = -0.2895.

Fig. 9. Nondimensional axial velocity contouts on the plane y/j:,,^ = 0.

Fig. 10. Nondimensional axial velocity contours on the plane z/Lp„d = 0.5.

Figs. 11 a n d 12. O n t h e p r e s s u r e side, t h e m a g n i t u d e a n d area o f pos-i t pos-i v e h pos-i g h pressure w e r e b o t h greater at f u l l scale, a n d o n t h e s u c t pos-i o n side, t h e m a g n i t u d e a n d area o f n e g a t i v e h i g h pressure w e r e also greater at f u l l scale. This p h e n o m e n o n p r o d u c e d t h e h i g h e r t h r u s t c o e f f i c i e n t at f u l l scale.

3.4. Scale effect ofthe pod resistance

The 2 5 t h ITTC Specialist C o m m i t t e e o n A z i m u t h i n g Podded P r o p u l s i o n [ 1 8 ] p o i n t e d o u t t h a t accurate p r e d i c t i o n o f p o d resis-tance at f u l l scale w a s t h e base o f h y d r o d y n a m i c p e r f o r m a n c e

(8)

Z-Z. Wang etal. /Applied Ocean Research 54 (2016) 26-38 33 2,S7 1.10 0.64 -0 32 -1.18 •2.04 •£S0 •377 .4.33 -S.49 .6.35 IJ

(a) Pressure side at model scale (b) Pressure side at full scale

Con;ai(t 1 3.13 2.27 1.40 0.54 -0.32 -3.77 -4.S3 -5.49 .6.35

(c) Suction side at model scale (d) Suction side at full scale

Fig. 11. Pressure coefficient distribution of forward propeller. p r e d i c t i o n f o r f u l l scale p o d d e d p r o p u l s o r . H o w e v e r , i t is d i f f i c u l t

t o p r e d i c t p o d resistance a t f u l l scale because o f t h e c o m p l i c a t e d f l o w f i l e d caused b y r o t a t i n g p r o p e l l e r .

I n t h i s paper, t h e d i a m e t e r a n d r e v o l u t i o n o f t h e a f t p r o p e l l e r u n d e r design r e v o l u t i o n r a t i o c o n d i t i o n are used t o n o n d i m e n s i o n -alize t h e resistance c o e f f i c i e n t o f t h e single p o d w i t h o u t p r o p e l l e r u n d e r u n i f o r m i n f l o w c o n d i t i o n . TO-pod Ro (12) h e r e RQ is t h e resistance o f t h e s i n g l e p o d w i t h o u t p r o p e l l e r u n d e r u n i f o r m i n f l o w c o n d i t i o n . I n t r o d u c i n g t h e p o d resistance i n f l u e n c e f a c t o r , i t is d e f i n e d as E q . ( 1 3 ) . T-pod l^TO-pod (13) So t h e p o d resistance i n f l u e n c e f a c t o r , y , represents e f f e c t o f w a k e field o f f o r w a r d a n d a f t p r o p e l l e r s o n t h e p o d drag. The p o d resistance i n f l u e n c e factors, y , at d i f f e r e n t scales a n d r e v o l u t i o n r a t i o s are l i s t e d i n Table 1 1 .

V a r i a t i o n o f t h e p o d r e s i s t a n c e i n f l u e n c e f a c t o r w i t h t h e Reynolds n u m b e r is s h o w n i n Fig. 13, a n d v a r i a t i o n w i t h t h e r e v o -l u t i o n r a t i o is s h o w n i n Fig. 14.

As s h o w n i n Fig. 13, t h e p o d resistance i n f l u e n c e f a c t o r decreased as t h e Reynolds n u m b e r increased. This i n d i c a t e d a n o n l i n e a r r e l a t i o n s h i p a n d t h e curve's slope decreased as w e l l . The p o d resistance i n f l u e n c e f a c t o r increased as the r e v o l u t i o n

r a t i o increased. T h i s i n d i c a t e d a l i n e a r d e p e n d e n c e w i t h r e v o l u t i o n r a t i o . T h i s m e a n t t h a t t h e p o d resistance i n f l u e n c e f a c t o r c h a n g e d c o h e r e n t i y n o t o n l y w i t h t h e Reynolds n u m b e r b u t also w i t h t h e r e v o l u t i o n r a t i o . As s h o w n i n Fig. 14, v a r i a t i o n is s i m i l a r i n d i f f e r e n t Reynolds n u m b e r s . O n t h i s basis, t h e p o d resistance i n f l u e n c e f a c t o r w a s a s s u m e d t o be t h e m u l t i p l i c a t i o n o f Reynolds n u m b e r f u n c t i o n a n d r e v o l u t i o n r a t i o f u n c t i o n , a n d the t w o f u n c t i o n s w e r e i n d e p e n d e n t . The f u n c t i o n is g i v e n b e l o w . (14) I n o r d e r t o regress t h e e x p r e s s i o n o f Reynolds n u m b e r f u n c t i o n , t h e m e a n v a l u e o f t h e p o d resistance i n f l u e n c e f a c t o r s , ymean< m u s t be c a l c u l a t e d at a l l possible r e v o l u t i o n r a t i o s . The v a r i a t i o n o f ymean w i t h Reynolds n u m b e r is s h o w n i n Fig. 15. Here, t h e o p e n p o i n t is c u r v e fit data.

T h e cubic p o l y n o m i a l f u n c t i o n w a s u s e d f o r t h e r e g r e s s i o n o f me).

Kmeon = ao + a i l o g i o ( R e ) - f C 2 ( l o g i o ( R e ) ) ^ - h a 3 ( l o g , o ( R e ) ) ^ (15) here ao, a\, 02, a n d 03 are t h e u n d e t e r m i n e d c o e f f i c i e n t s .

The w e i g h e d least square m e t h o d w a s u s e d t o e s t i m a t e t h e u n d e t e r m i n e d c o e f f i c i e n t , as s h o w n i n Eq. (16):

Ymean = 7 4 . 7 7 0 6 - 27.71771og,o(Re) + 3 . 5 7 0 3 ( l o g i o ( i ? e ) ) '

(9)

34 Z.-Z Wang et al I Applied Ocean Researcli 54 (20t6) 26-38 . 1 6.57 4.66 4.14 3 4 3 2.71 2.00 1 28 0 57 •0,15 -0,88 1,53 2.29 ,301 3,72

(a) Pressure side at model scale

(b) Pressure side at full scale

pressure coefficieni Conlour 1 5,57 ,1E-: <! •,! 3,-.3 371 2 C J 1 •<•! Oil ^ ;5 or,6 ,58 - 2 J 9 -3.01 -3,72

(c) Suction side at model scale

(d) Suction side at full scale

Fig. 12. Pressure coefficient distribution of aft propeller.

Table 11

The pod resistance influence factor in different scales and revolution ratios.

A = 27.5 X = 16 X = 8 k = 4 A = 2 X = 1 1.0546 3.299 3.066 2.607 2.262 2.044 1.873 1.075 3.331 3.079 2.625 2.303 2.099 1.928 1.104 3.368 3.097 2.654 2.368 2.173 2.009 1.125 3.397 3.111 2.671 2.407 2.221 2.067 1.15 3.428 3.127 2.689 2.448 2.284 2.130 The r e v o l u t i o n r a t i o f u n c t i o n / ( n / i / n F ) c a n be o b t a i n e d b y d i v i d -i n g f u n c t -i o n ( 1 4 ) b y ymean, v a r -i a t -i o n o f yjymean w -i t h r e v o l u t -i o n r a t -i o is s h o w n i n Fig. 16. Here, t h e o p e n p o i n t is c u r v e f i t data.

Linear f u n c t i o n c a n b e used i n t h e r e g r e s s i o n a n d t h e w e i g h e d least square m e t h o d w a s also used t o e s t i m a t e t h e u n d e t e r m i n e d c o e f f i c i e n t . The r e v o l u t i o n r a t i o f u n c t i o n is g i v e n b e l o w : (17) ^ i - = 0 . 7 1 3 8 2 i i - f 0 . 2 1 3 6 Ymean The p o d resistance i n f l u e n c e f a c t o r is t h e m u l t i p l i c a t i o n o f f u n c -t i o n ( 1 6 ) a n d f u n c -t i o n ( 1 7 ) . I-t is g i v e n b e l o w :

+ = ƒ ( « . , • /

( I )

f{Re) = 7 4 . 7 7 0 6 - 27.71771ogio(Re) + 3 . 5 7 0 3 ( l o g i o ( R e ) ) ^ ( i g ) - 0 . 1 5 5 3 ( l o g , o ( i ^ e ) ) ^ ƒ f ü d " ) = 0 . 7 1 3 8 ^ ^ + 0 . 2 1 3 6 3.6 3.4 Ï.2 3.0 2,8 2.6 2.4 2.2 2.0 1.8 - ^ i y n j , = 1 . 0 5 4 6 n^/ny=1.075 - ^ n ^ / i v = 1 . 1 0 4 ~ ^ n / i j , = 1 . 1 2 5 6.0 6.5 7.0 log,„(Re) 7,5 8,0

Fi". 13. Variation of the pod resistance influence factor with Reynolds number.

Errors o f t h e p o d resistance i n f l u e n c e f a c t o r b e t w e e n n u m e r i c a l r e s u l t s a n d regressive data b y f u n c t i o n ( 1 6 ) are l i s t e d i n Table 12. Results s h o w e d t h a t m o s t o f t h e e r r o r s w e r e n o m o r e p r o n o u n c e d t h a n ± 2 % , s h o w i n g t h a t t h i s m e t h o d w a s a p r a c t i c a l a p p r o a c h to t h e f u n c t i o n r e g r e s s i o n o f t h e r e l a t i o n s h i p b e t w e e n R e y n o l d s n u m b e r , r e v o l u t i o n r a t i o , a n d t h e p o d resistance i n f l u e n c e f a c t o r .

(10)

Z.-Z Wang et al./Applied Ocean Researcli 54 (2016)26-38 3 5 4.0 3,8 3.6 3.4 3.2 3.0 2.8 2.0 2.4 2,2 2,0 1.8 1.6 l o g , j ( R e ) = 7 . 1 3 2 ( M ) 1.04 1.06 1.08 1.10 1.12 1.14 1.16

Fig. 14. Variation of tlie pod resistance influence factor with revolution ratio.

3,4 3.2 3.0 2.8 2,6 2.4 2,2 2.0 -CFD ouiYe f i t data 6.0 6.5 7.0 logJRe) 7.5

Fig. 15. Variation of mean value of the pod resistance influence factor with Reynolds number. 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.97 0.96 - C F O

curve

fit daia

1.04 1.06 1.08 1.10 1,12 1.14 1.16 Fig. 16. Variation of y/ymeon with revolution ratio.

Table 12

Errors of y between numerical results and regressive data.

n/^lnr X = 27.5 A = 1 6 A = 8 X = 4 X = 2 X = l 1.0546 - 1 . 7 0 % - 1 . 9 0 % - 2 . 0 0 % 0.58% 2.64% 3.20% 1.075 - 1 . 1 8 % - 0 . 8 5 % - 1 . 2 1 % 0.26% 1.46% 1.74% 1.104 - 0 . 2 1 % 0.66% - 0 . 2 4 % - 0 . 4 4 % 0.10% - 0 . 2 9 % 1.125 0.42% 1.71% 0.62% - 0 . 5 5 % - 0 . 6 1 % - 1 . 6 4 % 1.15 1.26% 2.96% 1.70% - 0 . 5 2 % - 1 . 6 6 % - 2 . 8 5 % 0.7 - •Ji '^ ^ "

0.6

-

—•— ICjj. (fonvnrd propeller >nly)

0,5 S 0.4 0.3 0,2 0,1 10K„,

lOKj^., (fca-\vaid propeller only) - (fonvard propclUr only) • K^Cforwartlpropcllcriiisystcm)

10K.^,(foiwiirt1 propeller in syslrai) • iij (forward propeller in sysicni)

0.5 0.6 0.7 0.9

Fig. 17. Comparison of open water performance between forward propeller only and the hybrid CRP pod propulsion system.

0,8 0.7 0.6 2 0.5 ^ 0.4 0.2 0.1

-K.j.^(pod unit only) K^O'od unit only) - lOK^^Cpod unit only)

iljjCpodunit only) • K.j._^(pod unit in system)

K ^ ( p o d unit iu system) • lOK^j^CpodiuiU in system)

iljjCpod unit in system)

1 0 K „

K T „

0.5 0.6 0 7

J

0.8 0.9

Fig. 18. Comparison of open water performance between pod unit only and the hybrid CRP pod propulsion system.

I n t h i s w a y , f u l l scale p o d resistance c o e f f i c i e n t o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m c a n be p r o d u c e d b a s e d o n f u n c t i o n ( 1 2 ) , f u n c t i o n ( 1 3 ) , a n d f u n c t i o n ( 1 8 ) .

3.5. Scale effect of hydrodynamic performance of forward and aft propellers I n o r d e r t o i n v e s t i g a t e t h e e f f e c t o f t h e p o d p r o p e l l e r i n t e r f e r -ence o n h y d r o d y n a m i c p e r f o r m a n c e o f f o r w a r d a n d a f t p r o p e l l e r s , t h e o p e n w a t e r p e r f o r m a n c e o f single f o r w a r d p r o p e l l e r a n d single p o d u n i t w e r e also c a l c u l a t e d u s i n g t h e RANS m e t h o d . C o m p a r i s o n s o f o p e n w a t e r p e r f o r m a n c e b e t w e e n s i n g l e f o r w a r d p r o p e l l e r , s i n -gle p o d u n i t a n d t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m are s h o w n i n Figs. 1 7 a n d 18.

(11)

Z,-Z. Wang et al./Applied Ocean Research 54 (2016) 26-38 0,94 0,92 0.90 0.S8 0.8IS 0.84 0.82 0,60 0.78 0,76 0.74 nyn,"1.0546 n/nj=1.075 •—»—ii_^/n^= 1.104 " -»-ii/n,=1.125 n/n,=1.15 1.04 1,02 1,00 0,93 0.96 I - , * 0.94 0,92 0.90 o,ss 0,S6 - 1 1 / ^ - 1 , 0 5 4 6 - il/ii,,-1.075 -11/1,-1.104 n / i i , = l . l 2 S n/n,=1.15 7,0 l " E „ ( R e ) loEi.CRc)

{ a ) Thi'ust coefficient influence factor

Fig. 19. Variations of thrust and totque coefficient influence factors of aft propeller with Reynolds number. ( b ) Torque coefficient inlluence factor

- to5|„(R«)-6,059 0^27,5) bsn,(l!i)rö.229(tel6) - l o E , „ ( R t ) - 6 . 6 7 6 ( t e S ) -!o6]oCRi)=7,!32(J.-1) - to8,„tR«)=7.579 lte2) - t o S l o l K ' ) - » » - " » ' - » 1.10 n./n 1.050 1.025 1.000 0.975 , 0.950 0.925 O.90O 0,875 0.850 •»B,5(I!=)-6,I)5'(>-27.S, ,0ïc)^ü.329()."lö) tog,„(n«).6.676()-!) loj,0(K<)=7.13J(W) oil,o(R')"7.579().=2) » S l 0 0 t « ) - S M 5 ( l s l )

( a ) Thrust coefficient influence factor ( b ) Torque coefficient influence factor Fig. 20. Variations of thtust and torque coefficient influence factors of aft propeller with revolution ratio.

open walcr le.sl al model .scale In dirfcrcnl Reynolds numbers and

possible revolulion ralios

(KTF)ni, (KQF)^, {KTA)m, (KQA)™. (KT-pod)m

Ihe Standard ITTC 1978 extrapolation procedure

open water le.sl of single aft propeller at model scale

(KTA0)m^ (KQAo)m

the .standard l i r e 1978 extrapolation procedure

(KTAO).<. (K<3AO)S

resistance test of the pod at mode! scale in uoiform inflow condition

(KTO-pod)m (Kir)... (KQP). = « 1 HA. " f = « j HJL n,, -b. (KTA)S, (KQA)S r = f ( R e ) - f { n J n , ) (KT-pod)s

(12)

Z-Z. Wang et al./Applied Ocean Research 54 (2016)26-38 37

As s h o w n i n Fig. 17, t i i e p o d u n i t h a d l i t d e i n f l u e n c e o n the l i y d r o d y n a m i c p e r f o r m a n c e o f t h e f o r w a r d p r o p e l l e r . The d i f f e r -ences i n t h e t h r u s t c o e f f i c i e n t o f t h e s i n g l e f o r w a r d p r o p e l l e r a n d the h y b r i d CRP p o d p r o p u l s i o n s y s t e m w e r e less t h a n 3% u n d e r d e s i g n c o n d i d o n , and t o r q u e c o e f f i c i e n t w a s less t h a n 2%. The m a i n reason f o r t h i s was t h a t t h e s u c t i o n e f f e c t o f a f t p r o p e l l e r a n d b l o c k -age e f f e c t o f the p o d canceled each o t h e r o u t .

As s h o w n i n Fig. 18, t h e w a k e o f f o r w a r d p r o p e l l e r h a d a n i m p o r -t a n -t e f f e c -t o n -the h y d r o d y n a m i c p e r f o r m a n c e o f -the p o d u n i -t . The t h r u s t a n d t o r q u e c o e f f i c i e n t s o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m w e r e less p r o n o u n c e d t h a n t h a t o f s i n g l e p o d u n i t i n each advance c o e f f i c i e n t . I n t h i s w a y , the s t a n d a r d ITTC 1978 e x t r a p o l a t i o n p r o c e d u r e w a s p r o p o s e d f o r h y d r o d y n a m i c p e r f o r m a n c e p r e d i c t i o n o f f o r w a r d p r o p e l l e r i n p r o p u l s i o n s y s t e m at f u l l scale. For t h e a f t p r o p e l l e r , t h e t h r u s t a n d t o r q u e c o e f f i c i e n t i n f l u e n c e factors w e r e i n t r o d u c e d . T h e y are d e f i n e d as f o l l o w s : TA •• KTA !<TAO KQA KQAO ( 1 9 ) ( 2 0 )

here KJAO a n d KQAQ are t h e t h r u s t a n d t o r q u e c o e f f i c i e n t s o f single a f t p r o p e l l e r u n d e r u n i f o r m i n f l o w c o n d i t i o n . So FJA a n d FQA can r e p r e s e n t t h e e f f e c t o f w a k e field o f f o r w a r d p r o p e l l e r a n d blockage e f f e c t o f t h e p o d o n h y d r o d y n a m i c p e r f o r m a n c e o f a f t p r o p e l l e r .

V a r i a t i o n s o f the t h r u s t a n d t o r q u e c o e f f i c i e n t i n f l u e n c e factors o f a f t p r o p e l l e r w i t h Reynolds n u m b e r are s h o w n i n Fig. 19, w i t h r e v o l u d o n r a t i o are s h o w n i n Fig. 2 0 .

Results s h o w e d t h a t t h e t h r u s t a n d t o r q u e c o e f f i c i e n t i n f l u -ence f a c t o r s o f a f t p r o p e l l e r r e m a i n e d a l m o s t c o n s t a n t as t h e Reynolds n u m b e r increased, b u t t h e y increased as t h e r e v o l u d o n r a t i o increased, s h o w i n g a n e a r l y l i n e a r d e p e n d e n c e . So t h e t h r u s t a n d t o r q u e c o e f f i c i e n t i n f l u e n c e f a c t o r s w e r e a s s u m e d to o n l y be t h e r e v o l u t i o n r a d o f u n c t i o n :

TA ( 2 1 )

'•--MS

The l i n e a r f u n c t i o n c a n be used f o r t h e regression a n d t h e w e i g h e d least square m e t h o d can also b e used t o e s t i m a t e the u n d e -t e r m i n e d c o e f f i c i e n -t . The r e v o l u -t i o n r a -t i o f u n c -t i o n s are as b e l o w : = 2 . 0 0 4 9 — - 1 . 3 6 8 4 tlF • 0 . 8 1 0 8 ( 2 3 ) ( 2 4 )

3.6. Algorithm for extrapolation to full scale

A n e x t r a p o l a t i o n m e t h o d o f h y d r o d y n a m i c p e r f o r m a n c e f o r t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m at f u l l scale w a s p r o p o s e d . The e x t r a p o l a t i o n m e t h o d w a s expressed as f o l l o w s :

Step 3: A n o p e n w a t e r test o f t h e h y b r i d CRP p o d p r o p u l s i o n sys-t e m asys-t m o d e l scale w a s c o n d u c sys-t e d i n d i f f e r e n sys-t possible r e v o l u sys-t i o n r a t i o s ( o r u s i n g CFD m e t h o d ) , w h i c h c o v e r e d several service speeds i n o r d e r t o achieve a large r a n g e o f R e y n o l d s n u m b e r s . The t h r u s t c o e f f i c i e n t s , t o r q u e c o e f f i c i e n t s o f f o r w a r d a n d a f t p r o p e l l e r s , a n d t h e p o d resistance c o e f f i c i e n t w e r e c a l c u l a t e d i n o r d e r t o c o n d u c t t h e r e g r e s s i o n s t u d y .

Step 2: A n o p e n w a t e r test o f s i n g l e a f t p r o p e l l e r at m o d e l scale w a s p e r f o r m e d (or use CFD, p a n e l s u r f a c e m e t h o d ) , KJAQ a n d KQAO w e r e c a l c u l a t e d .

Step 3: A resistance t e s t o f t h e p o d w i t h o u t p r o p e l l e r s at m o d e l scale w a s c o n d u c t e d ( o r use CFD m e t h o d ) , a n d KjQ.pod w a s c a l c u -l a t e d .

Step 4: The s t a n d a r d ITTC 1978 e x t r a p o l a t i o n p r o c e d u r e w a s used to p r e d i c t h y d r o d y n a m i c p e r f o r m a n c e o f f o r w a r d p r o p e l l e r i n p r o p u l s i o n s y s t e m at f u l l scale. Step 5: T h r u s t a n d t o r q u e c o e f f i c i e n t i n f i u e n c e f a c t o r s o f t h e a f t p r o p e l l e r w e r e c a l c u l a t e d , a n d the l i n e a r f u n c t i o n s i m i l a r to f u n c -t i o n ( 2 3 ) a n d f u n c -t i o n ( 2 4 ) w e r e used -to c o n d u c -t -t h e regression analysis o n t h r u s t a n d t o r q u e c o e f f i c i e n t i n f l u e n c e f a c t o r s i n d i f -f e r e n t r e v o l u t i o n r a t i o s , a n d the w e i g h t e d least s q u a r e m e t h o d w a s used t o e s t i m a t e t h e u n d e t e r m i n e d c o e f f i c i e n t .

Step 6: The s t a n d a r d ITTC 1978 e x t r a p o l a t i o n p r o c e d u r e w a s u s e d to p r e d i c t h y d r o d y n a m i c p e r f o r m a n c e o f the single a f t p r o p e l l e r at f u l l scale i n u n i f o r m i n f l o w c o n d i t i o n , t h e n t h e t h r u s t a n d t o r q u e c o e f f i c i e n t i n f i u e n c e f a c t o r s o b t a i n e d i n step 5 w e r e m u l t i p l i e d to d e t e r m i n e t h e h y d r o d y n a m i c p e r f o r m a n c e o f a f t p r o p e l l e r i n p r o p u l s i o n s y s t e m at f u l l scale. Step 7: A f u n c t i o n s i m i l a r to f u n c t i o n ( 1 8 ) w a s u s e d f o r r e g r e s -s i o n analy-si-s o f t h e p o d re-si-stance i n f l u e n c e f a c t o r i n d i f f e r e n t R e y n o l d s n u m b e r s a n d r e v o l u t i o n ratios, a n d t h e w e i g h t e d least square m e t h o d was used t o e s t i m a t e t h e u n d e t e r m i n e d c o e f f i c i e n t . Step 8: The p o d resistance c o e f f i c i e n t i n u n i f o r m i n f l o w c o n d i t i o n o b t a i n e d i n step 3 w a s m u l t i p l i e d b y t h e p o d resistance i n f l u -ence f a c t o r o b t a i n e d i n step 7 to d e t e r m i n e t h e p o d resistance c o e f f i c i e n t i n p r o p u l s i o n s y s t e m at f u l l scale.

The flow c h a r t is s h o w n i n Fig. 2 1 . To e v a l u a t e t h e r e l i a b i l i t y o f t h e p r o c e d u r e above, m o r e h y b r i d CRP p o d p r o p u l s i o n s y s t e m s s h o u l d be c o l l e c t e d a n d v e r i f i e d .

4. Conclusions

I n t h i s paper, t h e h y d r o d y n a m i c p e r f o r m a n c e o f a h y b r i d CRP p o d p r o p u l s i o n s y s t e m at d i f f e r e n t scales w a s c a l c u l a t e d u s i n g t h e RANS m e t h o d c o m b i n e d w i t h SST w t u r b u l e n c e m o d e l a n d m o v i n g m e s h m e t h o d . V a r i a t i o n s i n t h e local flow field a n d h y d r o -d y n a m i c p e r f o r m a n c e w i t h the Reynol-d's n u m b e r w e r e a n a l y z e -d i n d e t a i l , a n d a m e t h o d o f e s t i m a t i n g t h e h y d r o d y n a m i c p e r f o r m a n c e o f t h e h y b r i d CRP p o d p r o p u l s i o n s y s t e m at f u l l scale w a s p r o p o s e d . This w o r k s h o w e d t h e f o l l o w i n g : (1) T h r u s t c o e f f i c i e n t s o f f o r w a r d a n d a f t p r o p e l l e r s increase as t h e R e y n o l d s n u m b e r increases, b u t t h e t o r q u e c o e f f i c i e n t decreases. This is c o n s i s t e n t w i t h results o b s e r v e d o n t r a d i -t i o n a l s h a f -t p r o p e l l e r s . A -t -t h e s a m e -time, -t h e p o d resis-tance c o e f f i c i e n t also decreases a n d t h e t h r u s t c o e f f i c i e n t o f t h e p o d u n i t increases.

(2) The B o u n d a r y layer is thicl<er at m o d e l scale, e s p e c i a l l y i n t h e r e a r o f t h e s t r u t . T h e local flow field a r o u n d t h e p o d at f u l l scale a n d a t m o d e l scale is v e r y d i f f e r e n t , especially i n t h e rear o f t h e s t r u t a n d p o d b o s s i n g area. The flow v e l o c i t y a r o u n d t h e p o d at f u l l scale is h i g h e r t h a n t h a t at m o d e l scale, a n d t h e area o f h i g h v e l o c i t y is larger.

(3) T h e p o d u n i t has l i t t l e i n f l u e n c e o n h y d r o d y n a m i c p e r f o r m a n c e o f t h e f o r w a r d p r o p e l l e r , a n d t h e w a k e o f f o r w a r d p r o p e l l e r has a n i m p o r t a n t e f f e c t o n t h e h y d r o d y n a m i c p e r f o r m a n c e o f t h e p o d u n i t .

(4) The p o d resistance i n f l u e n c e f a c t o r changes a l o n g w i t h t h e R e y n o l d s n u m b e r a n d r e v o l u t i o n r a t i o o f t h e f o r w a r d a n d a f t p r o p e l l e r s . ( 5 ) T h r u s t a n d t o r q u e c o e f f i c i e n t i n f l u e n c e f a c t o r s o f a f t p r o p e l l e r are i n d e p e n d e n t o f t h e Reynolds n u m b e r , b u t t h e y i n d i c a t e a n e a r l y l i n e a r d e p e n d e n c y w i t h r e v o l u t i o n r a t i o o f t h e f o r w a r d a n d a f t p r o p e l l e r s .

(13)

38 Z-Z. Wang et al./Applied Ocean Research 54 (2016) 26-38

Acknowledgements

The p r e s e n t w o r k w a s s u p p o r t e d b y the N a t i o n a l N a t u r a l Science F o u n d a t i o n o f China ( G r a n t N o . 5 1 4 7 9 2 0 7 ) a n d t h e H i g h T e c h n o l -ogy M a r i n e S c i e n t i f i c Research P r o j e c t o f M i n i s t r y o f I n d u s t r y a n d I n f o r m a t i o n T e c h n o l o g y o f China ( G r a n t N o . [ 2 0 1 2 ] 5 3 4 ) . W e w o u l d l i k e t o express o u r deep a p p r e c i a t i o n t o t h e M i n i s t r y o f I n d u s t r y a n d I n f o r m a t i o n T e c h n o l o g y o f China. W e t h a n k LetPub ( w w w . l e t p u b . c o m ) f o r its l i n g u i s t i c assistance d u r i n g t h e p r e p a r a t i o n o f t h i s m a n u s c r i p t .

References

[11 Sasaki N, Kawanami Y, Ukon Y. Model test procedure and analysis of hybrid CRP POD system. In: Proceedings of 2nd International conference on technical advances in podded propulsion (T-POD). 2006.

[2] Sasaki N, Kuroda M, Fujisawa J. On the model tests and design method of hybrid CRP podded propulsion system of a feeder container ship. In: Proceedings of first International symposium on marine propulsors. 2009.

[3] Black S, Cusanelli D. Design and testing of a hybrid shaft-pod propulsor for a high speed sealift ship. In: Proceedings of SNAME propellers/shafting sympo-sium. 2009.

[4] Inukai Y, Ochi F. A study on the characteristics of self-propulsion factor for a ship equipped with contra-rotating propeller. In: Proceedings of first International symposium on marine propulsors. 2009.

|5] Bong JC, Seokcheon G. Study on a procedure for propulsive performance pre-diction for CRP-POD systems. J Marine Sci Technol 2011 ;16( 1): 1 -7. [6] Quereda R, Veikonheimo T, Mariano PS. Model testing and scaling for CRP POD.

In: Proceedings of lOtb Internarional conference on hydrodynamics. 2012. [7] Sheng L, Xiong Y. Numerical simulation and experimental investigarion on

hydrodynamic performance of hybrid CRP podded propulsion. J Nanjing Univ Aeronaut Astronaut 2012:44(2): 184-90 (in Chinese).

|8] Wang ZZ, Xiong Y. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers. China Ocean Eng 2013;27(2): 193-204.

[9] The performance committee. Report of the performance committee. In: Proceedings of 15th ITfC. 1978.

[10] Stanier M. The application of RANS code to investigate propeller scale effects. In: Proceedings of 22th Symposium on naval hydrodynamics. 1998. [111 Sanchez C. Simularion of incompressible viscous flow around a tractor thruster

in model and full scale. In: Proceedings of the 8th international conference in numerical ship hydrodynamics. 2003.

[12] Li D, Berchiche N, Janson C. Influence of turbulence models on the predic-don of full-scale propeller open water characteristics with RANS methods, in; Proceedings of 26th symposium on naval hydrodynamics. 2006.

[13] Muller S, Maksoud M, Hilbert G. Scale effects on propellers for large container vessels. In: Proceedings of first International symposium on marine propulsors. 2009.

[14] Krasilnikov V, SunJ, Halse K. CFD investigation in scale effect on propellers with different magnitude of skew in turbulent flow. In: Proceedings of first International symposium on marine propulsors. 2009.

[15] Chicherin lA, Lobatchev MP, Pustoshny AV, Sanchez-Caja A. On a propulsion prediction procedure for ships with podded propulsors using RANS-code anal-ysis. In: Proceedings of T-POD. 2004. p. 223-33.

[16] Park HG, Choi JK, Kim HT. An estimation method of full scale performance for pulling type podded propellers. In: Proceedings of third Internarional sympo-sium on marine propulsors. 2013.

[17] Krasilnikov V, Pokratov D, Achkinadze A, Sun JY, Ponktatov DV. Possibilities of a viscous/potential coupled method to study scale effects on open-water characteristics of podded propulsots. In: Proceedings of T-POD. 2006. [18] Specialist. Committee on Azimuthing Podded Propulsion. Final report and

rec-ommendarions to the 25th ITTC. In: Proceedings of the 25th ITTC. 2008. [19] Menter FR. Two-equation eddy-viscosity turbulence models for engineering

applications. AIAAJ 1994;32(S):1598-605.

[20] Xing T, stern F. Factors of safety for Richardson extrapolarion. J Fluids Eng 2010;132:p.061403.

Cytaty

Powiązane dokumenty

W  następnej  kolejności  respondentom  zadano  analogiczne  pytanie  w  kontekście  wyborów  parlamentarnych  i  startujących  w  nich  partii 

W poemacie Lament nad Belgradem odbiorca oryginału również odnajdzie elementy biografii poety, echa jego wędrówek po Europie oraz odwołanie do sytuacji z życia

1970.. Krzyżanowski powołał dr Michała F id elu sa - prezesa Oddziału Towarzystwa w Piotrkow ie.. Prezydium Zjazdu, prof. dr Julian Krzyżanowski przyjmuje medal

Zestawiając stereotypowy obraz krakowianina z wizerunkiem warszawiaka stwierdzamy między nimi ogromną przepaść, zarówno w aspekcie deskryptywnym (odmienne treści), jak i

W pierwszym autorka omawia sytuację całego szkolnictwa prywatnego w Polsce, politykę władz państwowych w stosunku do szkół katolic- kich, ich odbudowę po 1944 roku, okres

Okazuje się po dalszych wyjaśnieniach, że nie można mówić o racjonalności logicznej wierzeń religijnych, ale o ich racjonalności pragm atycznej: ocena pod tym

Na rzucie prostokąta, z wydzielonym niewielkim m ihrabem ; dach kalenicowy trójpołaciow y, pobity gontem ; od frontu szczyt półkolisty (?; na rys. Kazimierz

Jeszcze w dłuższy czas potem, w „Fauście”, zżyma się Goethe, że „ustawa i prawa dziedziczą się jak wieczysta choroba”, a „o prawie, które narodziło